2019 Chemical and Statistical Thermodynamics

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Chemistry
Instructor(s)
Nishino Tomoaki  Kiguchi Manabu 
Course component(s)
Lecture
Day/Period(Room No.)
()  
Group
-
Course number
CHM.C202
Credits
2
Academic year
2019
Offered quarter
4Q
Syllabus updated
2019/3/18
Lecture notes updated
-
Language used
Japanese
Access Index

Course description and aims

This course facilitates students’ understanding of the laws of thermodynamics, which has a macroscopic viewpoint, and fundamentals of statistical thermodynamics having a microscopic viewpoint. Specifically, topics include the first and second laws of thermodynamics and entropy for thermodynamics. For statistical thermodynamics, topics include Boltzmann distribution law, molecular partition function, number of microstates, thermal interaction between macroscopic systems, canonical distribution, and molecular thermodynamics for a simple system.
The aims are to learn thermodynamics and statistical thermodynamics, which have macro- and microscopic viewpoints, respectively, and to explain the classical thermodynamics by statistical mechanics on the basis of probability and statistics.

Student learning outcomes

At the end of this course, students will be able to:
1) Explain the concepts and physical quantities of thermodynamics and statistical thermodynamics, 2) Describe physical changes, such as phase transition, and chemical reactions on the basis of thermodynamics and statistical thermodynamics from the macro- and macroscopic viewpoints, respectively.

Keywords

physical chemistry, thermodynamics, statistical thermodynamics, chemical equilibrium, partition functions

Competencies that will be developed

Intercultural skills Communication skills Specialist skills Critical thinking skills Practical and/or problem-solving skills
- - - -

Class flow

Lecture including short exam.

Course schedule/Required learning

  Course schedule Required learning
Class 1 System and state variable Explain the concepts of system, state variable, and extensive and intensive properties.
Class 2 The first law of thermodynamics Calculate the internal energy of a system.
Class 3 The second law of thermodynamics Calculate the entropy change for physical and chemical changes.
Class 4 Free energy Explain the free energy.
Class 5 Chemical equilibrium Explain the chemical potential.
Class 6 Quantity of states Calculate entropy by using Boltzmann formula.
Class 7 Molecular partition function Calculate the molecular partition function.
Class 8 Molecular partition function and average energy Calculate the average energy by using the molecular partition function.
Class 9 Partition function of a system Explain the canonical ensemble.
Class 10 Molecular partition function of translation Calculate the molecular partition function of translation.
Class 11 Molecular partition function of rotation Calculate the molecular partition function of rotation.
Class 12 Molecular partition function of vibration Calculate the molecular partition function of vibration.
Class 13 Statistical thermodynamics of solids Calculate the specific heat of solids.
Class 14 Molecular partition function and chemical equilibrium Calculate the equilibrium constant by using the partition function.
Class 15 Quantum statistical thermodynamics Explain the difference between classical and quantum statistical thermodynamics.

Textbook(s)

None required.

Reference books, course materials, etc.

P. Atkins. Atkins' Physical Chemistry

Assessment criteria and methods

Students' knowledge of the laws and physical properties of thermodynamics and statistical thermodynamics, and their ability to describe physical changes and chemical reactions on the basis of thermodynamics and statistical thermodynamics.
Learning achievement is evaluated by a final exam (80%) and exercise problems (20%).

Related courses

  • CHM.C204 : Exercise in Chemical and Statistical Thermodynamics

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites.

Page Top