2020 Properties of Solid Materials

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Mechanical Engineering
Murakami Yoichi  Fushinobu Kazuyoshi 
Class Format
Lecture    (ZOOM)
Media-enhanced courses
Day/Period(Room No.)
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

In mechanical engineering, because solid materials are used in various situations from fundamental to application, understanding the properties of materials is highly important. Particularly, it is often desired to possess sound knowledge about thermal properties (thermal conductivity and specific heat) and optical properties based on understandings of the microscopic mechanisms that give rise to the macroscopic properties. Furthermore, it is important to make a right judgement on whether the theoretical framework one should employ toward a specific problem has to be quantum-mechanical or can be classical.
Students are expected to establish such understanding and ability by completing the contents of this course.

Student learning outcomes

By completing this course, students will:
- Understand how microstructure of solid materials and their physical properties dominate their observable macroscopic properties
- Understand the characteristics of the resultant properties
- Have acquired knowledge and ability to rightly judge whether one can use classical theory or should rely on quantum theory for modeling material’s property in various engineering situations


Solid materials, phonon, specific heat, statistics, thermal properties, optical properties, nanomaterials

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

This course consists of seven lectures and a final examination. Students who enroll in this course are encouraged to take his/her own lecture notes and self-study prior to and after each lecture using the "Reference books" listed below. Supplementary materials, supplied either in the form of electronic files (uploaded to OCW-i, which one has to print out by himself/herself on papers and bring them to the class) or printed papers are provided depending on the contents of lecture.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Fundamentals of solid materials: Crystal structures and their expressions (Forms of interatomic bond, symmetry and Bravais lattice, crystal systems/point groups, close-packed structures, reciprocal lattice) Learn fundamentals of solid materials and become able to explain the contents.
Class 2 Properties that arise from lattice (1): Lattice vibration and phonon (Speed of sound, mass-spring model, classification of phonon and phonon dispersion relation) Learn lattice-related properties regarding lattice vibrations and phonons, and become able to explain the contents.
Class 3 Properties that arise from lattice (2): Specific heat and thermal conductivity (Classical model, Einstein model, Debye model, dependence of thermal conductivity on temperature) Learn lattice-related properties regarding specific heat and thermal conductivity, and become able to explain the contents.
Class 4 Properties that arise from electron (1): Overview and classical descriptions (Wiedemann-Franz law, classical statistics, breakdown of classical model), quantum descriptions and resultant specific heat (Quantum statistics, Fermi sphere, electronic density of states, dependence of specific heat on temperature) Properties that arise from electron (2): Band theory ("Nearly-free electron" picture, Bloch function, emergence of bands) Learn electron-related properties based on classical and quantum descriptions, and introductions of the band theory, become able to explain the contents.
Class 5 Properties that arise from electron (2: Continued): Band theory ("Tightly-bound electron" picture, group and phase velocities, dispersion relationships, effective mass) Optical properties: Dielectric materials (Beer's law, complex refractive index, classification of polarization, dielectric dispersion) Learn electron-related properties described by the band theory and dispersion relations, and basis of the optical properties of dielectric materials, and become able to explain the contents.
Class 6 Optical properties: Dielectric materials (classical model of dielectric response, complex dielectric constant, optical reflectivity), Metals (Classical model for free-electron response, plasma frequency, dependence of optical reflectivity on wavelength) Learn the classical models to describe optical properties of dielectric materials and their applications, and basis of the optical properties of metals, and become able to explain the contents.
Class 7 Optical properties: Metals (Momentum scattering time of electrons in metal, AC/DC conductivity, plasma oscillation, bulk plasmon and surface plasmon, dipolar plasmon resonance, depolarization coefficient and plasmon resonance conditions, examples of optical property control using metallic nanomaterials) Learn optical properties of metals and their governing mechanisms mainly for plasma oscillations and plasmons, and become able to explain the contents.
Class 8 - -

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.


See "Reference books, course materials, etc." below.

Reference books, course materials, etc.

J. S. Blakemore, "Solid State Physics", Cambridge University Press. (for entire this course)
M. Fox, "Optical Properties of Solids", Oxford University Press. (for optical properties)
C. L. Tien and J. H. Lienhard, "Statistical Thermodynamics", Hemisphere Publishing Corp. (for reference)

Assessment criteria and methods

We will pose you some assignment or questions that have to be submitted by a deadline via, e.g., a PDF file. You must work on the assignments/questions by yourself alone. Working with other people and seeing other peoples answers are strictly prohibited. Details will be announced separately. You should check your university e-mail address frequently.

Related courses

  • Other mechanical engineering and energy related courses

Prerequisites (i.e., required knowledge, skills, courses, etc.)

For graduate students:
No prerequisites. (However, a registration to this class might not be approved in case a student has already obtained credits from other solid-state-physics-related classes of similar contents, because of potentially large overlaps in the contents depending on the course/department an attendee belongs to.)

For undergraduate students:
Because this is a graduate level course, the enrollment is not permitted for undergraduate students except cases when the subject of this course is highly related to his/her graduate thesis research. If one is an undergraduate student and wishes to be enrolled in this course, one first need to contact the lecturer of this course for an interview. The enrollment permission may be given based on the reasons explained in the interview.


Actual correspondences between "Course schedule" and "Class #" (see above) may be somewhat different from those given above depending on the situation of the progression, but the order of the contents taught will be kept as given above.

Page Top