2019年度 解析力学演習   Exercises in Classical Mechanics

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
物理学科
担当教員名
山口 昌英  綿引 芳之 
授業形態
演習
曜日・時限(講義室)
月5-6(H102,H104)  
クラス
-
科目コード
ZUB.Q212
単位数
1
開講年度
2019年度
開講クォーター
2Q
シラバス更新日
2019年4月5日
講義資料更新日
-
使用言語
日本語
アクセスランキング

講義の概要とねらい

数学的に洗練されより一般性の高い形にニュートン力学を書き直したものが解析力学であり、ラグランジュ形式とハミルトン形式に大別される。解析力学により問題を効率的に解くことができるようになるだけではなく、量子力学へと至る道が切り開かれることになる。
本講義ではラグランジュ形式ならびにハミルトン形式の力学における以下の項目を習得することを目的とする。

到達目標

・ラグランジアンやハミルトニアンを使って力学の問題を表現し解くことができる。
・物理学における対称性の役割を説明できる。

キーワード

ラグランジアン、ハミルトニアン、対称性

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - -

授業の進め方

講義では基本的概念の説明や定式化を中心に進め、演習において与えられた具体的な問題を解く能力を養う。

授業計画・課題

  授業計画 課題
第1回 運動方程式と座標系/オイラー・ラグランジュ方程式 各回の講義内容と関連した具体的な問題が解けるようになること。
第2回 一般化座標と共変性/最小作用の原理
第3回 ラグランジアンの構築/対称性と保存則
第4回 拘束条件の取り扱い/微小振動
第5回 位相空間と正準方程式/正準変換
第6回 リウビルの定理/無限小変換と保存量
第7回 ポアソン括弧/ハミルトン・ヤコビ方程式
第8回 周期運動と正準変数

教科書

特になし。

参考書、講義資料等

演習問題を配布する。

成績評価の基準及び方法

発表内容、小テスト、レポートで評価する。

関連する科目

  • ZUB.Q203 : 解析力学(講義)
  • ZUB.Q204 : 量子力学第一

履修の条件(知識・技能・履修済科目等)

「解析力学(講義)」と共に履修することを強く勧める。

このページのトップへ