2018年度 化学数学第一   Mathematics for Chemistry I

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
化学系
担当教員名
沖本 洋一 
授業形態
講義
曜日・時限(講義室)
火3-4(H116)  
クラス
-
科目コード
CHM.A211
単位数
1
開講年度
2018年度
開講クォーター
1Q
シラバス更新日
2018年3月20日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

 化学を学ぶ者にとって, 必要な数学(微分方程式と特殊関数、ベクトル解析を中心に)を講義する。
 この講義により、特に物理化学分野で重要であるいくつかのトピックス(シュレーディンガー方程式の境界値問題、選択規則、光学現象)における数学の役割を理解させ、その物理的意味を捉えることを狙いとする。

到達目標

本講義で扱う数学に関する個々のトピックスについてその意味を理解し、化学を理解する上でのツールとして十分に利用できるようにする。

キーワード

微分方程式、特殊関数、ベクトル解析

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力

授業の進め方

講義は,基本事項の説明,演習問題の解説および関連トピックの紹介からなる.担当教員の指示にしたがい,授業外での十分な予習・復習が必要である.

授業計画・課題

  授業計画 課題
第1回 偏微分方程式 偏微分方程式の境界値問題を解くことができる
第2回 偏微分方程式の化学への応用 偏微分方程式を化学に適用できる
第3回 特殊関数 偏微分方程式を特殊関数を用いて解くことができる
第4回 特殊関数の化学への応用(シュレーディンガー方程式、選択規則) 特殊関数の知識を化学に適用できる
第5回 ベクトル解析 様々な微分演算子を用いた計算をすることができる
第6回 ベクトル場の微分積分 ベクトル場を微分や積分したりすることができる
第7回 ベクトル場計算の化学への応用1 ベクトル場の計算を化学に適用できる
第8回 化学数学の化学への応用 これまで得た数学の知識を化学に適用できる

教科書

特に指定はしない。

参考書、講義資料等

基礎量子化学 (小尾欣一、渋谷和彦著)

成績評価の基準及び方法

講義で説明した化学数学の基礎に関する事項を理解しているか,期末試験で評価する.

関連する科目

  • CHM.C332 : 量子化学
  • LAS.C105 : 量子化学基礎

履修の条件(知識・技能・履修済科目等)

特になし

このページのトップへ