

VLSI Layout Design Overview (2) Theoretical Aspect

Atsushi Takahashi Department of Information and Communications Engineering School of Engineering Tokyo Institute of Technology atsushi@ict.e.titech.ac.jp

ICT. I419 VLSI Layout Design

VLSI Layout Design (Overview 2)

VLSI Design / Manufacturing

Integration of Various Technologies

- Device Manufacture
 - Make transistors small
 - Mask Design, Exposure, Polishing, Dicing
- Circuit Design, Layout Design
 - High Speed, Low Power, Reliability
- Packaging, Printed Circuit Board
 - -Wire Bonding
- System Design
- Software Design
- Marketing

VLSI Design (Synthesis)

- Design Automation
 - Essential in design productivity improvement
- Problem Definition
 - Inputs, outputs, and objectives
 - Design flow and Hierarchical synthesis
 - ✓ many sub-problems
- \checkmark Optimum solution for sub-problem may not be good for whole problem
- Need to update Design methodology and Design flow
- Problem : Find an optimum solution
 - Is there an **exact** algorithm for the problem?
 - \checkmark Yes (in most cases for combinatorial problem)
 - Enumerating all the cases and pick a best one
 - Impractical for large instances
 - Is there a practical exact algorithm for the problem?
 - \checkmark NO (except limited cases)
 - Need sophisticated intelligent approach
 - Heuristic in most cases

How many seconds can you spend?

- 1 minute $60 \text{ s} = 6.0 \times 10^1 \text{ s}$ = = $3,600 \text{ s} = 3.6 \times 10^3 \text{ s}$ ■ 1 hour = 86,400 s = 8.64 $\times 10^4$ s ■ 1 day ■ 1 month(30days) = 2,592,000 s = 2.592×10^6 s ■ 1 year (365days) = 31,536,000 s = 3.1536×10^7 s ■ 10 years = $315, 360, 000 \text{ s} = 3.1536 \times 10^8 \text{ s}$ $= 3.1536 \times 10^{17}$ s ■ 10 billion years • Age of the universe =13.8 billion years $= 4.35 \times 10^{17}$ s
- $2^{60} \approx 1.15 \times 10^{18}$
- 20! \approx 2.43 × 10¹⁸

P and NP

- Background of Algorithm Design
 - P and NP
 - NP-complete
 - -NP-hard
 - Polynomial Time Reduction
 - -<u>N</u>ondeterministic <u>P</u>olynomial Time Algorithm
 - (Deterministic) Polynomial Time Algorithm

[Garey and Johnson, "Computers and Intractability, A Guide to the Theory of NP-Completeness", Freeman and Co., 1979]

P and NP

- Decision Problem (Yes/No Problem)
 - NP : Set of decision problems that have
 - Nondeterministic Polynomial time algorithm
 - P : Set of decision problems that have
 - (Deterministic) Polynomial time algorithm
 - NP-C: hardest problems in NP
 - If a problem in NP-C can be solved in polynomial time,
 - then any problem in NP can be solved in polynomial time
 - A decision problem is said to be NP-complete if it is in NP-C
 - SAT, 3-SAT, COL, HG, IS, TS, …
- Theorem : $P \subseteq NP$ > Conjecture: $P \neq NP$

Nondeterministic Polynomial Time Algorithm

- Typical Structure
 - Step 1 (nondeterministic)
 - Generate an evidence in polynomial time (Pick up one arbitrary among exponential candidates)
 - Step 2 (deterministic)
 - Check the <u>evidence</u> in polynomial time
 - If the evidence is correct, then output YES
 - If the evidence is incorrect, then output NO

Correct Answer		Algorithm Output
YES	*	YES
No		No

Evidence (Proof) for YES

Tokyo Tech

Problem: Is Graph Hamiltonian?

✓ NP

- An evidence that shows the graph is Hamiltonian which can be checked in polynomial time exists
- Problem: Is <u>NOT</u> Graph Hamiltonian?

✓ ?? NP ?

- An evidence that the graph is not Hamiltonian is not trivial
- What is an evidence that shows the graph is <u>not</u> Hamiltonian?

Problem: Is NOT Graph a Hamiltonian?
 Evidence : ???

Problem: Is Graph a Hamiltonian? Evidence : sequence of vertices

Polynomial Time Reduction (∝)

- Provides difficulty relation between decision problems
 - Which is not difficult?
- \blacksquare Polynomial Time Recution of Problem ($\Pi_1 \propto \Pi_2$)
 - Instance of Π₁ can be converted to instance of Π₂ in polynomial time while maintaining Yes/No property
 - Problem Π_1 can be solved in polynomial time by utilizing (hypothetical) polynomial time algorithm for problem Π_2
- \checkmark If Π_2 is solved in polynomial time, then Π_1 can be solved in polynomial time
- Π_2 is not easier than Π_1 (same or more difficult)

Π1	¢	П ₂
Easy	\overleftrightarrow	Easy
Difficult		Difficult

Example (HG \propto TS)

- Hamilton Graph Decision Problem (HG)
 - INSTANCE : Graph G
 - QUESTION : Is G Hamiltonian?
- Traveling Salesman Decision Problem (TS)
 - INSTANCE : K_n , $w : E(K_n) \to \mathcal{R}^+$, r
 - QUESTION : Does Hamilton cycle C exist such that

Property of \propto

- Theorem (subproblem):
 - Decision Problem $\Pi = (I, Q(x))$
 - -Subproblem $\Pi' = (I', Q(x)), I' \subseteq I$

 $\checkmark \Pi' \propto \Pi$

■ Theorem (transitivity): \propto satisfies transitivity $\checkmark \Pi_1 \propto \Pi_2, \Pi_2 \propto \Pi_3 \Rightarrow \Pi_1 \propto \Pi_3$

 $-\psi \circ \phi : I_1 \to I_3$

VLSI Layout Design (Overview 2)

NP-complete Problem

- <u>NP-complete</u> problem Π_0 : $\forall \Pi \in NP$, $\Pi \propto \Pi_0$
 - -Not easier than any problem in NP

- -No polynomial time algorithm if $P \neq NP$
 - We will give up to design efficient algorithm
 - Approximation algorithm
 - Heuristic algorithm

Typical Proof of NP-completeness

- Theorem : Π is NP-complete if
 - 1. $\Pi \in \mathbb{NP}$
 - 2. $\Pi^* \propto \Pi$ for some NP-complete problem Π^*
- Proof
 - $\succ \forall \Pi' \in \mathbb{NP}, \Pi' \propto \Pi^* \text{ and } \Pi^* \propto \Pi \implies \forall \Pi' \in \mathbb{NP}, \Pi' \propto \Pi$

Incorrect Proof of NP-completeness

- Incorrect proof of NP-completeness of Π
 - 1. $\Pi \in \mathbb{NP}$
 - 2. Pick up NP-complete problem Π^*
 - \checkmark Show $\Pi \propto \Pi^*$
 - It is trivial by definition
 - \blacksquare It does not mean that Π is NP-complete

Boolean Logic

- Boolean variable
 - $a, b \in \mathbb{B} = \{0, 1\} = \{False, True\}$
- Unary operator
 - ─ : NOT
- Binary operator
 - \land : AND, \lor : OR
- Truth Table

а	$\neg a$	а	b	a ٨ b	а	b	a∨b
0	1	0	0	0	0	0	0
1	0	0	1	0	0	1	1
		1	0	0	1	0	1
		1	1	1	1	1	1

а	b	С	a∨b	$(a \lor b) \land c$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

VLSI Layout Design (Overview 2)

SATISFIABILITY (SAT)

- Satisfiability (SAT)
 - INSTANCE : Boolean formula F in CNF
 - ≻ CNF
 - Conjunctive Normal Form, Product of sums, NOT-OR-AND
 - QUESTION : Is **F** satisfiable?
- Example
 - $\neg F = (a \lor b) \land (\neg a \lor \neg b \lor c) \land (\neg a \lor \neg c)$
 - F is satisfiable
 - $a = 1, b = 0, c = 0 \implies F = 1$
 - $\neg F = (a \lor b) \land (a \lor \neg b) \land (\neg a \lor b) \land (\neg a \lor \neg b)$
 - F is unsatisfiable

SAT is NP-complete

- Theorem : SAT is NP-complete
- ≻SAT is in NP

Turing Machine behavior is modeled by polynomial size Boolean formula

 $\checkmark {\rm SAT}$ is a hardest decision problem

COLORING (COL)

■ 3-COLORING (3-COL)

- INSTANCE
 - Graph G
- QUESTION
 - Can G be colored with 3 colors?

Coloring of a graph

 a coloring of the vertices of the graph such that no two adjacent vertices have the same color

Tokyo Tech

Example (3-COL∝SAT)

Example: $3-COL \propto SAT$ (cont.)

- Certificate for 3-coloring
 - coloring of a graph G = (V, E) with three colors
 - vertices are colored with three colors
 - a vertex is colored by one color
 - any two adjacent vertices are colored by different colors
- $-V(G) = \{v_1, v_2, \dots, v_n\}, E(G) = \{e_1, e_2, \dots, e_m\}$
- -three Boolean variables x_{i1}, x_{i2}, x_{i3} for each vertex v_i

• $x_{ij} = \begin{cases} 1 \text{ if } v_i \text{ is color } j \\ 0 \text{ otheriwise} \end{cases}$

Tokyo Tech

Example (3-COL∝SAT)

Example: $3-COL \propto SAT$ (cont.)

• vertex v_i is colored by a color in colors 1, 2, 3 $P_i = (x_{i1} \lor x_{i2} \lor x_{i3}) \land (\overline{x_{i1}} \lor \overline{x_{i2}}) \land (\overline{x_{i1}} \lor \overline{x_{i3}}) \land (\overline{x_{i2}} \lor \overline{x_{i3}})$

 $\bigwedge_{i \in \mathcal{V}(\mathcal{C})} P_i$

every vertex is colored by one color

• adjacent vertices v_i and v_j are colored by different colors $Q_{(i,j)} = (\overline{x_{i1}} \lor \overline{x_{j1}}) \land (\overline{x_{i2}} \lor \overline{x_{j2}}) \land (\overline{x_{i3}} \lor \overline{x_{j3}})$

every two adjacent vertices are colored by different colors

 $\bigwedge_{(i,j)\in E(G)}Q_{(i,j)}$

Example (3-COL∝SAT)

- **Example:** $3-COL \propto SAT$ (cont.)
 - G can be colored by three colors
 - $-f(G) = \left(\bigwedge_{i \in V(G)} P_i \right) \wedge \left(\bigwedge_{(i,j) \in E(G)} Q_{(i,j)} \right) \text{ is satisfiable}$
 - $-\phi: G \mapsto f(G)$
 - polynomial time reduction from 3-COLORING to SAT

NP-Completeness (3-SAT)

■ 3-SAT

- INSTANCE : Boolean formula F in CNF
 - with three literals per clause
- QUESTION : Is **F** satisfiable?

Example

$$\neg F = (a \lor b \lor c) \land (\neg a \lor \neg b \lor c) \land (a \lor \neg c \lor \neg d)$$

NP-Completeness (3-SAT)

Tokyo Tech

- Theorem : 3-SAT is NP-complete
- Proof
 - By showing that SAT \propto 3-SAT
 - Polynomial time reduction from 3-SAT to SAT
 - Prepare y literals not in SAT formula F
 - One literal clause of F
 - $(x) \Rightarrow (x \lor y_1 \lor y_2) \land (x \lor y_1 \lor \overline{y_2}) \land (x \lor \overline{y_1} \lor y_2) \land (x \lor \overline{y_1} \lor \overline{y_2}) \land (x \lor \overline{y_1} \lor \overline{y_2})$
 - Two literals clause of F
 - $(x_1 \lor x_2) \Longrightarrow (x_1 \lor x_2 \lor y) \land (x_1 \lor x_2 \lor \overline{y})$
 - k literals clause of F $(k \ge 4)$
 - $(x_1 \lor x_2 \lor \cdots \lor x_k) \Rightarrow (x_1 \lor x_2 \lor y_1) \land (\overline{y_1} \lor x_3 \lor y_2) \land (\overline{y_2} \lor x_4 \lor y_3) \land \cdots \land (\overline{y_{k-3}} \lor x_{k-1} \lor x_k)$
 - The size of obtained 3-SAT formula is polynomial of |F|

NP-Completeness (3-COL)

- Theorem : 3-COLORING is NP-complete
 Proof
 - -By showing that $3-SAT \propto 3-COLORING$
 - Graph G(f) corresponding to $f = (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4})$

VLSI Layout Design (Overview 2)

NP-Completeness (3-COL)

- Theorem : 3-COLORING is NP-complete
 Proof (cont.)
 - Coloring of G(f) corresponding to the assignment

$$- x_1 = 1, x_2 = x_3 = x_4 = 0$$

- $-\phi: f \mapsto G(f)$
 - polynomial time reduction from 3-SAT to 3-COLORING

VLSI Layout Design (Overview 2)

Property of NP-completeness

Theorem 9.9 :

- -HG is NP-complete
- -TS is NP-complete
 - T-TS is NP-complete
 - MAX-TS is NP-complete
- 3-SAT is NP-complete
- 3-COL is NP-complete

NP-hardness

- A problem is <u>NP-hard</u> if the decision problem associated with the problem is <u>NP-complete</u>
- Optimization problem is
 - neither in NP nor in NP-C
 - not said to be NP-complete
 - said to be <u>NP-hard</u> if a related decision problem is <u>NP-complete</u>
- If **P**≠**NP**, then
 - No polynomial time algorithm for <u>NP-hard</u> problem
- If a problem is <u>NP-hard</u>, then
 - Approximation algorithm or Heuristic algorithm are pursued

VLSI Layout Design (Overview 2)

NP-hardness

- Dealing with NP-hard problems
 - Subproblem
 - Approximation algorithm
 - Randomized algorithm
 - -Heuristic algorithm
- Open Problem
 - <u>Clay Mathematics Institute</u>
 - Millennium Problems
 - P vs. NP (P=NP?)
 - http://www.claymath.org/millennium-problems/p-vs-np-problem

First Step of Algorithm Design

■ Check whether problem is easy or not? ✓ Assuming P ≠ NP

- Difficult = NP-hard, NP-complete
 - Design heuristic
- Easy = P (or decision version is in P)
 - Design exact polynomial time algorithm
 - Reduce time and space complexity
- Most of practical problems are difficult
 - NP-hardness seems trivial but proof of NP-hardness is not easy
 - So, proof is often skipped, recently
- In the following
 - **P** = problem solvable in polynomial time

Exploration of Solution Space

- Exploration of Huge Design Space
- Increase of computation power enable us to use computation power rich algorithms
 - Iterative improvement
 - Stochastic search
 - Analytical method
- Solution space design
 - Abandon useless area
 - Focus on promising area
 - Efficiency

<u>Automated vs.</u> Manual

- Good tools have been developed so far
- For large chips
 - Huge number of nets and enough resources
 - Looser constraint
 - Too many nets to design manually
 - Lower quality is affordable
 - Tools are essential in recent design
- For small chips, IoT devices, and etc.
 - Medium number of nets and limited resources
 - Tighter constraint
 - Time consuming, but designer can handle
 - Higher quality is essential
 - Automated Tools are still not popular in high-end designs