2019年度 数学最先端特別講義B   Special lectures on current topics in Mathematics B

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学コース
担当教員名
佐藤 周友 
授業形態
講義
曜日・時限(講義室)
集中講義等   
クラス
-
科目コード
MTH.E632
単位数
2
開講年度
2019年度
開講クォーター
2Q
シラバス更新日
2019年6月17日
講義資料更新日
-
使用言語
英語
アクセスランキング

講義の概要とねらい

代数多様体上の(あるいはより一般にネータースキーム上の)Chow群は,複素代数曲線(リーマン面)上の因子類群や代数的整数環のイデアル類群など古典的な不変量の拡張である。本講義では、Chow群の定義と基本性質、および基本的な問題意識(どこが難しく、何が問題なのか)を解説した後、非アルキメデス的局所体(主にp進体)上の多様体0サイクルのChow群の場合に、Brauer群との間の自然なペアリング(Brauer-Maninペアリング)を用いたアプローチ(ある種の非退化性)について解説する。さらに、この非退化性が、p進整数環上の正則(かつ固有的な)モデルのサイクル写像の言葉で言い換えられることについても解説したい。

到達目標

・Chow群の定義について理解する。
・p進体上の多様体の0サイクルのChow群とBrauer群の関係について理解する。
・整数環上のスキームのサイクル写像の全射性と既存のサイクルの問題との関係を理解する。

キーワード

代数多様体,代数的サイクル,Chow群,Brauer群,Brauer-Maninペアリング,サイクル写像

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - - -

授業の進め方

集中講義形式で行い,適宜レポート課題を出す。

授業計画・課題

  授業計画 課題
第1回 集中講義の概要,代数的サイクルの基本事項 講義中に指示する
第2回 有理同値とChowの移動の補題 講義中に指示する
第3回 0サイクルのChow群とAlbanese写像 講義中に指示する
第4回 Chow群とGrothendieck群の関係1 講義中に指示する
第5回 Chow群とGrothendieck群の関係2 講義中に指示する
第6回 体のBrauer群とGaloisコホモロジー1 講義中に指示する
第7回 体のBrauer群とGaloisコホモロジー2 講義中に指示する
第8回 スキームのBrauer群とエタールコホロジー1 講義中に指示する
第9回 スキームのBrauer群とエタールコホロジー2 講義中に指示する
第10回 p進体上の多様体のLichtenbaum-Maninペアリング1 講義中に指示する
第11回 p進体上の多様体のLichtenbaum-Maninペアリング2 講義中に指示する
第12回 p進体上の多様体のLichtenbaum-Maninペアリング3 講義中に指示する
第13回 整数環上のスキームのサイクル写像1 講義中に指示する
第14回 整数環上のスキームのサイクル写像2 講義中に指示する
第15回 整数環上のスキームのサイクル写像3 講義中に指示する

教科書

使用しない.

参考書、講義資料等

Hartshorne, R.: Algebraic Geometry, (Graduate Texts in Math. 52), Springer 1977
斎藤秀司・佐藤周友(著)「代数的サイクルとエタールコホモロジー」 (シュプリンガー現代数学シリーズ17) 丸善出版,2012年

成績評価の基準及び方法

レポート課題(100%)による.

関連する科目

  • MTH.A401 : 代数学特論A
  • MTH.A402 : 代数学特論B
  • MTH.A501 : 代数学特論E
  • MTH.A502 : 代数学特論F

履修の条件(知識・技能・履修済科目等)

代数学における基本事項を修得していることが望ましい

このページのトップへ