2018年度 代数学特論D   Advanced topics in Algebra D

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学コース
担当教員名
KELLY SHANE ANDREW 
授業形態
講義
曜日・時限(講義室)
木5-6(H137)  
クラス
-
科目コード
MTH.A404
単位数
1
開講年度
2018年度
開講クォーター
4Q
シラバス更新日
2018年10月19日
講義資料更新日
-
使用言語
英語
アクセスランキング

講義の概要とねらい

Motivated by Weil's beautiful conjectures on zeta functions counting points on varieties over finite fields, étale cohomology is a theory generalising singular cohomology of complex algebraic varieties. In the first half we give an introduction to the classical theory of étale cohomology. In the second half, we will discuss Bhatt-Scholze's pro-étale topology. For more information see: http://www.math.titech.ac.jp/~shanekelly/EtaleCohomology2018-19WS.html

到達目標

(1) Obtain overall knowledge on basics in étale cohomology
(2) Understand the relationship between étale topology and Galois theory
(3) Attain understanding of possible applications of étale topology

キーワード

Étale cohomology, homological algebra, Galois theory

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - - -

授業の進め方

Standard lecture course

授業計画・課題

  授業計画 課題
第1回 The pro-étale topology 講義中に指示する
第2回 Commutative algebra II 講義中に指示する
第3回 Homological algebra II 講義中に指示する
第4回 Topology II 講義中に指示する
第5回 Functoriality II 講義中に指示する
第6回 Functoriality III 講義中に指示する
第7回 Functoriality IV 講義中に指示する
第8回 Fundamental group II 講義中に指示する

教科書

None required

参考書、講義資料等

Milne, James S. "Etale cohomology, volume 33 of Princeton Mathematical Series." (1980).
Bhatt, Bhargav, and Peter Scholze. "The pro-\'etale topology for schemes." arXiv preprint arXiv:1309.1198 (2013).

成績評価の基準及び方法

Course scores are evaluated by homework assignments. Details will be announced during the course.

関連する科目

  • MTH.A403 : 代数学特論C
  • MTH.A301 : 代数学第一
  • MTH.A302 : 代数学第二

履修の条件(知識・技能・履修済科目等)

Basic knowledge of scheme theory (e.g., Hartshorne)

このページのトップへ