2017年度 代数学特論C1   Advanced topics in Algebra C1

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学コース
担当教員名
鈴木 正俊 
授業形態
講義
メディア利用
 
曜日・時限(講義室)
木5-6(H137)  
クラス
-
科目コード
MTH.A407
単位数
1
開講年度
2017年度
開講クォーター
3Q
シラバス更新日
2017年3月17日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

本講義では解析的整数論の基礎的事柄, 特にゼータ関数・L関数の理論における現代的発想や手法について解説する.本講義は,引き続き行われる「代数学特論D1」に続くものである.

ゼータ関数・L関数は整数論の多くの分野に登場し,非常に活発に研究されている.本講義の目標はゼータ関数・L関数の最先端の研究に触れるための確固とした基礎を固めることである. まずは古典的なリーマンゼータ関数、ディリクレL関数を扱う.

到達目標

・解析的整数論に関する基本的概念と手法について理解する.
・ゼータ関数・L関数の理論における現代的発想と道具を身につける.

キーワード

リーマンゼータ関数、ディリクレ指標、ディリクレL関数、素数定理

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

通常の講義形式で行う.また,適宜レポート課題を出す.

授業計画・課題

  授業計画 課題
第1回 素数分布、チェビシェフの不等式 講義中に指示する
第2回 リーマンゼータ関数 講義中に指示する
第3回 ディリクレ指標、ガウス和 講義中に指示する
第4回 ディリクレL関数、ディリクレの類数公式 講義中に指示する
第5回 ガンマ関数の性質 講義中に指示する
第6回 リーマンゼータ関数、ディリクレL関数の関数等式 講義中に指示する
第7回 リーマンゼータ関数、ディリクレL関数の非零領域 講義中に指示する
第8回 素数定理、算術級数の素数定理 講義中に指示する

教科書

特になし.

参考書、講義資料等

H. Davenport, Multiplicative Number Theory, GTM 74 (3rd revised ed.), New York: Springer-Verlag
H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I : Classical Theory, CSAM 97. Cambridge University Press

成績評価の基準及び方法

レポート課題(100%)による.

関連する科目

  • MTH.A408 : 代数学特論D1

履修の条件(知識・技能・履修済科目等)

特になし.

その他

特になし.

このページのトップへ