VLSI Layout Design
 Overview (2) Theoretical Aspect

Atsushi Takahashi
Department of Information and Communications Engineering
School of Engineering
Tokyo Institute of Technology atsushi@ict.e.titech. ac.jp

ICT. I419 VLSI Layout Design

VLSI Design / Manufacturing

Integration of Various Technologies

- Device Manufacture
- Make transistors small
- Mask Design, Exposure, Polishing, Dicing
- Circuit Design, Layout Design
- High Speed, Low Power, Reliability
- Packaging, Printed Circuit Board
- Wire Bonding
- System Design
- Software Design
- Market ing

Illumination lens

Wafer

VLSI Design (Synthesis)

- Design Automation
- Essential in design productivity improvement
- Problem Definition
- Inputs, outputs, and objectives
- Design flow and Hierarchical synthesis
\checkmark many sub-problems
\checkmark Optimum solution for sub-problem may not be good for whole problem
- Need to update Design methodology and Design flow
- Problem : Find an optimum solution
- Is there an exact algorithm for the problem?
\checkmark Yes (in most cases for combinatorial problem)
- Enumerating all the cases and pick a best one
- Impractical for large instances
- Is there a practical exact algorithm for the problem?
\checkmark NO (except limited cases)
- Need sophisticated intelligent approach
- Heuristic in most cases

How many seconds can you spend?

- 1 minute =
- 1 hour $=3,600 \mathrm{~s}=3.6 \times 10^{3} \mathrm{~s}$
- 1 day $\quad=\quad 86,400 \mathrm{~s}=8.64 \times 10^{4} \mathrm{~s}$
- 1 month(30days) $=2,592,000 \mathrm{~s}=2.592 \times 10^{6} \mathrm{~s}$
- 1 year ($365 d a y s)=31,536,000 \mathrm{~s}=3.1536 \times 10^{7} \mathrm{~s}$
- 10 years $=315,360,000 \mathrm{~s}=3.1536 \times 10^{8} \mathrm{~s}$
- 10 billion years $=3.1536 \times 10^{17} \mathrm{~s}$
- Age of the universe \fallingdotseq
13.8 billion years $\fallingdotseq 4.35 \times 10^{17} \mathrm{~s}$
- $2^{60} \approx 1.15 \times 10^{18}$
- 20 ! $\approx 2.43 \times 10^{18}$
- Background of Algorithm Design
- P and NP
- NP-comp lete
- NP-hard
- Polynomial Time Reduction
- Nondeterministic Polynomial Time Algorithm
- (Deterministic) Polynomial Time Algorithm

P and NP

- Decision Problem (Yes/No Problem)
- NP : Set of decision problems that have
- Nondeterministic Polynomial time algorithm
- P : Set of decision problems that have
- (Deterministic) Polynomial time algorithm
- NP-C: hardest problems in NP
- If a problem in NP-C can be solved in polynomial time, then any problem in NP can be solved in polynomial time
- A decision problem is said to be NP-complete if it is in NP-C
- SAT, 3-SAT, COL, HG, IS, TS, ...
- Theorem : P $\subseteq N P$
> Conjecture: $P \neq N P$

Nondeterministic Polynomial Time Algorithm

- Typical Structure
- Step 1 (nondeterministic)
- Generate an evidence in polynomial time (Pick up one arbitrary among exponential candidates)
- Step 2 (deterministic)
- Check the evidence in polynomial time
- If the evidence is correct, then output YES
- If the evidence is incorrect, then output NO
> Behavior of Correct

Nondeterministic Algorithm

Correct Answer	Algorithm Output	
YES	\longleftrightarrow	YES
No	\vdots	No

Problem: Is Graph a Hamiltonian?
Evidence : sequence of vertices

Evidence (Proof) for YES

- Problem: Is Graph Hamiltonian?
\checkmark NP
- An evidence that shows the graph is Hamiltonian which can be checked in polynomial time exists
- Problem: Is NOT Graph Hamiltonian?
\checkmark ?? NP?
- An evidence that the graph is not Hamiltonian is not trivial
- What is an evidence that shows the graph is not Hamiltonian?

Problem: Is NOT Graph a Hamiltonian?
Evidence : ???

Problem: Is Graph a Hamiltonian?
Evidence : sequence of vertices

Polynomial Time Reduction (\propto)

- Provides difficulty relation between decision problems
- Which is not difficult?
- Polynomial Time Recution of Problem ($\Pi_{1} \propto \Pi_{2}$)
- Instance of Π_{1} can be converted to instance of Π_{2} in polynomial time while maintaining Yes/No property
- Problem Π_{1} can be solved in polynomial time by utilizing (hypothetical) polynomial time algorithm for problem Π_{2}
\checkmark If Π_{2} is solved in polynomial time, then Π_{1} can be solved in polynomial time
- Π_{2} is not easier than Π_{1} (same or more difficult)

Example (HG $\propto T S)$

- Hamilton Graph Decision Problem (HG)
- INSTANCE: Graph G
- QUESTION: Is G Hamiltonian?
- Traveling Salesman Decision Problem (TS)
- INSTANCE : $K_{n}, w: E\left(K_{n}\right) \rightarrow \mathcal{R}^{+}, r$
- QUESTION: Does Hamilton cycle C exist such that

$$
w(C) \leq r, \quad C\left(\subseteq K_{n}\right) ?
$$

$n=|V(G)|$

G is Hamiltonian iff the minimum Hamiltonian cycle weight is n

Property of \propto

- Theorem (subproblem):
- Decision Problem $\Pi=(I, Q(x))$
- Subproblem $\Pi^{\prime}=\left(I^{\prime}, Q(x)\right), \boldsymbol{I}^{\prime} \subseteq \boldsymbol{I}$ $\checkmark \Pi^{\prime} \propto \Pi$

- Theorem (transitivity): \propto satisfies transitivity $\checkmark \Pi_{1} \propto \Pi_{2}, \Pi_{2} \propto \Pi_{3} \Rightarrow \Pi_{1} \propto \Pi_{3}$
$-\psi \circ \phi: \boldsymbol{I}_{1} \rightarrow \boldsymbol{I}_{3}$

NP-complete Problem

- NP-complete problem $\Pi_{0}:{ }^{\forall} \Pi \in N P, \quad \Pi \propto \Pi_{0}$
- Not easier than any problem in NP

- No polynomial time algorithm if $P \neq N P$
- We will give up to design efficient algorithm
- Approximation algorithm
- Heuristic algorithm

Typical Proof of NP-completeness

- Theorem : П is NP-complete if 1. $\Pi \in \mathbb{N P}$

2. $\Pi^{*} \propto \Pi$ for some NP-complete problem Π^{*}

- Proof
$>\forall \Pi^{\prime} \in \mathbb{N}, \Pi^{\prime} \propto \Pi^{*}$ and $\Pi^{*} \propto \Pi \Rightarrow \forall \Pi^{\prime} \in \mathbb{N}, \Pi^{\prime} \propto \Pi$

Incorrect Proof of NP-completeness

- Incorrect proof of NP-completeness of Π 1. $\Pi \in \mathbb{N P}$

2. Pick up NP-complete problem Π^{*}
\checkmark Show $\Pi \propto \Pi^{*}$

- It is trivial by definition
- It does not mean that Π is NP-complete

$\boldsymbol{\Pi}$	\propto	Π^{*}		
Easy	Easy			
Difficult	\Longleftrightarrow Difficult			

Boolean Logic

- Boolean variable
- $a, b \in \mathbb{B}=\{0,1\}=\{$ False, True $\}$
- Unary operator

ᄀ : NOT

- Binary operator
^: AND, v: OR
- Truth Table

a	$\neg a$	a	b	$a \wedge b$	a	b	$a \vee b$
0	1	0	0	0		0	0
0	0						
1	0		1	0		0	1
1	1						
		0	0		1	0	1
	1	1	1		1	1	1

a	b	c	$a \vee b$	$(a \vee b) \wedge c$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

SATISFIABILITY (SAT)

- Satisfiability (SAT)
- INSTANCE : Boolean formula F in CNF
> CNF
- Conjunctive Normal Form, Product of sums, NOT-OR-AND
- QUESTION : Is F satisfiable?
- Example
$-F=(a \vee b) \wedge(\neg a \vee \neg b \vee c) \wedge(\neg a \vee \neg c)$
- F is satisfiable
- $a=1, b=0, c=0 \Rightarrow F=1$
$-F=(a \vee b) \wedge(a \vee \neg b) \wedge(\neg a \vee b) \wedge(\neg a \vee \neg b)$
- F is unsatisfiable

SAT is NP-complete

- Theorem : SAT is NP-complete
>SAT is in NP
>Turing Machine behavior is modeled by polynomial size Boolean formula
\checkmark SAT is a hardest decision problem

COLORING (COL)

- 3-COLORING (3-COL)
- INSTANCE
- Graph G
- QUESTION
- Can G be colored with 3 colors?
- Coloring of a graph

- a coloring of the vertices of the graph such that no two adjacent vertices have the same color

Example (3-COL \propto SAT)

- Example: 3-COL \propto SAT (cont.)
- Certificate for 3-coloring
- coloring of a graph $G=(V, E)$ with three colors
- vertices are colored with three colors
- a vertex is colored by one color
- any two adjacent vertices are colored by different colors
$-V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, \quad E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
- three Boolean variables $x_{i 1}, x_{i 2}, x_{i 3}$ for each vertex v_{i}
- $x_{i j}=\left\{\begin{array}{l}1 \text { if } v_{i} \text { is color } j \\ 0 \text { otheriwise }\end{array}\right.$

Example (3-COL \propto SAT)

- Example: 3-COL \propto SAT (cont.)
- vertex v_{i} is colored by a color in colors 1, 2, 3

$$
P_{i}=\left(x_{i 1} \vee x_{i 2} \vee x_{i 3}\right) \wedge\left(\overline{x_{i 1}} \vee \overline{x_{i 2}}\right) \wedge\left(\overline{x_{i 1}} \vee \overline{x_{i 3}}\right) \wedge\left(\overline{x_{i 2}} \vee \overline{x_{i 3}}\right)
$$

- every vertex is colored by one color

- adjacent vertices v_{i} and v_{j} are colored by different colors

$$
Q_{(i, j)}=\left(\overline{x_{i 1}} \vee \overline{x_{j 1}}\right) \wedge\left(\overline{\overline{x_{i 2}}} \vee \overline{x_{j 2}}\right) \wedge\left(\overline{x_{i 3}} \vee \overline{x_{j 3}}\right)
$$

- every two adjacent vertices are colored by different colors

Example (3-COL \propto SAT)

- Example: 3-COL \propto SAT (cont.)
- G can be colored by three colors
- $f(G)=\left(\wedge_{i \in V(G)} P_{i}\right) \wedge\left(\wedge_{(i, j) \in E(G)} Q_{(i, j)}\right)$ is satisfiable
- $\phi: G \mapsto f(G)$
- polynomial time reduction from 3-COLORING to SAT

NP-Completeness (3-SAT)

- 3-SAT
- INSTANCE: Boolean formula F in CNF with three literals per clause
- QUESTION: Is Fsatisfiable?
- Example

$$
-F=(a \vee b \vee c) \wedge(\neg a \vee \neg b \vee c) \wedge(a \vee \neg c \vee \neg d)
$$

NP-Completeness (3-SAT)

- Theorem : 3-SAT is NP-complete
- Proof
- By showing that SAT $\propto 3$-SAT
- Polynomial time reduction from 3-SAT to SAT
- Prepare y literals not in SAT formula F
- One literal clause of F
- $(x) \Rightarrow\left(x \vee y_{1} \vee y_{2}\right) \wedge\left(x \vee y_{1} \vee \overline{y_{2}}\right) \wedge\left(x \vee \overline{y_{1}} \vee y_{2}\right) \wedge\left(x \vee \overline{y_{1}} \vee \overline{y_{2}}\right)$
- Two literals clause of F
- $\left(x_{1} \vee x_{2}\right) \Rightarrow\left(x_{1} \vee x_{2} \vee y\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{y}\right)$
- k literals clause of $F(k \geq 4)$

■ $\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right) \Rightarrow\left(x_{1} \vee x_{2} \vee y_{1}\right) \wedge\left(\overline{y_{1}} \vee x_{3} \vee y_{2}\right) \wedge$

$$
\left(\overline{y_{2}} \vee x_{4} \vee y_{3}\right) \wedge \cdots \wedge\left(\overline{y_{k-3}} \vee x_{k-1} \vee x_{k}\right)
$$

- The size of obtained 3-SAT formula is polynomial of $|F|$

NP-Completeness (3-COL)

- Theorem : 3-COLORING is NP-complete
- Proof
- By showing that 3-SAT $\propto 3$-COLORING
- Graph $G(f)$ corresponding to $f=\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}\right)$

NP-Completeness (3-COL)

■ Theorem : 3-COLORING is NP-complete

- Proof (cont.)
- Coloring of $G(f)$ corresponding to the assignment
$-x_{1}=1, x_{2}=x_{3}=x_{4}=0$
- $\phi: f \mapsto G(f)$
- polynomial time reduction from 3-SAT to 3-COLORING

Property of NP-completeness

- Theorem 9.9 :
- HG is NP-complete
- TS is NP-complete
- T-TS is NP-complete
- MAX-TS is NP-complete
-3-SAT is NP-complete
- 3-COL is NP-complete

NP-hardness

- A problem is NP-hard if the decision problem associated with the problem is NP-complete
- Optimization problem is
- neither in NP nor in NP-C
- not said to be NP-complete
- said to be NP-hard if a related decision problem is NP-complete
- If $P \neq N P$, then
- No polynomial time algorithm for NP-hard problem
- If a problem is NP-hard, then
- Approximation algorithm or Heuristic algorithm are pursued

NP-hardness

- Dealing with NP-hard problems
- Subproblem
- Approximation algorithm
- Randomized algorithm
- Heuristic algorithm
- Open Problem
- Clay Mathematics Institute
- Millennium Problems
- P vs. NP ($\mathrm{P}=\mathrm{NP}$?)
- http://www. claymath. org/millennium-problems/p-vs-np-problem

First Step of Algorithm Design

- Check whether problem is easy or not?
\checkmark Assuming $\mathrm{P} \neq \mathrm{NP}$
- Difficult = NP-hard, NP-complete
- Design heuristic
- Easy = P (or decision version is in P)
- Design exact polynomial time algorithm
- Reduce time and space complexity
- Most of practical problems are difficult
- NP-hardness seems trivial
but proof of NP-hardness is not easy
- So, proof is often skipped, recently
- In the following
- $\mathbf{P}=$ problem solvable in polynomial time

Exploration of Solution Space

- Exploration of Huge Design Space
- Increase of computation power enable us to use computation power rich algorithms
- Iterative improvement
- Stochastic search
- Analytical method
- Solution space design
- Abandon useless area
- Focus on promising area
- Efficiency

Automated vs. Manual

- Good tools have been developed so far
- For large chips
- Huge number of nets and enough resources
- Looser constraint
- Too many nets to design manually
- Lower quality is affordable
- Tools are essential in recent design
- For small chips, IoT devices, and etc.
- Medium number of nets and limited resources
- Tighter constraint
- Time consuming, but designer can handle
- Higher quality is essential
- Automated Tools are still not popular in high-end designs

