
VLSI Layout Design
Overview (2) Theoretical Aspect

Atsushi Takahashi

Department of Information and Communications Engineering

School of Engineering

Tokyo Institute of Technology

atsushi@ict.e.titech.ac.jp

ICT.I419 VLSI Layout Design

2021 VLSI Layout Design (Overview 2)

VLSI Design / Manufacturing

Integration of Various Technologies

 Device Manufacture
‐Make transistors small

‐Mask Design, Exposure, Polishing,
Dicing

 Circuit Design, Layout Design
‐High Speed, Low Power, Reliability

 Packaging, Printed Circuit Board
‐Wire Bonding

 System Design

 Software Design

 Marketing

light source

Illumination lens

Mask

Projection lens

Fluid

Photoresist

Wafer

2021 VLSI Layout Design (Overview 2) 2

VLSI Design (Synthesis)

 Design Automation
‐ Essential in design productivity improvement

 Problem Definition
‐ Inputs, outputs, and objectives

‐ Design flow and Hierarchical synthesis
 many sub-problems

 Optimum solution for sub-problem may not be good for whole problem

‐ Need to update Design methodology and Design flow

 Problem : Find an optimum solution
‐ Is there an exact algorithm for the problem?

 Yes (in most cases for combinatorial problem)

 Enumerating all the cases and pick a best one

‐ Impractical for large instances

‐ Is there a practical exact algorithm for the problem?
 NO (except limited cases)

 Need sophisticated intelligent approach

‐ Heuristic in most cases

2021 3VLSI Layout Design (Overview 2)

How many seconds can you spend?

 1 minute = 60 s = 6.0 × 101 s

 1 hour = 3,600 s = 3.6 × 103 s

 1 day = 86,400 s = 8.64 × 104 s

 1 month(30days)= 2,592,000 s = 2.592 × 106 s

 1 year（365days）= 31,536,000 s = 3.1536 × 107 s

 10 years = 315,360,000 s = 3.1536 × 108 s

 10 billion years = 3.1536 × 1017 s

 Age of the universe ≒
13.8 billion years ≒ 4.35 × 1017 s

 260 ≈ 1.15 × 1018

 20! ≈ 2.43 × 1018

2021 4VLSI Layout Design (Overview 2)

P and NP

 Background of Algorithm Design

‐P and NP

‐NP-complete

‐NP-hard

‐Polynomial Time Reduction

‐Nondeterministic Polynomial Time Algorithm

‐(Deterministic) Polynomial Time Algorithm

2021

[Garey and Johnson, "Computers and Intractability, A Guide to the Theory of NP-Completeness", Freeman and Co., 1979]

5VLSI Layout Design (Overview 2)

P and NP

 Decision Problem (Yes/No Problem)

‐NP : Set of decision problems that have

 Nondeterministic Polynomial time algorithm

‐P : Set of decision problems that have

 (Deterministic) Polynomial time algorithm

‐NP-C: hardest problems in NP

 If a problem in NP-C can be solved in polynomial time,

then any problem in NP can be solved in polynomial time

 A decision problem is said to be NP-complete if it is in NP-C

 SAT, 3-SAT, COL, HG, IS, TS, …

 Theorem : P ⊆ NP

 Conjecture: P ≠ NP P

NP

or
NP-C

P≠NP P=NP (=NP-C)

2021 6VLSI Layout Design (Overview 2)

 Behavior of Correct
Nondeterministic Algorithm

Nondeterministic Polynomial Time Algorithm

 Typical Structure
‐Step 1 (nondeterministic)
 Generate an evidence in polynomial time

(Pick up one arbitrary among exponential candidates)

‐Step 2 (deterministic)
 Check the evidence in polynomial time
‐ If the evidence is correct, then output YES

‐ If the evidence is incorrect, then output NO

2021

Problem: Is Graph a Hamiltonian?

Evidence : sequence of vertices
Correct
Answer

Algorithm
Output

YES YES

No No

7VLSI Layout Design (Overview 2)

Problem: Is NOT Graph a Hamiltonian?

Evidence (Proof) for YES

 Problem: Is Graph Hamiltonian?
 NP

‐An evidence that shows the graph is Hamiltonian which can be
checked in polynomial time exists

 Problem: Is NOT Graph Hamiltonian?
 ?? NP ?

‐An evidence that the graph is not Hamiltonian is not trivial

‐What is an evidence that shows the graph is not Hamiltonian?

2021

Problem: Is Graph a Hamiltonian?

Evidence : sequence of verticesEvidence : ???

8VLSI Layout Design (Overview 2)

𝚷𝚷𝟏𝟏 ∝ 𝚷𝚷𝟐𝟐

Easy Easy

Difficult Difficult

Polynomial Time Reduction (∝)
 Provides difficulty relation between decision problems
‐ Which is not difficult?

 Polynomial Time Recution of Problem (Π1 ∝ Π2)
‐ Instance of Π1 can be converted to instance of Π2

in polynomial time while maintaining Yes/No property
‐ Problem Π1 can be solved in polynomial time by utilizing

(hypothetical) polynomial time algorithm for problem Π2
 If Π2 is solved in polynomial time,

then Π1 can be solved in polynomial time

‐Π2 is not easier than Π1 (same or more difficult)

2021 VLSI Layout Design (Overview 2) 9

Π1 Instances 𝐼𝐼1

YES
YES

NO NO

Π2 Instances 𝐼𝐼2

𝜙𝜙 : 𝐼𝐼1 ⟶ 𝐼𝐼2

𝐾𝐾𝑛𝑛

𝑟𝑟 ≔ 𝑛𝑛

1 (𝑒𝑒 ∈ 𝐸𝐸 𝐺𝐺)

𝑤𝑤

2 (𝑒𝑒 ∉ 𝐸𝐸 𝐺𝐺)

TS

Example (HG ∝ TS)

 Hamilton Graph Decision Problem (HG)
‐INSTANCE : Graph 𝐺𝐺
‐QUESTION : Is 𝐺𝐺 Hamiltonian?

 Traveling Salesman Decision Problem (TS)
‐INSTANCE : 𝐾𝐾𝑛𝑛, 𝑤𝑤 ∶ 𝐸𝐸 𝐾𝐾𝑛𝑛 → ℛ+, 𝑟𝑟
‐QUESTION : Does Hamilton cycle 𝐶𝐶 exist such that

𝑤𝑤 𝐶𝐶 ≤ 𝑟𝑟, 𝐶𝐶 ⊆ 𝐾𝐾𝑛𝑛 ?

2021 VLSI Layout Design (Overview 2) 10

𝐺𝐺

𝑛𝑛 = 𝑉𝑉 𝐺𝐺

HG

Hamilton cycle
weight

𝑛𝑛 𝐺𝐺 edges only
≥ 𝑛𝑛 + 1 contains other

𝐺𝐺 is Hamiltonian iff the minimum Hamiltonian cycle weight is 𝑛𝑛

Property of ∝
 Theorem (subproblem):
‐Decision Problem Π = 𝑰𝑰,𝑄𝑄 𝑥𝑥
‐Subproblem Π′ = 𝑰𝑰′,𝑄𝑄 𝑥𝑥 , 𝑰𝑰′ ⊆ 𝑰𝑰
 Π′ ∝ Π

 Theorem (transitivity): ∝ satisfies transitivity
 Π1 ∝ Π2,Π2 ∝ Π3 ⇒ Π1 ∝ Π3
‐𝜓𝜓 ∘ 𝜙𝜙 ∶ 𝑰𝑰1 → 𝑰𝑰3

2021 VLSI Layout Design (Overview 2) 11

𝜙𝜙 ∶ 𝑰𝑰𝟏𝟏 → 𝑰𝑰𝟐𝟐 𝝍𝝍 ∶ 𝑰𝑰𝟐𝟐 → 𝑰𝑰𝟑𝟑Π1

YES

NO NO

Π2

YES
YES

NO

Π3

Π′ = 𝑰𝑰′,𝑄𝑄 𝑥𝑥 Π = 𝑰𝑰,𝑄𝑄 𝑥𝑥

NO

YES

NO

YES

𝜙𝜙 ∶ 𝑰𝑰′ ⟶ 𝑰𝑰 (identity mapping)

NP-complete Problem

 NP-complete problem Π0: ∀Π ∈NP, Π ∝ Π0
‐Not easier than any problem in NP

‐No polynomial time algorithm if P ≠ NP

 We will give up to design efficient algorithm

‐ Approximation algorithm

‐ Heuristic algorithm

2021

Π0

Π

Π

Π
Π

ΠΠ

Π
Π

Π
Π

ΠΠ 𝚷𝚷 ∝ 𝚷𝚷𝟎𝟎

Easy Easy

Difficult Difficult

12VLSI Layout Design (Overview 2)

Typical Proof of NP-completeness

 Theorem : Π is NP-complete if

1. Π ∈ NP

2. Π∗ ∝ Π for some NP-complete problem Π∗

 Proof
∀Π′ ∈NP,Π′ ∝ Π∗ and Π∗ ∝ Π ⇒ ∀Π′ ∈NP,Π′ ∝ Π

2021

Π∗ ∈ NP-C

YES
YES

NO NO

Π

𝜙𝜙

𝚷𝚷∗ ∝ 𝚷𝚷
Easy Easy

Difficult Difficult

13VLSI Layout Design (Overview 2)

Incorrect Proof of NP-completeness

 Incorrect proof of NP-completeness of Π
1. Π ∈ NP

2. Pick up NP-complete problem Π∗

 Show Π ∝ Π∗

 It is trivial by definition

 It does not mean that Π is NP-complete

2021 VLSI Layout Design (Overview 2) 14

Π

YES
YES

NO NO

Π∗ ∈ NP-C

𝜙𝜙

𝚷𝚷 ∝ 𝚷𝚷∗

Easy Easy

Difficult Difficult

Boolean Logic

 Boolean variable
‐ 𝑎𝑎, 𝑏𝑏 ∈ 𝔹𝔹 = 0, 1 = { False, True }

 Unary operator
¬ : NOT

 Binary operator
∧ : AND, ∨ : OR

 Truth Table

2021 VLSI Layout Design (Overview 2) 15

𝑎𝑎 𝑏𝑏 𝑎𝑎 ∧ 𝑏𝑏

0 0 0

0 1 0

1 0 0

1 1 1

𝑎𝑎 𝑏𝑏 𝑎𝑎 ∨ 𝑏𝑏

0 0 0

0 1 1

1 0 1

1 1 1

𝑎𝑎 ¬𝑎𝑎

0 1

1 0

𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑎𝑎 ∨ 𝑏𝑏 𝑎𝑎 ∨ 𝑏𝑏 ∧ 𝑐𝑐

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 1 1 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 0

1 1 1 1 1

SATISFIABILITY (SAT)

 Satisfiability (SAT)
‐INSTANCE : Boolean formula 𝐹𝐹 in CNF

 CNF

‐ Conjunctive Normal Form, Product of sums, NOT-OR-AND

‐QUESTION : Is 𝐹𝐹 satisfiable?

 Example
‐𝐹𝐹 = 𝑎𝑎 ∨ 𝑏𝑏 ∧ ¬𝑎𝑎 ∨ ¬𝑏𝑏 ∨ 𝑐𝑐 ∧ ¬𝑎𝑎 ∨ ¬𝑐𝑐
 𝐹𝐹 is satisfiable

 𝑎𝑎 = 1, 𝑏𝑏 = 0, 𝑐𝑐 = 0 ⟹ 𝐹𝐹 = 1

‐𝐹𝐹 = 𝑎𝑎 ∨ 𝑏𝑏 ∧ 𝑎𝑎 ∨ ¬𝑏𝑏 ∧ ¬𝑎𝑎 ∨ 𝑏𝑏 ∧ ¬𝑎𝑎 ∨ ¬𝑏𝑏
 𝐹𝐹 is unsatisfiable

2021 VLSI Layout Design (Overview 2) 16

SAT is NP-complete

 Theorem : SAT is NP-complete

 SAT is in NP

 Turing Machine behavior is modeled by polynomial
size Boolean formula

 SAT is a hardest decision problem

2021 VLSI Layout Design (Overview 2) 17

COLORING (COL)

 3-COLORING (3-COL)

‐INSTANCE
 Graph 𝐺𝐺

‐QUESTION
 Can 𝐺𝐺 be colored with 3 colors?

 Coloring of a graph

‐a coloring of the vertices of the graph such that
no two adjacent vertices have the same color

2021 VLSI Layout Design (Overview 2) 18

𝐺𝐺 𝑡𝑡
𝑢𝑢 𝑣𝑣

𝑤𝑤 𝑥𝑥

𝑦𝑦

Example (3-COL∝ SAT)

 Example: 3-COL ∝ SAT (cont.)

‐Certificate for 3-coloring
 coloring of a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 with three colors

‐ vertices are colored with three colors

‐ a vertex is colored by one color

‐ any two adjacent vertices are colored by different colors

‐𝑉𝑉 𝐺𝐺 = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 , 𝐸𝐸 𝐺𝐺 = 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚
‐three Boolean variables 𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖3 for each vertex 𝑣𝑣𝑖𝑖

 𝑥𝑥𝑖𝑖𝑖𝑖 = �1 if 𝑣𝑣𝑖𝑖 is color 𝑗𝑗
0 otheriwise

2021 VLSI Layout Design (Overview 2) 19

𝑡𝑡

𝑢𝑢 𝑣𝑣

𝑤𝑤 𝑥𝑥

𝑦𝑦
𝐺𝐺

Example (3-COL∝ SAT)

 Example: 3-COL ∝ SAT (cont.)

 vertex 𝑣𝑣𝑖𝑖 is colored by a color in colors 1, 2, 3
𝑃𝑃𝑖𝑖 = 𝑥𝑥𝑖𝑖1 ∨ 𝑥𝑥𝑖𝑖2 ∨ 𝑥𝑥𝑖𝑖3 ∧ 𝑥𝑥𝑖𝑖1 ∨ 𝑥𝑥𝑖𝑖2 ∧ 𝑥𝑥𝑖𝑖1 ∨ 𝑥𝑥𝑖𝑖3 ∧ 𝑥𝑥𝑖𝑖2 ∨ 𝑥𝑥𝑖𝑖3

 every vertex is colored by one color

�
𝑖𝑖∈𝑉𝑉 𝐺𝐺

𝑃𝑃𝑖𝑖

 adjacent vertices 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖 are colored by different colors

𝑄𝑄 𝑖𝑖,𝑖𝑖 = 𝑥𝑥𝑖𝑖1 ∨ 𝑥𝑥𝑖𝑖1 ∧ 𝑥𝑥𝑖𝑖2 ∨ 𝑥𝑥𝑖𝑖2 ∧ 𝑥𝑥𝑖𝑖3 ∨ 𝑥𝑥𝑖𝑖3
 every two adjacent vertices are colored by different colors

�
𝑖𝑖,𝑖𝑖 ∈𝐸𝐸 𝐺𝐺

𝑄𝑄 𝑖𝑖,𝑖𝑖

2021 VLSI Layout Design (Overview 2) 20

𝑡𝑡

𝑢𝑢 𝑣𝑣

𝑤𝑤 𝑥𝑥

𝑦𝑦
𝐺𝐺

Example (3-COL∝ SAT)

 Example: 3-COL ∝ SAT (cont.)

‐𝐺𝐺 can be colored by three colors

‐𝑓𝑓 𝐺𝐺 = ⋀𝑖𝑖∈𝑉𝑉(𝐺𝐺)𝑃𝑃𝑖𝑖 ∧ ⋀ 𝑖𝑖,𝑖𝑖 ∈𝐸𝐸 𝐺𝐺 𝑄𝑄 𝑖𝑖,𝑖𝑖 is satisfiable

‐𝜙𝜙 ∶ 𝐺𝐺 ↦ 𝑓𝑓 𝐺𝐺
 polynomial time reduction from 3-COLORING to SAT

2021 VLSI Layout Design (Overview 2) 21

𝑡𝑡

𝑢𝑢 𝑣𝑣

𝑤𝑤 𝑥𝑥

𝑦𝑦
𝐺𝐺

NP-Completeness (3-SAT)

 3-SAT
‐INSTANCE : Boolean formula 𝐹𝐹 in CNF

with three literals per clause

‐QUESTION : Is 𝐹𝐹 satisfiable?

 Example
‐𝐹𝐹 = 𝑎𝑎 ∨ 𝑏𝑏 ∨ 𝑐𝑐 ∧ ¬𝑎𝑎 ∨ ¬𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑎𝑎 ∨ ¬𝑐𝑐 ∨ ¬𝑑𝑑

2021 VLSI Layout Design (Overview 2) 22

NP-Completeness (3-SAT)

 Theorem : 3-SAT is NP-complete

 Proof
‐By showing that SAT ∝ 3-SAT

‐Polynomial time reduction from 3-SAT to SAT

 Prepare 𝑦𝑦 literals not in SAT formula 𝐹𝐹

‐One literal clause of 𝐹𝐹
 𝑥𝑥 ⟹ 𝑥𝑥 ∨ 𝑦𝑦1 ∨ 𝑦𝑦2 ∧ 𝑥𝑥 ∨ 𝑦𝑦1 ∨ 𝑦𝑦2 ∧ 𝑥𝑥 ∨ 𝑦𝑦1 ∨ 𝑦𝑦2 ∧ 𝑥𝑥 ∨ 𝑦𝑦1 ∨ 𝑦𝑦2

‐Two literals clause of 𝐹𝐹
 𝑥𝑥1 ∨ 𝑥𝑥2 ⟹ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑦𝑦 ∧ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ �𝑦𝑦

‐𝑘𝑘 literals clause of 𝐹𝐹 (𝑘𝑘 ≥ 4)
 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ ⋯∨ 𝑥𝑥𝑘𝑘 ⟹ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑦𝑦1 ∧ 𝑦𝑦1 ∨ 𝑥𝑥3 ∨ 𝑦𝑦2 ∧

𝑦𝑦2 ∨ 𝑥𝑥4 ∨ 𝑦𝑦3 ∧ ⋯∧ 𝑦𝑦𝑘𝑘−3 ∨ 𝑥𝑥𝑘𝑘−1 ∨ 𝑥𝑥𝑘𝑘
‐The size of obtained 3-SAT formula is polynomial of 𝐹𝐹

2021 VLSI Layout Design (Overview 2) 23

NP-Completeness (3-COL)

 Theorem : 3-COLORING is NP-complete

 Proof
‐By showing that 3-SAT ∝ 3-COLORING

 Graph 𝐺𝐺 𝑓𝑓 corresponding to 𝑓𝑓 = 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∧ 𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4

2021 VLSI Layout Design (Overview 2) 24

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑡𝑡

𝑠𝑠

𝑢𝑢11 𝑢𝑢12 𝑢𝑢13 𝑢𝑢21 𝑢𝑢22 𝑢𝑢23

𝑣𝑣11
𝑣𝑣12

𝑣𝑣13 𝑣𝑣21
𝑣𝑣22

𝑣𝑣23

𝑥𝑥4 𝑥𝑥4

NP-Completeness (3-COL)

 Theorem : 3-COLORING is NP-complete

 Proof (cont.)
 Coloring of 𝐺𝐺 𝑓𝑓 corresponding to the assignment

‐ 𝑥𝑥1 = 1, 𝑥𝑥2 = 𝑥𝑥3 = 𝑥𝑥4 = 0

‐𝜙𝜙 ∶ 𝑓𝑓 ↦ 𝐺𝐺 𝑓𝑓
 polynomial time reduction from 3-SAT to 3-COLORING

2021 VLSI Layout Design (Overview 2) 25

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑡𝑡

𝑠𝑠

𝑢𝑢11 𝑢𝑢12 𝑢𝑢13 𝑢𝑢21 𝑢𝑢22 𝑢𝑢23

𝑣𝑣11
𝑣𝑣12

𝑣𝑣13 𝑣𝑣21
𝑣𝑣22

𝑣𝑣23

𝑥𝑥4 𝑥𝑥4

 Theorem 9.9 :

‐HG is NP-complete

‐TS is NP-complete

 T-TS is NP-complete

 MAX-TS is NP-complete

‐3-SAT is NP-complete

‐3-COL is NP-complete

‐…

Property of NP-completeness

2021 VLSI Layout Design (Overview 2) 26

NP-C

∝

Π
Π

Π

Π
Π

Π

Π

Π
Π

Π
Π

Π

Π

Π∝
Π

Π
P

in case P≠NP

 A problem is NP-hard if the decision problem
associated with the problem is NP-complete

 Optimization problem is
‐ neither in NP nor in NP-C

‐ not said to be NP-complete

‐ said to be NP-hard if a related decision problem is NP-complete

 If P≠NP, then
‐ No polynomial time algorithm for NP-hard problem

 If a problem is NP-hard, then
‐ Approximation algorithm or Heuristic algorithm are pursued

NP-hardness

2021 VLSI Layout Design (Overview 2) 27

Other types
of problem

Opt. Problem etc.

Decision Problem

NP-hard

PNP

NP-C

Problem
in case P≠NP

?

SAT,3-SAT
3-COLORING
(𝑛𝑛2 − 1)-PUZZLE

GRAPH ISOMORPHISM

EULERIAN GRAPH

 Dealing with NP-hard problems

‐Subproblem

‐Approximation algorithm

‐Randomized algorithm

‐Heuristic algorithm

 Open Problem

‐Clay Mathematics Institute

‐Millennium Problems

‐P vs. NP (P=NP?)
‐ http://www.claymath.org/millennium-problems/p-vs-np-problem

NP-hardness

2021 VLSI Layout Design (Overview 2) 28

First Step of Algorithm Design

 Check whether problem is easy or not?
 Assuming P ≠ NP

‐Difficult = NP-hard, NP-complete
 Design heuristic

‐Easy = P (or decision version is in P)
 Design exact polynomial time algorithm

 Reduce time and space complexity

 Most of practical problems are difficult
‐NP-hardness seems trivial

but proof of NP-hardness is not easy
‐So, proof is often skipped, recently

 In the following
‐P = problem solvable in polynomial time

2021 29VLSI Layout Design (Overview 2)

Exploration of Solution Space

 Exploration of Huge Design Space

 Increase of computation power enable us to
use computation power rich algorithms

‐Iterative improvement

‐Stochastic search

‐Analytical method

 Solution space design

‐Abandon useless area

‐Focus on promising area

‐Efficiency

2021 30VLSI Layout Design (Overview 2)

Automated vs. Manual

 Good tools have been developed so far
 For large chips
‐Huge number of nets and enough resources
‐Looser constraint
‐Too many nets to design manually
‐Lower quality is affordable
‐Tools are essential in recent design

 For small chips, IoT devices, and etc.
‐Medium number of nets and limited resources
‐Tighter constraint
‐Time consuming, but designer can handle
‐Higher quality is essential
‐Automated Tools are still not popular in high-end

designs

2021 VLSI Layout Design (Overview 2) 31

	VLSI Layout Design�Overview (2) Theoretical Aspect
	VLSI Design / Manufacturing
	VLSI Design (Synthesis)
	How many seconds can you spend?
	P and NP
	P and NP
	Nondeterministic Polynomial Time Algorithm
	Evidence (Proof) for YES
	Polynomial Time Reduction (∝)
	Example (HG ∝ TS)
	Property of ∝
	NP-complete Problem
	Typical Proof of NP-completeness
	Incorrect Proof of NP-completeness
	Boolean Logic
	SATISFIABILITY (SAT)
	SAT is NP-complete
	COLORING (COL)
	Example (3-COL∝ SAT)
	Example (3-COL∝ SAT)
	Example (3-COL∝ SAT)
	NP-Completeness (3-SAT)
	NP-Completeness (3-SAT)
	NP-Completeness (3-COL)
	NP-Completeness (3-COL)
	Property of NP-completeness
	NP-hardness
	NP-hardness
	First Step of Algorithm Design
	Exploration of Solution Space
	Automated vs. Manual

