2016年度 位相幾何学   Topology

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学系
担当教員名
遠藤 久顕 
授業形態
講義
メディア利用
 
曜日・時限(講義室)
火3-4(H136)  金3-4(H136)  
クラス
-
科目コード
MTH.B341
単位数
2
開講年度
2016年度
開講クォーター
4Q
シラバス更新日
2016年4月27日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

 本講義の主な題材は、ホモロジー群および基本群に関する基本的な諸概念である。ホモトピーや変位レトラクションといった概念を紹介した後、単体、単体複体、単体写像、重心細分、単体近似などの単体複体に関連する基本的な概念を解説する。次に、単体複体の鎖群とホモロジー群や単体写像の誘導準同型を導入し、ホモロジー群のホモトピー不変性を証明する。最後に、位相空間の基本群を定義し、Seifert-van Kampenの定理を述べる。
 ホモロジー群と基本群は位相幾何学における最も基本的な概念であり、位相不変量の典型的な例でもある。本講義では、ホモロジー群と基本群を通して、不変量やその関手性について学ぶ。

到達目標

・与えられた単体の集合が単体複体であるかどうか、判定できるようになること
・単体近似定理の正確な内容と意義を理解すること
・与えられた単体複体のホモロジー群が計算できるようになること
・簡単な位相空間の基本群が計算できるようになること

キーワード

ホモトピー、変位レトラクト、単体複体、単体写像、単体近似、鎖群、境界準同型、ホモロジー群、誘導準同型、Euler数、Mayer-Vietoris完全系列、ホモトピー不変性、ループ、基本群、Seifert-van Kampenの定理

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

通常の講義形式による授業を行う。

授業計画・課題

  授業計画 課題
第1回 あらまし、積空間、商空間、ホモトピー 講義中に指示する
第2回 ホモトピー同値、変位レトラクト、可縮、単体、面、重心座標 講義中に指示する
第3回 単体複体、部分複体、多面体、単体分割、抽象単体複体 講義中に指示する
第4回 幾何学的実現、単体写像、同型、重心、可接合、結 講義中に指示する
第5回 重心細分、開星状体、単体近似、Lebesgueの補題 講義中に指示する
第6回 単体近似定理、向き、鎖群、境界準同型 講義中に指示する
第7回 輪体、境界輪体、ホモロジー群、Betti数、Euler数 講義中に指示する
第8回 Euler-Poincareの公式、錘複体、非輪状、ホモロジー群の計算 講義中に指示する
第9回 鎖写像、ホモロジー群の間の誘導準同型、関手性 講義中に指示する
第10回 連結準同型、Mayer-Vietoris完全系列 講義中に指示する
第11回 積複体、鎖ホモトープ、ホモロジー群のホモトピー不変性(1) 講義中に指示する
第12回 ホモロジー群のホモトピー不変性(2)、ホモロジー群の応用 講義中に指示する
第13回 道、ループ、道の積、逆の道、基本群 講義中に指示する
第14回 誘導準同型、基点の取り替え、基本群のホモトピー不変性 講義中に指示する
第15回 群の自由積、Seifert-van Kampenの定理 講義中に指示する

教科書

田村一郎「トポロジー」岩波書店

参考書、講義資料等

菅原正博「位相幾何学」培風館
中岡稔「位相幾何学 ホモロジー論」共立出版

成績評価の基準及び方法

期末試験(70%), 問題演習(30%)

関連する科目

  • MTH.B301 : 幾何学第一
  • MTH.B302 : 幾何学第二

履修の条件(知識・技能・履修済科目等)

位相空間論第一(MTH.B201)、位相空間論第二(MTH.B202)、位相空間論第三(MTH.B203)、位相空間論第四(MTH.B204)、代数学概論第一(MTH.A201)、代数学概論第二(MTH.A202)、代数学概論第三(MTH.A203)、代数学概論第四(MTH.A204)を履修済みであることが望ましい。

このページのトップへ