2017年度 物理数学演習第一   Exercises in Applied Mathematics I

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
物理学科
担当教員名
伊藤 克司  横山 毅人 
授業形態
演習
曜日・時限(講義室)
月3-4(H135)  木3-4(H135)  
クラス
-
科目コード
ZUB.M210
単位数
2
開講年度
2017年度
開講クォーター
1Q
シラバス更新日
2017年3月17日
講義資料更新日
-
使用言語
日本語
アクセスランキング

講義の概要とねらい

本演習では理工学に幅広い応用範囲を持つ複素関数論とフーリエ級数についての問題を解く。

本演習のねらいは、自らの手で問題を解くことを通して物理数学第一の講義内容の理解を深め、その習得を助けることである。

到達目標

本演習を履修することによって次の能力を修得する。

1) 複素関数について正則性などの基礎的な概念を理解する。

2) 複素関数の微分・積分を求める。また、留数定理を応用して実関数の積分を求める。

3) 正則関数を利用した等角写像を用いて二次元ラプラス方程式の境界値問題を解く。

キーワード

複素関数、正則性、コーシーの積分定理、留数定理、等角写像、解析接続、フーリエ展開

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - -

授業の進め方

物理数学第一の講義の進度に準じて進める。毎回、授業で問題を配布するので、次回までに解いてくること。問題ごとに担当を決めて黒板で発表し、一部の問題はレポートとして提出してもらう。

授業計画・課題

  授業計画 課題
第1回 複素数 複素数の概念を理解する。
第2回 正則関数 正則関数の性質を理解する。
第3回 初等関数 複素数を定義域とする初等関数について学ぶ。
第4回 複素積分1 複素関数の積分について学ぶ。
第5回 複素積分2 複素関数の積分について学ぶ。
第6回 べき級数 複素関数のべき級数展開について理解する。
第7回 留数定理 コーシーの積分定理と留数定理を理解する。
第8回 複素積分1 複素関数の積分について学ぶ。
第9回 複素積分2 複素関数の積分について学ぶ。
第10回 等角写像 等角写像の概念を理解し、初等関数に対する等角写像について学ぶ。
第11回 等角写像の応用 物理学の問題への等角写像の応用方法を学ぶ。
第12回 解析接続 解析接続の概念を理解する。
第13回 リーマン面 リーマン面の概念を理解し、いくつかの多価関数に対するリーマン面の構造を学ぶ。
第14回 フーリエ級数とフーリエ変換1 フーリエ級数の性質を理解し、フーリエ変換の方法を学ぶ。
第15回 フーリエ級数とフーリエ変換2 フーリエ級数の性質を理解し、フーリエ変換の方法を学ぶ。

教科書

物理数学第一の項を参照のこと。

参考書、講義資料等

物理数学第一の項を参照のこと。

成績評価の基準及び方法

授業中の発表、レポート、および期末試験により総合的に評価する。

関連する科目

  • ZUB.M201 : 物理数学第一

履修の条件(知識・技能・履修済科目等)

物理数学第一の講義と共に履修することが望ましい。

このページのトップへ