2017年度 解析学特論E1   Advanced topics in Analysis E1

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学コース
担当教員名
志賀 啓成  田辺 正晴 
授業形態
講義
曜日・時限(講義室)
火5-6(H119A)  
クラス
-
科目コード
MTH.C505
単位数
1
開講年度
2017年度
開講クォーター
1Q
シラバス更新日
2017年3月17日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

リーマン面とは、実2次元の多様体でありかつ座標変換が正則写像で与えられるもののことである。等角同値なリーマン面の類全体から成る集合に、幾何学的な構造を与えたものをモジュライ空間という。タイヒミュラー空間は、モジュライ空間の普遍被覆であり各点は標識付けられたリーマン面の同値類から成っている。この講義は、「解析学特論F1」につながるものであり、全体での目標はタイヒミュラー空間に最初に複素構造を導入した、Ahlforsの手法を紹介することである。

 本講義においてはそのための準備を行う。リーマン面の理論から、Ahlforsの手法で必要になる基本的な幾つかの道具、定理について扱う。

到達目標

トーラスのモジュライ空間、タイヒミュラー空間を理解する。

リーマン面の微分形式について、基本的なことを身につける。

キーワード

リーマン面、モジュライ空間、タイヒミュラー空間

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力

授業の進め方

通常の講義形式で行う。

授業計画・課題

  授業計画 課題
第1回 リーマン面 講義中に指示する。
第2回 トーラスのモジュライ空間
第3回 トーラスのタイヒミュラー空間
第4回 リーマン面の位相
第5回 微分形式
第6回 調和微分、正則微分
第7回 双線型関係式
第8回 周期行列

教科書

特になし

参考書、講義資料等

H. M. Farkas and I. Kra, Riemann surfaces, GTM 71, Springer-Verlag
今吉洋一、谷口雅彦、タイヒミュラー空間論、日本評論社
L. V. Ahlfors, The complex analytic structure of the space of closed Riemann surfaces. In Rolf Nevanlinna et. al., editor, Analytic Functions, pages 45-66. Princeton University Press, 1960.

成績評価の基準及び方法

レポート課題

関連する科目

  • MTH.C301 : 複素解析第一
  • MTH.C302 : 複素解析第二
  • MTH.C506 : 解析学特論F1

履修の条件(知識・技能・履修済科目等)

特になし

このページのトップへ