VLSI Layout Design Routing (1) Overview

Atsushi Takahashi
Department of Information and Communications Engineering
School of Engineering
Tokyo Institute of Technology atsushi@ict.e.titech. ac.jp

ICT. I419 VLSI Layout Design

Routing

- Connect pins under the design rule
- Many nets (many connection requests)
- I00\% completion ratio
- IOO\% without manual correction
- Near $100 \%+$ manual correction
- Various design rules
- \# of layers
- Obstacles
- Various properties of instances
- Pin distribution
- Various objectives
- Total length, delay, power, shape

Hierarchical Design

- Global routing
- Design rule insensitive
- Routing area is divided into subareas
- Balance the congestion of subareas
- Greedy approach
- Shortest Path (Two terminal)
- Steiner Tree (Three or more terminal)
- Rip-up and Reroute
$>$ needed usually for multiple nets
$>$ find a compromise among nets
> update cost-map by the history of rip-up

Hierarchical Design

- Detailed routing
- Design rule sensitive
- Multiple Nets

- Channel routing (Two or Three layer)
- Switch box routing (Two or Three layer)
- Area routing (Three or more layer)
- Single Nets
- Wire sizing
- Buffer Insertion
- Signal integrity
- Via planning
- Clock routing

- Objectives are changing depending on technological environments
- I 00\% routing
- Area (total length) minimization
- Delay minimization
- Skew minimization
- Power minimization
- Noise minimization
- Delay control

Theoretical Aspect

- Background of Algorithm Design
- Computational Complexity
- P and NP
- NP-complete
- NP-hard
- Nondeterministic Polynomial Time Algorithm
- (Deterministic) Polynomial Time Algorithm
- Polynomial Time Reduction

NP-hardness

- A problem is NP-hard if the decision problem associated with the problem is NP-complete
- Optimization problem is
- neither in NP nor in NP-C
- not said to be NP-complete
- said to be NP-hard if a related decision problem is NP-complete
- If $P \neq N P$, then
- No polynomial time algorithm for NP-hard problem
- If a problem is NP-hard, then
- Approximation algorithm or Heuristic algorithm are pursued

First Step of Algorithm Design

- Check whether problem is easy or not?
\checkmark Assuming $\mathrm{P} \neq \mathrm{NP}$
- Difficult = NP-hard, NP-complete
- Design heuristic
- Easy = P (or decision version is in P)
- Design exact polynomial time algorithm
- Reduce time and space complexity
- Most of practical problems are difficult
- NP-hardness seems trivial
but proof of NP-hardness is not easy
- So, proof is often skipped, recently
- In the following
- $\mathbf{P}=$ problem solvable in polynomial time

Digital Integrated Circuits Synthesis

- Exploration of Huge Design Space
- Increase of computation power enable us to use computation power rich algorithms
- Iterative improvement
- Stochastic search
- Analytical method
- Solution space design
- Abandon useless area
- Focus on promising area
- Efficiency

Automated vs. Manual Routing

- Good routing tools have been developed so far
- For large chips
- Huge number of nets and enough routing resources
- Looser constraint
- Too many nets to design manually
- Lower quality is affordable
- Routing tools are essential in recent design
- For packages, RDL, and PCBs
- Medium number of nets and limited routing resources
- Tighter constraint
- Time consuming, but designer can handle
- Higher quality is essential
- Routing tools are still not popular in high-end designs

Shortest Path Problem

- Basic Routing Problem
- Find a shortest path between two nodes
- Decision version of shortest path problem is in \mathbf{P} - Assumption : weight is nonnegative

Routing Plane

Shortest Path Algorithm

- Find minimum $l(v)$
- $l(v)$: the length of a best route from source s to v found so far
- $l(a)+w(a, b) \geq l(b)$ for any edge (a, b)
- Common procedure of maze like algorithm
- Explore adjacent vertex
- check whether $l(a)+w(a, b)<l(b)$
- Update best route found so far if a better route is found
- If $l(a)+w(a, b)<l(b)$, then update $l(b):=l(a)+w(a, b)$

Undirected

III

Directed

Variety of Exploration

- Priority of exploration
- Queue (first-update first-explore)
[\#edge from source]
- Breadth-First Search, Wave Front (for unit weight)
- Bellman-Ford (for non-negative weight cycle)
- Explore all adjacent vertices whenever the label is updated
- Minimum length from source

$$
[l(x)+w(x, u)]
$$

- Dijkstra (for non-negative weight)
- Minimum expected length from source to sink $\quad\left[l(x)+w(x, u)+\right.$ dist $\left.^{*}(u, t)\right]$
- A*-algorithm (for non-negative weight and consistent prediction dist*)

dist* $(., t)$: expected length to sink t

Speed-up Techniques

- Reduce redundant exploration as much as possible
- Expand the region that distance from the source is known
- Dijkstra: $l(x)+w(x, v)$ is minimum
- A* $: l(x)+w(x, v)+\operatorname{dist}^{*}(b, t)$ is minimum
- Utilize geometrical information
- Bidirectional search (from source and from sink)
- One big radius circle versus Two small radius circles

"An improved bidirectional search algorithm for the 2 terminal shortest path" The 6th Karuizawa Workshop on Circuits and Systems, 1993 (in Japanese)

Shortest Path with Negative Weight

- Bellman-Ford Algorithm
- Update adjacent labels in the next round if updated
- Complexity: O(nm)
- Labeling

$$
\begin{aligned}
& : \mathrm{O}(1) \\
& : \mathrm{O}(m) \\
& : \mathrm{O}(n)
\end{aligned}
$$

- Labeling/ \#round : $\mathrm{O}(\mathrm{m})$
- \#round
distance label

Shortest Path with Negative Weight

- Bellman-Ford Algorithm
- Update adjacent labels in the next round if updated
- Complexity: O(nm)
- Labeling
: O(1)
- Labeling/ \#round : $\mathrm{O}(\mathrm{m})$
- \#round
- 1 st Round

Shortest Path with Negative Weight

- Bellman-Ford Algorithm
- Update adjacent labels in the next round if updated
- Complexity: O(nm)
- Labeling
: O(1)
- Labeling/ \#round : $\mathrm{O}(\mathrm{m})$
- \#round
- 1 st Round
- 2nd Round

Shortest Path with Negative Weight

- Bellman-Ford Algorithm
- Update adjacent labels in the next round if updated
- Complexity: O(nm)
- Labeling
: $\mathrm{O}(1)$
- Labeling/ \#round : $\mathrm{O}(\mathrm{m})$
- \#round
- 1 st Round
- 2nd Round

Shortest Path with Negative Weight

- Bel Iman-Ford Algorithm
- Update adjacent labels in the next round if updated
- Complexity: O(nm)
- Labeling
: O(1)
- Labeling/ \#round : $\mathrm{O}(\mathrm{m})$
- \#round
- 1 st Round
- 2nd Round
- 3rd Round

Shortest Path with Negative Weight

- Bel Iman-Ford Algorithm
- Update adjacent labels in the next round if updated
- Complexity: O(nm)
- Labeling
: O(1)
- Labeling/ \#round : $\mathrm{O}(\mathrm{m})$
- \#round
- 1 st Round
- 2nd Round
- 3rd Round

Shortest Path with Negative Weight

- Bellman-Ford Algorithm
- Update adjacent labels in the next round if updated
- Complexity : O(nm)
- Labeling
: 0 (1)
- Labeling/ \#round : $0(m)$
- \#round
- $1^{\text {st }}$ Round
- $2^{\text {nd }}$ Round
- 3rd Round
- 4th $^{\text {th }}$ Round

Shortest Path with Negative Weight

- Bellman-Ford Algorithm
- Update adjacent labels in the next round if updated
- Complexity : O(nm)
- Labeling
: O(1)
- Labeling/ \#round : $0(m)$
- \#round
- 1 st Round
- $2^{\text {nd }}$ Round
- 3rd Round
- $4^{\text {th }}$ Round
- $5^{\text {th }}$ Round

\checkmark No label update, and finish

Negative Weight Cycle

- Bellman-Ford Algorithm
\checkmark Converge when no negative cycle exists
\checkmark Updates never converge when negative cycle exists

edge weight 1 is omitted
- Can stop at \#node-round as negative weight cycle is detected

Negative Cycle Detection Techniques

- Time Out
- Stop after a certain number of updates are performed
- Distance Lower Bound
- Stop if the distance label becomes below the predefined lower bound
- Walk to the Root before labeling u from v
- Follow parent pointer from v in search tree
- If it reaches u, update forms a cycle in search tree, that is, negative cycle found
- If it reaches root without passing u, update forms no cycle in search tree
- Walk to the Root after labeling adjacent nodes v
- Follow parent pointer from v in search tree.
- If it reaches v, negative cycle is found in search tree
- Otherwise, it reaches root, no cycle is formed so far in search tree

Negative Cycle Detection (Pre-Check)

- Bellman-Ford + Walk to the Root before > 3 rd Round
- Before update label e by b
- Walk to the root from b
- e is not on the path to s

Negative Cycle Detection (Pre-Check)

- Bellman-Ford + Walk to the Root before > 3 rd Round
- Before update label e by b
- Walk to the root from b
- e is not on the path to s
- No cycle will be formed

Negative Cycle Detection (Pre-Check)

- Bellman-Ford + Walk to the Root before $>5^{\text {th }}$ Round
- Before update label c by f
- Walk to the root from f
- c is on the path to s

Negative Cycle Detection (Pre-Check)

- Bellman-Ford + Walk to the Root before
$>5^{\text {th }}$ Round
- Before update label c by f
- Walk to the root from f
- c is on the path to s
\checkmark Cycle will be formed if the destination is on the walk to the root
- Complexity : O($\left.n^{2} m\right)$
- Labeling : $O(n)$
- Labeling/ \#round : $\mathrm{O}(\mathrm{m})$

edge weight 1 is omitted

Negative Cycle Detection (Post-Check)

- Bellman-Ford + Walk to the Root after
> 3 rd Round
- Labeling the neighbors of b
- Walk to the root from b
- It reaches the root s
- Confirm that no cycle is formed

Negative Cycle Detection (Post-Check)

- Bellman-Ford + Walk to the Root after
$>5^{\text {th }}$ Round
- Labeling the neighbors of f
- Walk to the root from f
- It cannot reach the root s, but reaches f
- Confirm that cycle is formed
- Complexity: $\mathrm{O}\left(k m+k^{2} n\right)$
- Labeling : O(1)
- Labeling/\#round : $O(m)$
- Walk to the root: $\mathrm{O}(k)$
- Walk/\#round : O(n)
- \#round
: O(k)

k : diameter of graph

Experiments on Negative Cycle Detection

	t-cp	Ans.	BF[s]	BFn[s]
61	4000	No	26.66	0.0023
	8000	No	12.99	0.0170
	8300	No	10.22	0.0149
	8322	No	0.8762	0.0148
	8323	Yes	0.1255	0.1259
	8400	Yes	0.1268	0.1271
	11569	Yes	0.1248	0.1250
	16000	Yes	0.1247	0.1250

	t -cp Ans.	BF[s]	BFn[s]
b3	9000 No	795.25	0.019
	9552 No	32.78	1.912
	9553 Yes	3.029	3.033
	10000 Yes	2.876	2.882
\#reg:7973 \#path:104136			
	t-cp Ans.	BF[s]	BFn[s]
b5	8763 No	11669.6	0.253
	9664 No	1096.11	0.246
	9665 Yes	7.256	7.313
	10692 Yes	7.130	7.151

BF: Bellman-Ford
BFn: Bel lman-Ford with Post-Check
No: Negat ive cycle exists (infeasible)
Yes: No negative cycle (feasible)
\#reg:12460 \#path:947082

Grid-Based Routing for SAQP

- Sometime, several turns are prohibited in Path
- Vehicle Navigation
- Tertiary Pattern of Self-Aligned Quadruple Patterning (SAQP) in Kodama Grid [asp-ahce213, *1]
- Existence of Path under Turn Prohibition: NP-complete [*z]

SAQP Process

SAQP Pattern
*। Kodama et.al. "Self-Aligned Double and Quadruple Patterning Aware Grid Routing Method." IEEE TCAD, Vol.34, No. 5,
pp.753-765, 2015
*2 Ihara,Hongo,Takahashi,Kodama.
"Grid-based Self-Aligned Quadruple Patterning Aware Two Dimensional Routing Pattern." DATE 2016

Grid-Based Routing for SADP

- Self-Aligned Double Patterning (SADP)
\checkmark "Partially Pre-colored Two-color grid" (Kodama Grid) [ASP-DAC2013]
- Enhancement of Kodama Grid based Method \checkmark Routing pattern generation method for SADP
- Manufacturing by SADP process is guaranteed if routing on the grid is completed
\checkmark No Limitation on Pin Location in Netlist
\checkmark Convert [recoloring grid, pin extension] into single-colored net

* Ihara, Takahashi, Kodama. "Rip-up and Reroute based Routing Algorithm for Self-Aligned Double Patterning." Proc. SASIMI 2015.
* Ihara, Takahashi, Kodama. "Effective Two-Dimensional Pattern Generation for Self-Aligned Double Patterning." Proc. ISCAS, 20 I 5.

Longest Path Problem

- Not basic but required some cases
- Length control in restricted routing resources
- Find a longest path between two nodes
- NP-hard

Longer Path Algorithm

- Heuristic Algorithm
- US (Upper bound based Seed) Routing
- Select direction that has higher potential extend
- Bi-connectivity based length upper bound

- Kohira, Suehiro, Takahashi. "A Fast Longer Path Algorithm for Routing Grid with Obstacles using Biconnectivity based Length Upper Bound." IEICE Trans. Fundamentals, Vol.E92-A, No. I2, pp.2971-2978, December 2009.

Longer Path Algorithm

- Heuristic Algorithm
- US (Upper bound based Seed) Routing
- Select direction that has higher potential extend
- Bi-connectivity based length upper bound

- Kohira, Suehiro, Takahashi. "A Fast Longer Path Algorithm for Routing Grid with Obstacles using Biconnectivity based Length Upper Bound." IEICE Trans. Fundamentals, Vol.E92-A, No. I2, pp.2971-2978, December 2009.

Longer Path Algorithm

- Heuristic Algorithm
- US (Upper bound based Seed) Routing
- Select direction that has higher potential extend
- Bi-connectivity based length upper bound

- Kohira, Suehiro, Takahashi. "A Fast Longer Path Algorithm for Routing Grid with Obstacles using Biconnectivity based Length Upper Bound." IEICE Trans. Fundamentals, Vol.E92-A, No. I2, pp.2971-2978, December 2009.

Bi-connectivity based Upper Bound

- B-C Sequence from start to goal is unique \checkmark biconnected
- connected graph even if a vertex is removed
\checkmark biconnected component (B-C)
- maximal biconnected subgraph

Longer Path (US) Experiments

US: 6626

$$
\text { Furthest + C-Flip: } 261
$$

$$
\begin{aligned}
& U_{p}=6654 \\
& U_{c}=6650 \\
& U_{a}=6650
\end{aligned}
$$

Tree Problems

- Minimum Spanning tree (MST)
- Connect all vertices by minimum total weight
- P problem
- Kruskal Algorithm, Prim Algorithm
- Minimum Steiner tree (SMT: Steiner Minimum Tree)
- Connect specified vertices by minimum total weight
- NP-hard
- Rectilinear SMT
- Hannan Grid
- Shortest Path Tree (SPT)
- Connect sinks by shortest path from source
- P problem
- Dijkstra Algorithm
- Minimum Shortest Path Tree (MSPT)

- Connect sinks by shortest path from source and by minimum total weight
- NP-hard ???
- There were several incorrect proofs

Cost and Radius in Tree

- Minimum Spanning tree (MST) : P problem
- Cost is minimum, but Radius might be large
- Prim Algorithm:
$0 \times l(x)+w(x, v)$
- Shortest Path Tree (SPT) : P problem
- Radius is minimum, but Cost might be large
- Dijkstra Algorithm: $1 \times l(x)+w(x, v)$
- Cost/Radius Balanced (Steiner) Tree (CRBST) [*]
- Balance Cost and Radius
- CRBST Algorithm: $\frac{\operatorname{dist}(s, v)}{B} \times l(x)+w(x, v)$
- v is near : $\quad w(x, v)=$ cost first

$$
\text { far : } l(x)+w(x, v)=\text { radius first }
$$

- Radius is bounded by B

[^0] IEICE Trans. Fundamentals, Vol. E80-A, No. 4, pp. 689-694, 1997

Clock Distribution Network

- Tree or Mesh or Others?
- Clock Skew
- Zero Clock Skew or Clock Schedule?
- Total Wire Length
- Power Consumption
- Buffer Insertion
- Clock Tree
- Deferred-Merge Embedding
- Zero-skew clock-tree [Chao et al 92, Edahiro 93, ...]
- Bounded-skew clock-tree [Huang et al. 95, ...]
- Useful-skew clock-tree [xi\&Dai 96]

Schedule-Clock-Tree

- Schedule-clock-tree routing (SCT-routing)
- Input: clock-schedule
- Output: clock-tree that realizes the clock-schedule

* Inoue, Takahashi, Takahashi, Kajitani. "Schedule-Clock-Tree Routing for Semi-Synchronous Circuits." IEICE Transactions on Fundamentals, Vol.E82-A, No. II, pp.243I-2439, Nov. 1999

Delays in Schedule-Clock-Tree

Delay-Balance-Point

- Equation in a schedule-clock-tree

$$
-\tau(v)=r l_{1}\left(\frac{c l_{1}}{2}+C\left(v_{1}\right)\right)+\tau\left(v_{1}\right)=r\left(l-l_{1}\right)\left(\frac{c\left(l-l_{1}\right)}{2}+C\left(v_{2}\right)\right)+\tau\left(v_{2}\right)
$$

Buffer Insertion

- To reduce the connection length
- If the detour occurs

Lower cost solution is selected

SCT-Rout ing

- Topology generation
- Find a pair with the minimum merging cost
- Insert buffer, if necessary
- Compute the merging-segment
consisting of delay-balance-points
- Repeat until complete topology is obtained
- Topology embedding
- Determine the exact location of each node from the clock-source to the clock-pins

Clustering Based Light Clock-Tree

1. Construct initial clusters
2. Modify clusters

- Objective
- Clock period
- Constraints
- Timing constraint aware
- Radius of cluster
- Number of clusters
- register
- clock buffer
* Saitoh, Azuma, Takahashi.
"A Clustering Based Fast Clock Schedule Algorithm for Light Clock-Trees" IEICE Trans. Fundamentals, Vol.E85-A, No. I2, pp.2756-2763, 2002

Clustering Based Light Clock-Tree

1. Construct initial clusters

2. Modify clusters

- Objective
- Clock period
- Constraints
- Timing constraint aware
- Radius of cluster
- Number of clusters
- register
- clock buffer
* Saitoh, Azuma, Takahashi.
"A Clustering Based Fast Clock Schedule Algorithm for Light Clock-Trees" IEICE Trans. Fundamentals, Vol.E85-A, No. I2, pp.2756-2763, 2002

Clustering Based Light Clock-Tree

- Experimental Result

| Process : | $0.25(\mu \mathrm{~m})$ |
| :--- | ---: | :--- |
| Chip area: | $728 \times 710\left(\mu \mathrm{~m}^{2}\right)$ |
| \#register: | 888 |
| Max delay: | 11.6 (ns) |

\downarrow Computation time : 24.9 s
Max cluster radius: 300 ($\mu \mathrm{m}$) Number of cluster: 49

Clustering Based Light Clock-Tree

- Experimental Result

| Process : | $0.25(\mu \mathrm{~m})$ |
| :--- | ---: | :--- |
| Chip area: | $728 \times 710\left(\mu \mathrm{~m}^{2}\right)$ |
| \#register: | 888 |
| Max delay: | 11.6 (ns) |

\downarrow Computation time: 24.9 s
Max cluster radius: 300 ($\mu \mathrm{m}$)
Number of cluster: 49
Clock Period: 8.4 (ns)
Wire Length: 30317 ($\mu \mathrm{m}$)

2-layer BGA Package

BGA Routing

Bad Routing

Better Routing

Monotonic Via Assignment

Non-monotonic

Monotonic Via Assignment
\checkmark All routes on layer 1 can be monotonic
\checkmark Monotonic routing pattern is unique

* Tomioka, Takahashi. "Routing of Monotonic Parallel and Orthogonal Netlists for Single-Layer Ball Grid Array Packages. IEICE Trans. Fundamentals, Vol.E89-A, No.12, pp.355I-3559, December 2006.

Modifications

Exchange (EXC)

Monotonic Sequence (MSEQ)

* Kubo, Takahashi. "A Via Assignment and Global Routing Method for 2-Layer Ball Grid Array Packages."

IEICE Trans. Fundamentals, Vol.E88-A, No.5, pp. 1283 - 1289 , May 2005.

* Kubo, Takahashi. "Global Routing by Iterative Improvements for 2-Layer Ball Grid Array Packages." IEEE TCAD, Vol.25, No.4, pp.725-733, April 2006.

BGA Routing Method

- Initial via assignment
- Place vias near their balls under monotonic condition
- Iterative via modification
- Phase 1
- Improve layer 1, Keep layer 2
\checkmark improved computation complexity
- Phase 2
- Improve layer 2, Keep layer 1
\checkmark new modification introduced
- Via assignment
- Global Routing

[^1]
BGA Routing

Bad Routing

Better Routing

PCB Routing

- Divide into subareas in terms of the obstacle density

River routing
Length Control etc.

CAFE router

- CAFE: Connectivity Aware Frontier Exploration
- Until all nets are connected, following procedures are repeated 1. Choose a focused net whose frontier is moved

2. Check the connectivity for each adjacent grid
3. Move the frontier to an adjacent grid

* Kohira,Takahashi. "CAFE router: A Fast Connectivity Aware Multiple Nets Routing Algorithm for Routing Grid with Obstacles". IEICE Trans. Fundamentals, Vol.E93-A, No. I2, pp.2380-2388, 2010.

Connectivity Check

- Trunk Routing Problem
- Flow with \#nets corresponds to feasible routes
- Max-Flow = \#nets: can be connected
- Max-Flow < \#nets: cannot be connected

Cafe router Experiments

Sink Target length: 150

error

$$
\begin{array}{r}
\text { - net } 0=0 \\
\text { net } 1=-2 \\
\text { - net } 2=-4 \\
\text { net } 3=-4
\end{array}
$$

ave. err.: 2.5 worst err.:-4

CPU time: 0.42[s]

- HV might not be enough for connectivity
- HVX might be too complex

- HV + Minimal X
- Use X when it is essential
- Extract critical region and use X
- After connectivity is achieved, X might be used in length control in non-critical region

Set-Pair Routing

- Connection requirements are not defined on pin pair
- Connection to equivalent passive elements
- I/O pins of reconfigurable chip
- Network Flow algorithms work well
- Minimum Length is easy
- Length Control is not easy

Set-Pair Routing Problem

Input : Pin-set Pair(Source-pin set S, Sink-pin set 7) Output: Routing between S and T

- Assumptions
- \#Source-pin = \#Sink-pin
- one-to-one connection between source-pin and sink-pin
- planar grid routing (single layer)

* Nakatani, Takahashi. "A Length Matching Routing Algorithm for Set-Pair Routing Problem" IEICE Trans. Fundamentals, Vol.E98-A, No.I2, pp.2565-257I, 2015.

Set-Pair Routing (1)

Step 1 (Total Length Reduction)

\checkmark Obtain a routing pattern that has the minimum total wire length by finding minimum cost maximum flow

Initial Max-Flow
Len-Seq ($9,7,3$) Total:19

Min-Cost Max-Flow Len-Seq $(9,4,4)$ Total:17

Total-Length is optimally minimized Difference is typically large

Set-Pair Routing (1b) Negative cycle

Step 1 (Total Length Reduction)

> Negative cycle detection and elimination in residue graph

No negative weight cycle \equiv Length is minimum

Set-Pair Routing (2)

Step 2 (Maximum Length Reduction)

\checkmark Reduce the maximum wire length while keeping the total wire length minimum by greedily modifying a routing pattern so that an earlier Len-Seq is obtained

Min-Cost Max-Flow Len-Seq $(9,4,4)$ Total: 17

Min-Cost Max Reduced Flow Len-Seq $(7,5,5)$ Total:17

Max-Length is heuristically minimized

Set-Pair Routing (3)

Step 3 (Minimum Length Increase)

\checkmark Lengthen a wire of the minimum length as much as possible by using R-Flip iteratively while the maximum length is kept

Min-Total Max-Reduced Len-Seq $(7,5,5)$ Total: 17

Diff-Reduced (Min-Increased) Len-Seq $(7,7,7)$ Total:21

Total:355
Maximum: 30
Difference: 1

Min-Length is greedily increased Increase of Total-Length is suppressed since Max-length is reduced in Step 2

Set-Pair Routing Example

Escape-type
Size:19x19
\#Net: 16
\#Obst: 50
Min-Total: 146
Total: 154
Max: 16
Diff: 8

Line-type
Size:29x31
\#Net: 12
\#Obst: 100
Min-Total: 356
Total: 420
Max: 46
Diff: 12

Bisection-type
Size:30x30
\#Net: 12
\#Obst: 100
Min-Total: 271
Total: 355
Max: 30
Diff: 1

Flip-type
Size:29x29
\#Net: 12
\#Obst: 120
Min-Total: 132 Total: 196

Max: 19 Diff: 4

- Routing tools and algorithm for Digital LSIs tend to be matured
- Developments and improvements of application specific routing algorithms are still highly required in industry
- Package
- PCB
- Design for Manufacture
- New objectives

[^0]: * Mitsubayashi, Takahashi, Kajitani. "Cost-Radius Balanced Spanning/Steiner Trees."

[^1]: * Tomioka, Takahashi. "Routability Driven Via Assignment Method for 2-Layer Ball Grid Array Packages." IEICE Trans. Fundamentals, Vol.E92-A, No.6, pp.1433-144।, June 2009.

