2019年度 幾何学特論F1   Advanced topics in Geometry F1

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学コース
担当教員名
野坂 武史 
授業形態
講義
曜日・時限(講義室)
金5-6(H104)  
クラス
-
科目コード
MTH.B506
単位数
1
開講年度
2019年度
開講クォーター
2Q
シラバス更新日
2019年3月18日
講義資料更新日
-
使用言語
英語
アクセスランキング

講義の概要とねらい

本講義の主な題材は、ベクトル束の特性類に関する基本的な諸概念である。特異ホモロジー論に関するいくつかの基礎事項を導入した後、Thomの同型定理を証明し、向きづけられたベクトル束のEuler類を定義する。次に、その他の特性類、すなわちStiefel-Whitney類、Chern類、Pontrjagin類を導入し、その基本的な性質を述べる。最後に、特性類の応用を言及する。
 ベクトル束の特性類は位相幾何学および微分幾何学における基本的な概念の一つである。本講義は特性類に関する入門的な講義であり、最先端の幾何学を学ぶためのいくつかの予備知識を提供する。本講義は第1クォーターに行われる「幾何学特論E1」の続論である。

到達目標

・ベクトル束の特性類の原理を理解すること
・Thomの同型定理の正確な内容と意義を理解すること
・簡単な場合に、特性類の計算ができるようになること

キーワード

特性類、Thom同型、Euler類

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - - -

授業の進め方

通常の講義形式による講義

授業計画・課題

  授業計画 課題
第1回 特性類という概念 講義中に指示する
第2回 特異ホモロジーと特異コホモロジー
第3回 コホモロジーの積構造(カップ積・クロス積)、切除定理
第4回 Thomの同型定理とその証明、Thom類
第5回 Euler類とその性質、Gysin完全系列
第6回 Stiefel-Whitney類とその性質、射影空間のはめ込み可能性
第7回 Chern類・Pontrjagin類とその性質
第8回 展望

教科書

使わない

参考書、講義資料等

田村一郎「微分位相幾何学」岩波書店
ミルナー/スタシェフ「特性類講義」丸善出版
フーズミュラー「ファイバー束」

成績評価の基準及び方法

レポート課題(100%).

関連する科目

  • MTH.B505 : 幾何学特論E1
  • MTH.E532 : 数学特別講義H

履修の条件(知識・技能・履修済科目等)

位相空間、多様体、ホモロジー群に関する知識を仮定する。幾何学特論E1を履修していることが望ましい。

このページのトップへ