
Advanced Lecture on Internet Applications

6. Text based Communication:
Character Code and Internationalization (3)

e-mail, SMTP, MIME
Masataka Ohta

mohta@necom830.hpcl.titech.ac.jp
ftp://ftp.hpcl.titech.ac.jp/appli6e.ppt

Character Code

• an encoding (digitization) rule for strings
using characters of a character set
– not merely assign code (number) to characters

• with finite state, can be simply so

• the number of characters of a character set
matters
– if large, many bits are necessary

– if small, many characters can’t be represented
• small differences between similar characters can’t

be represented

ISO 8859/1

• western European 96 Latin and symbol
characters are added to ASCII
– forcibly extend ISO 2022

• byte value range from 33~126 to 32~ 127

• is strange in various ways
– only one currency symbol, NBSP

– no capital letter for “ÿ”

ISO-2022-JP
(JUNET Code, rfc1468)

• developed to use Kanji in JUNET (UUNET)

• conformant to ISO 2022

• transmit all the characters with 7bit byte

• G0 character set is switched by escape
sequences
– initially ASCII

– must reset to ASCII (or JIS X 0201) at line end
• state maintenance between lines unnecessary

Character Sets of ISO-2022-JP

• ASCII

• JIS X 0201 (Latin)

• JIS 0208 (78 and 83 vertions)

• JIS X 0201 (Kana) a.k.a. hankaku kana is
not included

Complexity and Simplicity of JIS
X 0208 (1)

• large number of characters

• horizontal and vertical
– vertical was not supported so seriously

• single (left to right) directional only

• ligature (variation of character shape by
previous/next characters) is not necessary
– though circle mark for composition exists

• not really used for composition

Complexity and Simplicity of JIS
X 0208 (2)

• no commonly shared recognition for character
identifications and character shapes
– is the serious problem

• correspondence between hiragana/katakana
characters is not so clear and regular 「ブ」

• diacritical (?) marks 「 ゛ ゜」are precombined

• character width can be constant

• widely spread and usable everywhere

Ambiguity of Character
Identification (Unification)

• JIS X 0208 does not specify small
differences of character shapes
– 「国」 and 「國」 are different characters
– 「竜」 and 「龍」 are different characters
– 「高」 and 「髙」 are the same character
– 「Ａ」 and 「ａ」? 「Ａ」 and 「Α(alpha)」?

• character shapes of 「高」 and 「髙」 are
unified in JIS X 0208

What is Unification?

• in JIS Kanji specification
– one code point contains multiple character

shapes
• notable example: 「高(kuchi)」 and 「髙(hashigo)」

– same code point is used upon input
• may output either character shape (?)

input outputcode point
高 (kuchi)

25/66
髙 (hashigo)

高 (kuchi)

髙 (hashigo)

What is Unification?

– same code point is used upon input
• may be OK

– may output either character shape ???
• in practice, no implementation output 髙 (hashigo)

– but aren’t input/output symmetric?

inpput outputcode point
高 (kuchi)

25/66
髙 (hashigo)

高 (kuchi)

髙 (hashigo)

Definition of Unification in JIS

• “treatment of shape variations of kanji” in
78JIS
– character shape presented at a code point allows

for certain variations and should be considered
to be a representative

• in 97JIS, like Unicode
– do not distinguish multiple character shapes and

assign the same code point
– at each code point, character shapes unified to

the point are not distinguished

The Problem of Unification

• used as a reason not to distinguish CJK
kanji by ISO 10646 (Unicode)
– can output any of CJK kanji

• or, can not output distinguised CJK kanji

• can not add existing (unified to existing
code point) kanji
– 「髙 (hashigo)」 was not added by extension of

JIS kanji for classes 3/4

Unicode

• standard developed in US to encode all the
characters in the world with 16bits
– impossible and unnecessary as ISO 2022 exists

• no state maintenance of ISO 2022 necessary?

• 16 bit space is too small
– even some European characters are represented by base

characters combined with diacritical characters (already
stateful)

– CJKT characters (each >50,000 characters) are unified

• as other characters from the world is collected, the
space overflowed

ISO 10646

• was standard developed in ISO to encode all
the characters in the world with 31bits
– simple encoding for all the characters in the

world without unification

• was overridden by Unicode with CJKT
unification to be useless within international
context

What is Character Code?

• rule to correspond string and sequence of numbers

– definition to broad to be useless

– character input/output possible as images
without coding

• finite state rule to correspond string and
sequence of numbers
– without finite stateness, search is practically impossible

– plain text should be finite state, structure text may have
more complex state

• what is character encoding?

Characters and Unification (1)

• unification is a concept first appeared in JIS
kanji code?
– because JIS kanji has very large number of

characters!!
• wrong!

• unification occurs even with Latin character codes

Latin Character Code and
Unification

• when a byte was 6 bit
– only capital Latin letters encoded?

– how can small letters in text encoded?
• upon input, coded as capital letter

• upon output, printed as capital letter

input outputcode

Ａ Ａ？？？

ａ

Breaking Unification of Latin
Character Code

• as a byte becomes 7 bit (ASCII)
• small/capital Latin characters are separately coded

– migrate to mixed small/capital letter environment

– files created in 6bit/byte era is used as is

– JIS was wrong not to add 「髙 (hashigo)」

input outputcode

Ａ Ａ６５

ａ ａ９７

Are Latin Capital/Small Letters
Same Character?

• not a problem in 6bit/byte era

• in early era of UNIX, use of small letters
strongly promoted
– on capital letters only output devices, “A” was

output as “＼A” “a” as “A”

– by default, search commands (grep) distinguish
capital/small letters

• UNIX users tend to think capital/small letters different

• recent OSes do not distinguish them, by default
– seemingly, common sense of natives?

Characters and Unification (2)

• unification is a concept first appeared in
character code?
– unification already occurs with type setting and

type writing!

Type Setting and Unification

• when printing was by combining types
– with type set without 「髙 (hashigo)」 type

• upon input, type set as 「高 (kuchi)」

• upon output, printed as 「高 (kuchi)」

input output

高 (kuchi) 高 (kuchi)

髙 (hashigo)

Breaking Unification with Types

• how 「髙 (hashigo)」 is type set, if type of 「
髙 (hashigo)」 is added?

• upon input, type set as 「髙 (hashigo) 」

• upon output, printed as 「髙 (hashigo) 」

• existing printed materials are used as is

input output
高 (kuchi) 高 (kuchi)

髙 (hashigo) 髙 (hashigo)

Typewriters and Unification

• by cheap (toy) typewriters
– can type capital characters only

– how can small letters in text treated?
• upon input, typed as capital letter

• upon output, printed as capital letter

input output

Ａ Ａ

ａ

Breaking Unification with
Typewriters

• with full fledged type writers
– Latin capital/small letters may be typed

• upon input, typed as small letter

• upon output, printed as small letter

• printed materials by cheap (toy) typewriters are used
as is

input output
Ａ Ａ

ａ ａ

Characters and Unification (3)

• unification is a concept first appeared in
type setting?
– unification already occurs with hand written

characters

Hand Written Characters and
Unification

• a person who think 「髙 (hashigo)」 and 「高
(kuchi)」 are the same character?

• upon input, recognize as 「高 (kuchi)」

• upon output, hand write as 「高 (kuchi)」

input output

高 (kuchi) 高 (kuchi)

髙 (hashigo)

Breaking Unification with Hand
Writing

• after the person recognizes 「髙 (hashigo)」
is different from 「高 (kuchi) 」

• upon input, recognize as 「髙 (hashigo) 」

• upon output, hand write as 「髙 (hashigo) 」

• exsiting hand written materials are used as is

input output
高 (kuchi) 高 (kuchi)

髙 (hashigo) 髙 (hashigo)

Characters and Unification (4)

• unification is a concept implied by
characters

• then, what are characters
– what is the difference to images

• images are analog

• characters are abstract concept and is digital!
– isn’t unification a concept implied by digitization

(ignoring small differences)?

– compare with AD/DA conversion of voltages

» 0~1V, 2bit, linear

Digital and Analog

• digital ignores small differences
– can remove noise

• language (incl. spoken one) is digital
– voice and song are digital

• character is digital
– can represent very subtle feelings with 17 characters

– calligraphy is analog

• to what extent, small differences should be
ignored? (how many bits should be used?)

Ideal AD/DA Conversion of
Voltages

input outputcode

0V

1V

10

01

00

11

In Ideal AD/DA Conversion

• 0~1V is equally divided by 4 to be range of
each code

• 0.0625V, 0.125V and 0.1875V are
– encoded as representative voltage (0.125V)

• 0.0625V is not error
– 1.5V may be treated as error

– decoded as representative voltage (0.125V)
• never output as 0.0625V

– to minimize average error

Character Input/Output as Ideal
AD/DA Conversion

• character shapes belonging to each code
point is specified by standards

• with JIS, both 「髙 (hashigo)」 and 「高
(kuchi)」 are
– encoded as representative character (「高 (kuchi)」)

• 「髙 (hashigo)」 is not a error
– ununifiable characters may be treated as error

• encoded as representative character (「高 (kuchi)」)

• never output as 「髙 (hashigo)」
– 「高 (kuchi)」minimize error on expected output

What is Unification?

• quantization error by digitaization!
– occurs only at input

– may not output all the shapes unified in a code
point

• character output as ideal DA conversion
– only representative character shape may be output

• similar to unification with Latin character code, type
setting, type writing and hand writing

• character output as practical DA conversion?
– involves output error, cofused with unification at output

Practical AD/DA Conversion of
Voltages

input outputcode

0V

1V

10

01

00

11

allowed
error

In Practical AD/DA Conversion

• 0.0625V, 0.125V and 0.1875V are
– encoded as representative voltage (0.125V) but

decoded with allowed error from the
representative voltage

• typical allowed error is ±1/2LSB
– monotonity is assured

• other allowed error is possible and is actuall used
– e. g., ±1/4LSB, typically when the number of bits is

small,

– e. g., INL ±6LSB and DNL ±2LSB, typically when the
number of bits is large,

INL(Integral Non-Linearity) and
DNL(Differential Non-Linearity)

INL

DNL

input

output

Character Output as Practical DA
Conversion

• both 「髙 (hashigo)」 and 「高 (kuchi)」 are
– encoded as representative character (「高 (kuchi)」) but

output with allowed output error from the
representative character

• allowed output error specified by JIS X 0208:1997
– “must be distinguishable from other characters”

» corresponds to allowed error of ±1/2LSB

• other error grade must be allowed
– as an industrial standard for poor output device

– when the number of character is large, similar characters
may be output with the same shape (corresponds to large
DNL)

Increasing # of bits of AD/DA
Conversion and # of Characters

• may extend voltage range (0~1V⇒0~2V)
– addition of totally new characters

• may subdivide voltage range
– separate existing unified characters

• separate 「髙 (hashigo)」 from 「高 (kuchi)」

髙

高

: quantization error

: output error

髙

高

髙

高
or

Practical AD/DA Conversion of
Voltages

input outputcode

0V

1V

10

01

00

11

allowed
error

allowed
error

In Practical AD/DA Conversion

• 0.0625V, 0.125V and 0.1875V are
– encoded as representative voltage (0.125V) but

decoded with allowed error from the
representative voltage

• typical allowed error is ±1/2LSB
– monotonity is assured

• other allowed error is possible and is actuall used
– e. g., ±1/4LSB, typically when the number of bits is

small,

– e. g., INL ±6LSB and DNL ±2LSB, typically when the
number of bits is large,

In Practical AD/DA Conversion

• error is inevitable both to input and output
– industrial standard must tolerate error

• input error (noise) may make same voltage to be
different code

– practical equipments has error tolerance
• same set of representative voltages may have

multiple grades of error tolerance

– error is accumulated with repeated input/outout

Character Input/Output as
Practical AD/DA Conversion

• error is inevitable both to input and output
– industrial standard must tolerate error

• input error (noise) may make same image to be
different code

– practical equipments has error tolerance
• same set of representative shapes may have multiple

grades of error tolerance

– error is accumulated with repeated input/outout
• similar to error accumulation by repeated copying of

a book by hand writing

Noise

• should be inevitable to character
input/output

• thermal noise
– wrong type setting, wrong kana kanji conversion

– reduced by careful input (lower temprature)

• shot noise
– output error by using small number of dots

– reduced by increasing the number of dots
(increase current)

Realistic Use of Kanji

髙 高

: quantization error

: output error

: input error

斉

斎

齊

太 大

Quantization Error and
Input/Output Error

• quantization error much smaller than
input/output error is not very meaningful

• modern display has large # of pixels
– output error is small

– character set with large # of characters
meaningful

Multiple Representative Voltages
Causes Large Output Error

input outputcode

0V

1V

10

01

00

11

allowed
error

: representative voltage

Unicode?

• actively allow all the unified character
shapes to be used as representative
characters
– causes large output error

– a lot larger than capabilities of typical modern
output devices

• not usable without CJK localization

• not internationalized at all

– not a character code but a very poor
implementation of a character code

What’s Wrong with the Current
JIS Kanji Standards

• code points specify multiple representative
characters and no input error specified
– a code point should specify only representative character shapes

• range of unification may depend on common sense
– e.g. may encode 「髙 (hashigo)」 into code point of 「高 (kuchi)」

• end users should have their own specifications

• output error allowance of ±1/2LSB only is wrong

– good output devices should output exact shapes
of representative character shapes

• less capable devices may output different characters
with same shape

How to Standardize
Representative Character Shapes

• unlike standards for light speed etc.
– characters are human

• “1 foot is length of a foot of the king” is OK

• 常用漢字表 (table of common use kanji) and 康煕
字典 (Kangxi dictionary) are the standards

– other official character shapes may exist

– may vary in relatively short term
• upon variation, should representative character

shape change or new characters should be added?
– should existing electric text remain as is

Unification and Search

• unification simplify search?
– 「高」 and 「髙」 are the same character

• ambiguous search is necessary,
anyway
– 「国」 and 「國」 are different characters
– 「竜」 and 「龍」 are different characters
– no different from unification of “A” and

“a”
– 「太田」 and 「大田」 may also match

How to Specify Range of
Unification?

• unification range
– varies person by person, purpose by purpose

• character code has its own ranges of unification
– like voice codec has its own number of bits of each

sample

– should be judged by common sense
• often, only shapes of representative characters are specified

• “universal” character code must have the
narrowest range of unification
– to be compatible with other character codes

Presenting CJ Mail under Unicode
(UTF-8) Environment

• C mail with GB code (charset=GB2312)
and J mail with JIS code (charset=ISO-
2022-JP) are properly presented

• kanji with Unicode (charset=UTF-8) is
improperly presented
– when C mail arrives with Unicode

• JIS kanji is presented with JIS font

• other kanji is presented with GB font

Treatment of Space by TEX and
HTML

• words are separated by one or more space
characters or line change in Latin script
– people recognize it as a single space

• TEX ignores space and line change
characters between kanji characters

• HTML recognizes them as a single space
– displayed as “空白文字”

– because of CJKTV (Vietnam) unification
• Vietnamese script separate words by space

Other Problems of Unicode

• support nested bi-directionality
• not 16 bit character code at all

– as long as 31 bit
• unification of kanji not necessary

• optional variation selector is introduced
– to choose proper character shape character by

character

• YEN SIGN problem
– presented differently in Japan and Korea

Language Tag (rfc1766)

• put standard name to languages
– extension of ISO 639 (“JA” for Japanese)

• server provide information in language
desired by clients
– by Content-Language header of MIME

• may be used for CJK dis-unification?
– confuse language and script!!!

• done so knowingly

Scripts to Represent Japanese

• kana (hiragana, katakana, manyogana)

• mixed kanji kana

• romaji (Hepburn, Monbusho, etc.)
– “masataka” in French should be “massataka”

• and phonetic representations in various
local script systems such as Hangul

“Internationalized” Domain
Name

• characters usable in domain (host) names
– 0-9, A-Z (a-z), “-”

• “internationalized” domain name
– can use kanji etc. as domain name

• technically, not difficult
– DNS is 8 bit transparent (though case insensitive)

– may be encoded to ASCII characters

• used almost not at all

Background of
“Internationalized” Domain Name

• domain name (=trade mark) registration is
profitable
– 1 domain under “.com” was $35/year

• new registration may decrease

• TLDs other than “.com” increasing
– biz, info, museum, name, ...

• domain name registries and registarars want
more domain names registered

Layering Structure over the Internet!

Politics

Network Layer

Transport Layer

Application Layer

Physical Layer

Datalink Layer

Culture

Economy

Internet and Internationalization
(I18N)

• Internet
– connects hosts around the world

• should all the hosts be internationalized?
– maybe

• Internet
– connects people around the world

• should all the people be internationalized?
– maybe, but, ...

Internet
host hostperson person

end to end principle beyond hosts

Internationally Recognizable
Characters

• digits, Latin characters and some symbols
• kanji domain name outside kanji using society

– can not be recognized
• even simple identification is hard (「大」、「太」、「犬」)

• on passport and international airline ticket
– names are represented in latin characters

• the current domain names are international
domain name
– kanji domain name is localized domain name

Various Problems of Kanji
Domain Names

• similar names
– 「国」 and 「國」, 「竜」 and 「龍」, 「高」 and 「
髙」, 「－ (hyphen-minus)」と「ー (long
vowel) 」

• identification different culture by culture

• 「漢字.JP」 and 「漢字.日本」 are
unnatural
– if 「漢字株式会社」 can be automatically

converted to 「漢字.会社.JP」
• not a domain name, anymore

Name Spaces other than that of
DNS

• though there are a lot of proposals
– selling names is so profittable

• DNS is enough if names are globally unique

• if dupulication is allowed
– not different from search engine

– search engines can search amoung similar
names

– can increase search priority (SEO) by paying to
search engine providers

E-mails and rfc822

• RFC822: STANDARD FOR THE
FORMAT OF ARPA INTERNET TEXT
MESSAGES

• specify format of e-mails

• mail consists of header and body
– header ends with blank line and body follows

Structure of Header

• consists of fields

• fields start with field name terminated by
“:”

• line starting with space characters is
continuation from previous line

• field content depends on field name
– mail address (To:, From:, Cc:, etc.)

– text, “;” and date (Received: etc.)

– plain text (Subject: etc.)

Examples of Header Field

• To:, Cc:, Bcc:
– destination

• From:
– address of author

• Sender:
– address of sender (was often a secretariat)

• Received:
– history of relay

SMTP (rfc821) and e-mails

• Simple Mail Transfer Protocol
– the protocol to exchange e-mails over the

Internet

• use TCP port# 25

the world

datalink
layer

datalink
layer

datalink
layer phone

network
(i-mode)

datalink
layer

datalink
layer

e-mail environment involving the Intenet and phone network

Ｒ

Ｍ

Ｒ

Ｒ : router

Ｒ

Ｍ : mail gateway

the world

Internet
personal
computer
network

ＵＵＮＥＴ
（ＪＵＮＥＴ） personal

computer
network

personal
computer
network

personal
computer
network

e-mail environment in the past

Ｍ

Ｍ

Ｍ

Ｍ : mail gateway

Ｍ

Mail Transfer by UUCP

Ｍ Ｍ Ｍ Ｍsender receiver

Ｍ

: batch file transfer
by UUCP

: mail gateway

End to End Principle and E-mails

• e-mails were used in networks other than
the Internet
– must transfer e-mails outside of the Internet

• E2E principle not applicable

• e-mail was the most important application
to the Internet
– reliability is important

• reliability by E2E principle

Mail Relays

• e-mails are relayed over various networks

• destination of SMTP may not be the final
destination
– mail servers temporarily accepts mails

• e-mails may not be read in real time
– reciepient person may be temporarily absent

• store and forward is OK

DNS and E-mails (rfc974)

• e-mail addresses of the Internet is DNS
(domain name) based

• MX RR of a domain specify (multiple) mail
servers for the domain
– MX RR also specify mail server priority

• if servers with high priority is down, servers with
lower priority can receive mails

e-mail and E2E Multihoming

• e-mail (SMTP+DNS (rfc974) supports E2E
multihoming at application layer
– if a mail server have multiple addresses

• all the addresses are tried

– it is of course as e-mail was the most important
application of the Internet

• DNS also support E2E multihoming
– all the addresses of NSes are tried

TCP and Command

• commands and replies represented in ASCII
strings are exchanged over TCP
– reply often begins with 3 digits followed by a space and

text explaining reply in English

• line is terminated by CR and LF

• data may be sent over the same TCP
connection (SMTP) or other TCP
connection (FTP)
– separator for data is necessary for sending over the

same TCP

Command and Reply of SMTP

• command
– HELO, MAIL, RCPT, DATA, SEND, SOML,

SAML, RSET, VRFY, EXPN, HELP, NOOP,
QUIT

• reply
– 3 digits (xyz) + message

Commands of SMTP (1)

• HELO
– initial greetings (notify host name)

• MAIL
– start of command sequence of a mail

• RCPT
– specify destination of a mail

• DATA
– body of mail follows (terminated by “.”)

Commands of SMTP (2)

• SEND, SOML, SAML
– directly notify user currently logged in

• RSET
– reset

• VRFY, EXPN
– verify/expand an address

• HELP, NOOP, QUIT
– help, no operation, quit

Meaning of 3 Digit Reply Code
(1)

• 1yz Positive Preliminary reply
– not used by SMTP

• 2yz Positive Completion reply

• 3yz Positive Intermediate reply

• 4yz Transient Negative Completion reply

• 5yz Permanent Negative Completion reply

Meaning of 3 Digit Reply Code
(2)

• x0z Syntax

• x1z Information

• x2z Connections

• x5z Mail system

• “z” gives a finer gradation of meaning in
each of the function

Example of Command/Reply
Sequence (1)

R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready

S: HELO USC-ISIF.ARPA

R: 250 BBN-UNIX.ARPA

S: MAIL FROM:<Smith@USC-ISIF.ARPA>

R: 250 OK

S: RCPT TO:<Jones@BBN-UNIX.ARPA>

R: 250 OK

S: RCPT TO:<Green@BBN-UNIX.ARPA>

R: 550 No such user here

Example of Command/Reply
Sequence (2)

S: RCPT TO:<Brown@BBN-UNIX.ARPA>

R: 250 OK

S: DATA

R: 354 Start mail input; end with <CRLF>.<CRLF>

S: Blah blah blah...

S: ...etc. etc. etc.

S: .

R: 250 OK

S: QUIT

R: 221 BBN-UNIX.ARPA Service closing transmission channel

POP and IMAP

• Post Office Protocol (rfc1939)

• Internet Message Access Protocol (rfc2060)

• protocol to receive mails from (final) mail
server
– POP/IMAP clients are not persisitently

connected to the Internet

MIME (Multipurpose Internet Mail
Extensions, rfc2045~2049)

• extension (complication) to rfc822
– body in non-ASCII characters

– body other than text

– multiple bodies (multipart)

– header with non-ASCII characters

• widely deployed, though unnecessary

Non-ASCII characters

• tagging by “charset” in “Content-type:”
– charset=ISO-2022-JP

– can not mix multiple charsets in body
• possible with “multipart/mixed”?

– depends on implimentations

• not necessary as ISO 2022 is enough
– was already actually so in Japan when MIME

was developed

8bit Transparency

• special string in header
– =?CHARSET?[BQ]?TEXT?=

• treatment in body is specified
– Content-Transfer-Encoding header

• Quated Printable Encoding
– if mostly ASCII

• Base 64 Encoding
– represent 2*8 bits by three ASCII characters (+,

/, 0-9, A-Z, a-z)

8 bit Transparency was not
Necessary

• 7 bit is enough for ISO 2022 text
– was already actually so in Japan when MIME

was developed

• binaries was encoded with UUENCODE
– in EBCDIC environment

• transparent to BASE 64 characters

• characters used by UUENCODE may be modified?

Body other than Text

• tagging by Content-type: header
– text, image, audio, video, application,

(multipart), message
• finer tagging by subtype (e. g. “text/plain”)

• in practice
– only “application/octet-stream” is used

– file name extension (e. g. “.jpg”) specify type
• UUENCODE is enough

ESMTP (rfc1651)

• Extended SMTP

• developed with MIME

• various negotiations possible
– primarily for 8bit transparency (rfc1652)

ISO-2022-KR Charset (rfc1557)

• 7bit character code to encode hangul and
kanji by Korean character set

• G0 for ASCII, G1 for KS C 5601
– switched by SI/SO

• in each line containing SI, escape sequence
to specify KS C 5601 to G1 is given

• the same rfc also specify EUC-KR charset

ISO-2022-JP-2 Charset (rfc1554)

• extension to ISO-2022-JP
– KS C 5601 (Korean), GB2312 (China), ISO

8859/1 (Western Europe), ISO 8859/7 (Greek)
are added

• 94 character set is G0, 96 character set is
used as G2 (SS2(ESC+“N”))

• purely 7 bit, though byte value of 127 is
used

Wrap Up

• unification is quantization error
– UNICODE confuses quantization and output

error and is unusable for I18N

• argument for I18N is full of misdirections
– internationalized domain name, language tag

• e-mail format is specified by rfc822
– MIME extension was not necessary

• e-mail transport is by rfc821
– ESMTP extension was not necessary

Confusions in Proper
Interpretations on RFC821
(SMTP) for Domain Names

Masataka Ohta

School of Information Science and Enginering

Tokyo Institute of Technology

mohta@necom830.hpcl.titech.ac.jp

94

An e-mail from Tony Finch
(March 2014)

https://www.ietf.org/mail-archive/web/dnsop/current/msg11925.html

• CNAME pointing at MX is a different
problem, which does not work consistently
in practice. The requirement in RFC 1123 is
a restatement of RFC 821 section 3.7 (last
paragraph) and page 30 (penultimte
paragraph).

95

Specification of RFC821 (no
alias is allowed in domain name)

• Whenever domain names are used in SMTP
only the official names are used, the use of
nicknames or aliases is not allowed.

• Hosts are generally known by names which
are translated to addresses in each host.
Note that the name elements of domains are
the official names -- no use of nicknames or
aliases is allowed.

96

RFC1123 to Clarify(?) RFC821

The domain names that a Sender-SMTP sends in
MAIL and RCPT commands MUST have been
"canonicalized," i.e., they must be fully-qualified
principal names or domain literals, not nicknames or
domain abbreviations. A canonicalized name either
identifies a host directly or is an MX name; it cannot
be a CNAME.
The sender-SMTP MUST ensure that the <domain>
parameter in a HELO command is a valid principal
host domain name for the client host.

97

Actual Requirement (RFC6409)

• Nonetheless, unconditionally resolving aliases
could be harmful. For example, if
www.example.net and ftp.example.net are both
aliases for mail.example.net, rewriting them
could lose useful information.

www.example.net CNAME mail.example.net

ftp.example.net CNAME mail.example.net

mail.example.net MX 0 mx.example.net

98

Why Aliasing Harmful?

• can cause loop with old fragile implementations
cname.example.com CNAME mx.example.com
mail.example.com MX 0 cname.example.com

MX 1 other.example.com
MX 2 mx.example.com

• alias is used at the right side of MX
• how about left side?

– not harmful
– why forbidden by rfc821 and 1123?

99

History of Domain Name and
Host Name

• was sharing a file “hosts.txt” maintained by ISI
– to translate hostname and IP address

• as the Internet grows, DNS was introduced as
loosely couped distributed DB
– basic specification is by RFC1034,1035

• has additional functionality in addition to hostname and
IP address translations

– there are various attempts to specify mail servers of a mail
domain (MB, MD, MF, MG, MINFO, MR, MX)

– initially, only translation between hostname and IP address
» no mail domain exist

100

RFC881 first enables translation
from mail domain to mail server

• The domain server design also provides for mapping
mailbox addresses to the host name of the mail
server for that mailbox. This feature allows
mailboxes to be related to an organization rather
than to a specific host.

• no similar specification in RFC819 (specified at the
same time as RFC821)
– mail domain and host name was not distinguished
– mail domain name is the host name of mail server?

• still interpreted so, if MX is not specified to a doain (rfc974)

101

Original Intention of RFC821

cname.example.com CNAME mail.example.com

mail.example.com A 192.0.2.1

is prohibited

• specification of RFC821 is fine

• as MX was introduced (after rfc821), aliases
only at the right side of MX need to be
prohibited

• interpretation of rfc821 by rfc1123 is wrong
102

RFC1123 to Clarify(?) RFC821

The domain names that a Sender-SMTP sends in
MAIL and RCPT commands MUST have been
"canonicalized," i.e., they must be fully-qualified
principal names or domain literals, not nicknames or
domain abbreviations. A canonicalized name either
identifies a host directly or is an MX name; it cannot
be a CNAME.
The sender-SMTP MUST ensure that the <domain>
parameter in a HELO command is a valid principal
host domain name for the client host.

103

Conclusions

• irrational specification of rfc821 and rfc1123 is studied
archeologically

• specification of rfc821 does not assume mail-only
domain name, as MX was not invented, and use mail
domain name as mail server host name

• rfc1123 (issued 1 year 11 months after rfc1034
specifying MX) misinterpreted rfc821
– DNS was already so common

• wrongly thought MX was available when rfc821 was issued
– as a result of rapid development/spreading of the Internet

• there may exist similar misinterpretations/confusions

104

