2016年度 人工知能基礎 O   Introduction to Artificial Intelligence

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
情報工学科
担当教員名
篠田 浩一 
授業形態
講義
メディア利用
 
曜日・時限(講義室)
金3-4(W932)  
クラス
O
科目コード
ZUS.I301
単位数
2
開講年度
2016年度
開講クォーター
1-2Q
シラバス更新日
2016年1月11日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

人工知能システムは様々な要素技術を用いて構築される。本講義では,まず簡単な問題について,その定式化とそれに基づき探索する方法を学ぶ。次に,知識を明示的に表現し,その表現をもとに推論をする方法を学び,さらに効率的に推論するための計画作成の方法を習得するす。最後に,コンピュータに知識を自動獲得させるための機械学習の手法を学ぶ。

到達目標

情報社会において人間の知的生産作業を補助する人工知能システムの必要性を理解し,その構築の際に基本となる要素技術を身に付けることを到達目標とする。特に人間の知的生産作業のプロセスを表現する方法,その表現を用いて推論する方法を習得することを目標とする。本講義では,人工知能システムを構築する上で必要な,探索,知識表現,推論,計画作成,機械学習の各々の分野における基本的な考え方を理解し,それを実世界に応用するために必要な基礎を築くことを目的とする。

キーワード

探索,意味ネットワーク,フレーム表現,プロダクションシステム,導出原理,推論,プラニング,線形識別,ニューラルネットワーク,決定木

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

1) 講義のはじめに前回講義の復習と演習問題の解説を行う
2) 講義の最後に講義内容に基づく演習問題を出題する

授業計画・課題

  授業計画 課題
第1回 人工知能入門 講義で指定する.
第2回 探索1:問題の表現とグラフ探索 講義で指定する.
第3回 探索2:発見的探索,A*探索 講義で指定する.
第4回 探索3:ゲーム(ミニマックス法,α-β 手続,オセロ,チェス) 講義で指定する.
第5回 知識表現1:意味ネットワーク,フレーム表現 講義で指定する.
第6回 知識表現2:プロダクションシステム 講義で指定する.
第7回 推論1:導出原理に基づく推論 講義で指定する.
第8回 推論2:前向き推論と後向き推論,デフォルト推論 講義で指定する.
第9回 推論3:確率的推論(ベイジアンネットワーク) 講義で指定する.
第10回 計画作成1:GPS, 階層的プランニング 講義で指定する.
第11回 計画作成2:半順序プランニング,即応プランニング 講義で指定する.
第12回 機械学習1:線形識別器 講義で指定する.
第13回 機械学習2:ニューラルネットワーク 講義で指定する.
第14回 機械学習3:決定木,その他 講義で指定する.
第15回 応用と展望 講義で指定する.

教科書

特になし

参考書、講義資料等

太原育夫著 『人工知能の基礎知識』 近代科学社,新田克己著 『人工知能概論』 培風館

成績評価の基準及び方法

毎回のレポート課題(20%),及び,期末試験(80%)により評価する

関連する科目

  • CSC.T372 : コンパイラ構成
  • CSC.T352 : パターン認識
  • CSC.T242 : 確率論・統計学
  • CSC.T261 : 情報論理
  • ART.T459 : 自然言語処理
  • ART.T460 : 音声情報処理
  • ART.T547 : マルチメディア情報処理論
  • ART.T548 : 先端人工知能

履修の条件(知識・技能・履修済科目等)

履修の条件を設けない.

このページのトップへ