In this course students will work on three basic physics experiments. They will be performed once per two to three weeks, and students will be given a preparation period for each experiment in order to gain an understanding of the experiment details. Teams of two will be created for each experiment, which will be performed in cooperation. After each experiment, each student will create a report to submit.
In experiment 1 students will use a spectrometer that functions due to diffractive grating, and a digital camera to measure lights from hydrogen and helium atoms, and the light from surrounding light sources. In experiment 2 students will use a NaI scintillator to measure gamma rays. Students will also attempt the simultaneous measurement of 2 gamma rays in a measurement that uses cobalt ray sources. In experiment 3 students will capture cosmic ray muons which are charged particles, measuring their life. Students will learn calculation methods for the kinematics of three-body decay and the basic coupling constants of weak interaction.
The lecture is partially given in English in 2017.
We will run three basic and important physics experiments, and consider the physical laws at play, getting a grasp on physics principles. In experiment 1 students will observe a light from the Balmer series hydrogen and helium, and compare them with calculations from quantum mechanics.
In experiment 2 students will use basic gamma ray measurements to understand the interaction between gamma rays and matter. In experiment 3 students will measure the life of cosmic ray muons, finding the fundamental constant of weak interaction. Students will refine through practice their handling of experimental equipment and data processing technology they learned to use as an undergraduate, and learn central technology that will have applications for master's thesis research.
physics experiment, data processing, gamma-ray measurement, cosmic-ray measurement
✔ Specialist skills | ✔ Intercultural skills | ✔ Communication skills | ✔ Critical thinking skills | ✔ Practical and/or problem-solving skills |
repeat the procedure three times i.e. preparation, carrying out experiment at Lab, summarizing in report.
Course schedule | Required learning | |
---|---|---|
Class 1 | Exp1) Spectroscopy of atoms and quantum mechanics (first half) | Learn the image analysis of the digital camera, examine the comparison between the results and the quantum mechanics calculation |
Class 2 | Exp1) Spectroscopy of atoms and quantum mechanics (second half) | Learn the image analysis of the digital camera, examine the comparison between the results and the quantum mechanics calculation |
Class 3 | Exp1) Reports (image analysis of the digital camera, comparison with the quantum mechanics calculation, consideration), preparation for the Exp2) | Learn the image analysis of the digital camera, examine the comparison between the results and the quantum mechanics calculation |
Class 4 | Exp2) Gamma-ray measurements using NaI scintillators (first half) | Learn the energy spectrum analyses, and the coincidental measurement techniques |
Class 5 | Exp2) Gamma-ray measurements using NaI scintillators (second half) | Learn the energy spectrum analyses, and the coincidental measurement techniques |
Class 6 | Exp2) Reports (energy spectrum analysis, coincidental measurement technique), preparation for the Exp3) | Learn the energy spectrum analyses, and the coincidental measurement techniques |
Class 7 | Exp3) Measurement of the muon lifetime (first half) | Calculate the 3-body decay, calculate the coupling constant of the weak interaction |
Class 8 | Exp3) Measurement of the muon lifetime (second half), Reports (calculation of the 3-body decay, calculation of the coupling constant of the weak interaction) | Calculate the 3-body decay, calculate the coupling constant of the weak interaction |
The textbook will be handed out, which includes the experimental procedure, the exercises for the reports.
The attendants are required to read through it before each experiment.
"Jikken no saho to anzen", publisher : Yoshioka-shoten, author : Koji Nakai
based on the three reports handed in after carrying out the experiments
No condition applied (recommended also for the students in the theory groups)