2020 Advanced Human Centered Science and Biomedical Engineering II

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Human Centered Science and Biomedical Engineering
Instructor(s)
Nakamura Hiroyuki  Kondoh Shinae  Ueda Hiroshi  Tanaka Katsunori  Mori Toshiaki  Imamura Sousuke  Okada Satoshi 
Course component(s)
Lecture
Mode of instruction
ZOOM
Day/Period(Room No.)
Thr1-2(Zoom)  
Group
-
Course number
HCB.C522
Credits
1
Academic year
2020
Offered quarter
3Q
Syllabus updated
2020/9/18
Lecture notes updated
-
Language used
English
Access Index

Course description and aims

Interdisciplinary research fields are rapidly expanding in modern society. Therefore, it is important for future researchers to capture challenges based on multidisciplinary insights. This course will provide professional knowledges of interdisciplinary research fields which is important for front-line life engineers in life engineering course. In particular, "Advanced Human Centered Science and Biomedical Engineering II" will focus on advanced interdisciplinary researches between chemistry and life science fields. In this interdisciplinary research field, fusion of knowledges and technologies in each field will lead to development of novel technologies and creation of new interdisciplinary research fields. In this course, students can learn professional knowledges and understand how chemistry and life science fields have merged to have technological innovations through learning particular cases.

Student learning outcomes

By the end of this course, students will be able to :
1) Understand the properties of cancers at the cellular and organ levels and design the future strategies for anti-cancer drug development
2) Explain the principle and the application of super-resolution microscopy and atomic force microscopy
3) Design cell surface by the evaluation of physical property using atomic force microscopy
4) Explain stress responses in photosynthetic organisms and biosensers made of proteins
5) Understand the principle and application of "in cell" and "a whole body" molecular imaging

Keywords

Advanced Human Centered Science and Biomedical Engineering, Tumor microenvironment, Cancer chemotherapy, Atomic force microscopy, Protein sensors, Photosynthetic organisms, Molcular imaging, Magnetic Resonance Imaging

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

In the first half of the class, the main points of the day's lecture are explained. In the latter half, these main points are discussed in details. Students are asked to provide solutions to the questions and submit to the professor as a report in English. Always check the required learning for each class and be sure to complete it as a part of peparation and review.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Cancer chemotherapy (Nakamura) Learn the recent development of cancer chemotherapy and understand the future strategies for anti-cancer drug development.
Class 2 Stress responses in photosynthetic organisms (Imamura) Understand molecular mechanism of various stress responses in photosynthetic organisms.
Class 3 Molecular imaging (Tanaka) Understand the principle and application of "in cell" and "a whole body" molecular imaging.
Class 4 MR imaging of biomolecules (Okada) Understand the basic principle of MRI and learn the development of contrast agents for imaging of biomolecules.
Class 5 Creation of sensors made of proteins (Ueda) Students must be able to explain biosensors made of proteins such as antibody and enzyme.
Class 6 Tumor microenvironment and cancer targeting(Kondoh) Learn the properties of cancers at the cellular and organ levels and the leading edge of cancer treatments, and understand the difficulties of cancer research for developing new anti-cancer strategies.
Class 7 Observation of cell surface by the evaluation of physical property using atomic force microscopy (Mori) Understand characteristics of cell surface which included physical properties such as strength and modulus as well as height image by using atomic force microscopy.

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

None required.

Reference books, course materials, etc.

Handouts will be distributed at the beginning of class if necessary.

Assessment criteria and methods

Assessment is based on the quality of the written reports in English and on the status of submission thereof in each class. Reports written in Japanese will not be evaluated.

Related courses

  • HCB.C521 : Advanced Human Centered Science and Biomedical Engineering I
  • HCB.C401 : Joint Creative Design
  • HCB.C421 : Outline of Human Centered Science and Biomedical Engineering I
  • HCB.C422 : Outline of Human Centered Science and Biomedical Engineering II

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Students are encouraged to complete the related courses.

Other

If misconduct, such as plagiarism or misappropriation of someone else's work is committed, we will treat it strictly: The grade of the subject will be 0.

Page Top