2019年度 実解析第一   Real Analysis I

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学系
担当教員名
川平 友規 
授業形態
講義 / 演習
曜日・時限(講義室)
火3-6(H102)  
クラス
-
科目コード
MTH.C305
単位数
2
開講年度
2019年度
開講クォーター
1Q
シラバス更新日
2019年3月18日
講義資料更新日
-
使用言語
日本語
アクセスランキング

講義の概要とねらい

本講義では,測度および測度による積分(Lebesgue積分)に関する基本的な概念と性質を扱う.まず測度の定義域となる可算加法族と(可算加法的)測度の基礎を解説し,最も基本的な測度であるLebesgue測度について学ぶ.次に,積分対象となる可測関数およびLebesgue積分を導入し,その基本的な性質について学ぶ.最後に,積分の理論・応用双方の要となる収束定理について学ぶ.本講義は,引き続き行われる「実解析第二」に続くものである.
測度および積分の理論は,Lebesgueによって集合論の土台の上に構築された.これは,長さや面積,体積あるいは確率等の概念の自然な拡張とみなせる.無限が関わる操作(図形や関数に対する極限等)は,自然に理論の枠内で取り扱うことができる.本講義を通じて,Lebesgue式の積分によって理論の適用範囲がどう拡がり,それが解析学において如何に有効になるのかを伝えたい.

到達目標

・可算加法族および測度の概念に馴染むこと.
・与えられた可測関数が可測である理由を説明できるようになること.
・積分の基本的な性質について,それが成り立つ理由を知り使いこなせるようになること.
・収束定理を,正しく仮定を判定して適用できるようになること.

キーワード

可算加法族,可測空間,測度,測度空間,Lebesgue測度,可測関数,Lebesgue積分,単調収束定理,Fatouの補題,優収束定理

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - - -

授業の進め方

通常の講義形式による講義と問題演習形式の講義を交互に行う.

授業計画・課題

  授業計画 課題
第1回 測度論およびLebesgue積分論の概観 講義中に指示する
第2回 第1回の講義内容に関する問題演習 講義中に指示する
第3回 可算加法族 講義中に指示する
第4回 第3回の講義内容に関する問題演習 講義中に指示する
第5回 (可算加法的)測度とその基本的性質,完備性 講義中に指示する
第6回 第5回の講義内容に関する問題演習 講義中に指示する
第7回 可測関数 講義中に指示する
第8回 第7回の講義内容に関する問題演習 講義中に指示する
第9回 積分の定義とその基本的性質 講義中に指示する
第10回 第9回の講義内容に関する問題演習 講義中に指示する
第11回 収束定理(単調収束定理,Fatouの補題,優収束定理)とその適用例 講義中に指示する
第12回 第11回の講義内容に関する問題演習 講義中に指示する
第13回 収束定理の応用 講義中に指示する
第14回 第13回の講義内容に関する問題演習 講義中に指示する
第15回 理解度確認 講義中に指示する

教科書

特になし.

参考書、講義資料等

「ルベーグ積分 要点と演習」相川弘明 ・小林政晴 著 (共立出版)
「ルベーグ積分の基礎・基本」谷口説男 著 (牧野書店)
W. Rudin "Real and complex analysis" McGraw-Hill.

成績評価の基準及び方法

期末試験(およそ50%)および問題演習における解答状況(およそ50%).

関連する科目

  • MTH.C306 : 実解析第二

履修の条件(知識・技能・履修済科目等)

解析学概論第一,同第二,位相空間論第一,同第二を履修済みであることが望ましい.

このページのトップへ