Advanced Lecture on Internet Applications 4. Text based Communication:

Character Code and Internationalization
Masataka Ohta mohta@necom830.hpcl.titech.ac.jp ftp://ftp.hpcl.titech.ac.jp/appli4e.ppt

Reference Material

－太田昌孝，「いま日本語が危ない」，光芒社，ISBN4－89542－146－5，平成9年

What is "Character"

- unit to represent language by graphic symbol
- phonetic character
- ideogram

What is Script（用字系）？

－system to represent language by characters
－never confuse language and script
－「でいすいずあぺん」 is English by Kana script
－＂Koreha pen desu．＂is Japanese by Roman （Latin）script

Scripts to Represent Japanese

- kana (hiragana, katakana, manyogana)
- mixed kanji kana
- romaji (Hepburn, Monbusho, etc.)
_ "masataka" in French should be "massataka"
- and phonetic representations in various local script systems such as Hangul

Digital and Analog

- digital ignores small differences
- can remove noise
- language (incl. spoken one) is digital
- voice and song are analog
- character is digital
- can represent very subtle feelings with 17 characters
- calligraphy is analog
- to what extent, small differences should be ignored? (how many bits should be used?)

Character Code

- an encoding rule for strings using characters of a character set
- not merely assign code (number) to characters
- the rule may be very complicated
- the number of characters of a character set matters
- if large, many bits are necessary
- if small, many characters can't be represented
- small differences between similar characters can't be represented

Byte

- originally mean \# of bits to represent a character
- 1 byte is not always 8 bits
- 4 bit byte can represent 16 characters
- enough for numbers and ",.+-\$ "
- 6 bit byte can represent 64 characters
- enough for capital Latin letters, numbers and symbols
- used on 36bit/word computers
- ASCII use 7 (not 8) bit byte

Multi Byte Character Code

- self-contradictory concept
- simple if 1 byte $=1$ character
- as the number of bits of a byte is fixed for a long time
- becomes practically impossible to extend byte
- to represent a character by multiple bytes
- represent a character by sequence of bytes
- multi byte character
- switch character sets by special bytes (control "character")

ASCII (American Standard Code for Information Interchange)

- US standard 7 bit byte character code
- 95 (incl. space) graphic character set
- capital and small letters, digits, symbols
- 33 control characters
- US local version of ISO 646
- enough to represent English
- simple character set in various ways
- easy to computerise

ISO 646

- have same structure as ASCII
- among 95 (graphic) characters
- 83 characters are internationally common
- 12 characters can be different country by country
- japanese version of JIS X 0201 (JIS C 6220) Latin have two characters different from ASCII
-"\" to " $¥ ", " \sim "$ to "-"

Simplicity of ASCII (or Latin Script for English) (1)

- small number of characters
- horizontal only
- single (left to right) directional only
- ligature (variation of character shape by previous/next characters) is not necessary
- commonly shared recognition for character identifications and character shapes

Simplicity of ASCII (or Latin Script for English) (2)

- correspondence between small/capital characters is clear and regular
- no characters with diacritical marks
- such as "ä"
- character width can be constant
- widely spread and usable everywhere

Small Number of Characters of ASCII

- can represent all the characters by a single byte
- multi byte characters or character set switching not necessary

Latin Script of English needs Horizontal Writing only

- proper writing of Kanji is vertical
- Mongolian script is vertical, too

Latin Script of English is Unidirectional (left to right)

- horizontally written Kanji script is written from right to left
- actually is vertical writing with 1 character/line
- left to right horizontal writing introduced in Meiji era
- Arabic script is written right to left
- numbers and Latin characters (quoted English etc.) are written left to right
- directionality changes may be nested

Ligature is not necessary for Latin Script of English

- ligature
- variation of character shape by previous/next characters
- "i" of "fi" and "ffi" may be combined with " f "
- may not be combined and not available with ASCII
- shape of Arabic and Devanagari (Indian) characters affected by previous/next characters
- natural with hand writing
- printing type not adopted

Commonly Shared Recognition on Latin Characters in English

- originally with Latin characters
- "u" and "v" are same character (BVLGARI)
- "W" is "UU" (double "U")
- they are separate characters in modern Latin script for English
- "a" and "a" are same character

Regular Correspondence between Small/Capital Characters

- some Latin characters may have irregular case correspondences
- capital form of " \ddot{y} " may be " Y ", "Ÿ" or "IJ"
- "y" "y"" "ij"
- no such irregularity in modern Latin script of English

No characters with Diacritical Marks in ASCII

- diacritical marks are introduced
- to represent intermediate pronounciation
- " \AA " is "A" pronounced with flavor of " 0 "
- " o " is " o " pronounced with flavor of " e "
- "e" became ".."

Latin Characters may have Fixed Spacing

- \# of bytes of a string is proportional to display width
- "character display" was popular
- to display $80 * 25$ characters with 2 kB RAM
- and character generator ROM of, say, 7*9*128 dots
- "line printer" was popular
- to print a line of 132 characters at once
- as a drum with 132 columns rotates once

ASCII is Widely Spread and may be used as Default

- not necessary to specify character set

Wrap Up

- character enables graphical representation of language
- character code is a rule to translate strings to byte sequences
- character code is restricted by the number of bits of a byte
- ASCII is "simple" character code in various ways

