H29年度 解析力学 A   Analytical Mechanics A

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
物理学系
担当教員名
西田 祐介  那須 譲治 
授業形態
講義 / 演習
曜日・時限(講義室)
月3-6(H112)  木3-4(H112)  
クラス
A
科目コード
PHY.Q206
単位数
3
開講年度
H29年度
開講クォーター
2Q
シラバス更新日
H29年3月17日
講義資料更新日
H29年6月2日
使用言語
日本語
アクセスランキング

講義の概要とねらい

数学的に洗練されより一般性の高い形にニュートン力学を書き直したものが解析力学であり、ラグランジュ形式とハミルトン形式に大別される。解析力学により問題を効率的に解くことができるようになるだけではなく、量子力学へと至る道が切り開かれることになる。
本講義ではラグランジュ形式ならびにハミルトン形式の力学における以下の項目を習得することを目的とする。

到達目標

・ラグランジアンやハミルトニアンを使って力学の問題を表現し解くことができる。
・物理学における対称性の役割を説明できる。

キーワード

ラグランジアン、ハミルトニアン、対称性

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - -

授業の進め方

講義では基本的概念の説明や定式化を中心に進め、演習において与えられた具体的な問題を解く能力を養う。

授業計画・課題

  授業計画 課題
第1回 運動方程式と座標系 各回の講義内容と結果を理解し、それらを自分で導出し説明できるようになること。 また関連した具体的な問題が解けるようになること。
第2回 オイラー・ラグランジュ方程式
第3回 一般化座標と共変性
第4回 最小作用の原理
第5回 ラグランジアンの構築
第6回 対称性と保存則
第7回 拘束条件の取り扱い
第8回 微小振動
第9回 位相空間と正準方程式
第10回 正準変換
第11回 リウビルの定理
第12回 無限小変換と保存量
第13回 ポアソン括弧
第14回 ハミルトン・ヤコビ方程式
第15回 周期運動と正準変数

教科書

特になし。

参考書、講義資料等

OCW-i で講義ノートを配布する。
演習問題を配布する。

成績評価の基準及び方法

演習における発表内容、小テスト、レポート(~40%)と期末試験(~60%)で評価する。

関連する科目

  • PHY.Q207 : 量子力学入門

履修の条件(知識・技能・履修済科目等)

特になし。

このページのトップへ