2018年度 物理学特論第八   Special Topics in Physics VIII

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
物理学コース
担当教員名
大関 真之 
授業形態
講義
曜日・時限(講義室)
-
クラス
-
科目コード
PHY.P558
単位数
1
開講年度
2018年度
開講クォーター
4Q
シラバス更新日
2018年11月30日
講義資料更新日
-
使用言語
日本語
アクセスランキング

講義の概要とねらい

最近、巷で話題の機械学習。やってみると面白いものだ。
統計力学を柱に博士(理学)学位を取得したのちに、情報科学系へと趣を変えて学んでみると、これが結構面白い。
それに機械学習を始めとするデータ科学は、実験データと向き合う物理学の王道とも折り合いがよい。
学部の基礎科目としても良いだろうと考えている。
ただの道具としての取得のみならず、理解をする楽しみがあることも見逃せない。
多数の自由度が集まると統計力学を糸口として解析の対象ともなり、
情報科学の方法論に物理学による切り口を持ち込むことができる。
もしかしたら量子力学が、もしかしたらあの方法が、さらなる発展を迎えるかもしれない。
それを考えるきっかけとなる講義を予定している。

到達目標

機械学習を統計力学の側面から理解して使えるようになる。

キーワード

機械学習,統計力学

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- -

授業の進め方

講義を主体に行う。

授業計画・課題

  授業計画 課題
第1回 最小二乗法からの脱却 最小二乗法からの脱却法
第2回 関数の近似・機械学習 関数の近似・機械学習の理解
第3回 ニューラルネットワーク実装編(Python・Chainer利用) ニューラルネットワーク実装(Python・Chainer利用)の理解
第4回 深層学習・カーネル法 深層学習・カーネル法の理解
第5回 スパースモデリング スパースモデリングの理解
第6回 情報統計力学とスピングラス理論 情報統計力学とスピングラス理論の理解
第7回 物理学と機械学習 物理学と機械学習の関係の理解

教科書

なし

参考書、講義資料等

適宜配布する。

成績評価の基準及び方法

主にレポートによる

関連する科目

  • PHY.S301 : 統計力学
  • PHY.S312 : 統計力学II
  • PHY.S440 : 統計力学Ⅲ

履修の条件(知識・技能・履修済科目等)

統計力学の基礎を理解していること

このページのトップへ