2017 Advanced topics in Algebra A1

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Mathematics
Instructor(s)
Ma Shohei 
Course component(s)
Lecture
Mode of instruction
 
Day/Period(Room No.)
Thr5-6(H137)  
Group
-
Course number
MTH.A405
Credits
1
Academic year
2017
Offered quarter
1Q
Syllabus updated
2017/3/17
Lecture notes updated
-
Language used
Japanese
Access Index

Course description and aims

We study algebraic curves. The basic results are the Rieman Roch theorem, Hodge decomposition and the canonical model.

Student learning outcomes

Being familiar with Riemann-Roch

Keywords

curves, Riemann surfaces

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

standard lecture

Course schedule/Required learning

  Course schedule Required learning
Class 1 curves TBA
Class 2 sheaves TBA
Class 3 cohomology TBA
Class 4 Riemann-Roch TBA
Class 5 Duality TBA
Class 6 canonical model TBA
Class 7 Hodge decomposition TBA
Class 8 Jacobian TBA

Textbook(s)

None

Reference books, course materials, etc.

E.Arbarello, M.Cornalba, P.Griffiths, J.,Harris, `Geometry of Algebraic Curves I' Springer.
R.Narashimhan, `Compact Riemann surfaces'
J.Harris, I.Morrison, `Moduli of Curves' Springer

Assessment criteria and methods

report (100%)

Related courses

  • MCS.T232 : Complex Analysis

Prerequisites (i.e., required knowledge, skills, courses, etc.)

None

Other

Do not hesitate to ask any question

Page Top