2019 Engineering Literacy IV d

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
School of Engineering
Instructor(s)
Teaching Staffs  Hanamura Katsunori  Koike Yasuharu  Aoki Hirotaka  Nakata Kazuhide  Shinozaki Takahiro  Kamigaito Hidetaka  Yoshimura Natsue  Takahashi Atsushi 
Course component(s)
Lecture / Exercise
Day/Period(Room No.)
Thr5-6(<前半>, 西9号館3階311号室, <後半>, 南2号館3階VLSI設計室)  
Group
d
Course number
XEG.B104
Credits
1
Academic year
2019
Offered quarter
4Q
Syllabus updated
2019/3/19
Lecture notes updated
-
Language used
Japanese
Access Index

Course description and aims

This course aims to become a bridge between general education at high school and specialized education in the subjects of No.200 or higher. This course also aims to cultivate not only basic knowledge of engineering but also sense and attitude for problem solving so that the freshmen of School of Engineering can learn actively specialized subjects after sophomore.
By taking all Engineering literacy I-IV, the students experience the following all seven subjects in Engineering Literacy.
【Manufacturing process 】
【Mechanical Design (Steamship)】
【Mechanical Design (CAD)】
【Control】
【Wireless electric car with microcomputer】
【Communication, Computation, and Intelligent Information Processing】
【Management Technology (Industrial Engineering and Economics)】

Student learning outcomes

By completing this course, students will be able to:
【Management Technology (Industrial Engineering and Economics)】
1) understand the outline of Industrial Engineering (IE) techniques.
2) apply IE techniques to simple cases.
3) understand mathematical models related to engineering applications.
4) understand basic algorithms for optimization problems.
【Communication, Computation, and Intelligent Information Processing】
1) explain the connection between basic academics and the latest intelligent information processing techniques
2) explain the basic principle of the artificial neural network.
3) login to a supercomputer system and perform a massive computation.

Keywords

【Management Technology (Industrial Engineering and Economics)】
Management Technology, Industrial Engineering, Mathematical Modeling
【Communication, Computation, and Intelligent Information Processing】
Deep learning, neural network, intelligent information processing, parallel computing, communication

Competencies that will be developed

Intercultural skills Communication skills Specialist skills Critical thinking skills Practical and/or problem-solving skills
- - -

Class flow

【Management Technology (Industrial Engineering and Economics)】
This course provides an introduction to the academic domain called Industrial Engineering and Economics, and explains basic knowledge about management technology and mathematical modeling. The first half of this lecture explains an outline of the Industrial Engineering techniques. The latter half of the lecture explains basics of mathematical modeling.
【Communication, Computation, and Intelligent Information Processing】
This course explains the connection between the latest deep learning based intelligent information processing technique and basic academic areas such as linear algebra, calculus, probability, numeric optimization, graph theory, and biological information processing, as well as network and computer techniques that provide the computation environment. Moreover, students choose a topic from image, speech, and text processing, and run a preliminary experiment using a deep neural network on a TSUBAME super-computer or a cloud computer. The first half of this lecture explains deep learning with its connection to various academic areas and computer techniques. The latter half is an exercise where students train and evaluate a deep neural network of their choice.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Management Technology 1 (Work study) Carry out an improvement of a work system using work study technique.
Class 2 Management Technology 2 (Cognitive task analysis) Carry out an evaluation of interface by applying cognitive task analysis technique.
Class 3 Management Technology 3 (Modeling) Develop mathematical models representing practical problems.
Class 4 Management Technology 4 (Optimization) Learn algorithms for optimization models.
Class 5 Intelligent information processing Can explain the basics of deep neural network
Class 6 Use of computer resource through Internet Can access a computer through the Internet
Class 7 Train and evaluate deep neural network (1) Can run a script to train and evaluate a neural network
Class 8 Train and evaluate deep neural network (2) Can investigate a script and explain how the training and evaluation of the neural network is implemented

Textbook(s)

None required

Reference books, course materials, etc.

Documents will be distributed

Assessment criteria and methods

【Management Technology (Industrial Engineering and Economics)】
Evaluate short reports.
【Communication, Computation, and Intelligent Information Processing】
Evaluate the report.

Related courses

  • XEG.B101 : Engineering Literacy I
  • XEG.B102 : Engineering Literacy II
  • XEG.B103 : Engineering Literacy III
  • XEG.B104 : Engineering Literacy IV

Prerequisites (i.e., required knowledge, skills, courses, etc.)

This lecture is only for the freshmen of School of Engineering.
Students are strongly recommended to take all Engineering literacy I-IV to experience all subjects in Engineering Literacy.

Page Top