
VLSI Layout Design
Overview (2) Theoretical Aspect

Atsushi Takahashi

Department of Information and Communications Engineering

School of Engineering

Tokyo Institute of Technology

atsushi@ict.e.titech.ac.jp

ICT.I419 VLSI Layout Design

2021 VLSI Layout Design (Overview 2)

VLSI Design / Manufacturing

Integration of Various Technologies

 Device Manufacture
‐Make transistors small

‐Mask Design, Exposure, Polishing,
Dicing

 Circuit Design, Layout Design
‐High Speed, Low Power, Reliability

 Packaging, Printed Circuit Board
‐Wire Bonding

 System Design

 Software Design

 Marketing

light source

Illumination lens

Mask

Projection lens

Fluid

Photoresist

Wafer

2021 VLSI Layout Design (Overview 2) 2

VLSI Design (Synthesis)

 Design Automation
‐ Essential in design productivity improvement

 Problem Definition
‐ Inputs, outputs, and objectives

‐ Design flow and Hierarchical synthesis
 many sub-problems

 Optimum solution for sub-problem may not be good for whole problem

‐ Need to update Design methodology and Design flow

 Problem : Find an optimum solution
‐ Is there an exact algorithm for the problem?

 Yes (in most cases for combinatorial problem)

 Enumerating all the cases and pick a best one

‐ Impractical for large instances

‐ Is there a practical exact algorithm for the problem?
 NO (except limited cases)

 Need sophisticated intelligent approach

‐ Heuristic in most cases

2021 3VLSI Layout Design (Overview 2)

How many seconds can you spend?

 1 minute = 60 s = 6.0 × 101 s

 1 hour = 3,600 s = 3.6 × 103 s

 1 day = 86,400 s = 8.64 × 104 s

 1 month(30days)= 2,592,000 s = 2.592 × 106 s

 1 year（365days）= 31,536,000 s = 3.1536 × 107 s

 10 years = 315,360,000 s = 3.1536 × 108 s

 10 billion years = 3.1536 × 1017 s

 Age of the universe ≒
13.8 billion years ≒ 4.35 × 1017 s

 260 ≈ 1.15 × 1018

 20! ≈ 2.43 × 1018

2021 4VLSI Layout Design (Overview 2)

P and NP

 Background of Algorithm Design

‐P and NP

‐NP-complete

‐NP-hard

‐Polynomial Time Reduction

‐Nondeterministic Polynomial Time Algorithm

‐(Deterministic) Polynomial Time Algorithm

2021

[Garey and Johnson, "Computers and Intractability, A Guide to the Theory of NP-Completeness", Freeman and Co., 1979]

5VLSI Layout Design (Overview 2)

P and NP

 Decision Problem (Yes/No Problem)

‐NP : Set of decision problems that have

 Nondeterministic Polynomial time algorithm

‐P : Set of decision problems that have

 (Deterministic) Polynomial time algorithm

‐NP-C: hardest problems in NP

 If a problem in NP-C can be solved in polynomial time,

then any problem in NP can be solved in polynomial time

 A decision problem is said to be NP-complete if it is in NP-C

 SAT, 3-SAT, COL, HG, IS, TS, …

 Theorem : P ⊆ NP

 Conjecture: P ≠ NP P

NP

or
NP-C

P≠NP P=NP (=NP-C)

2021 6VLSI Layout Design (Overview 2)

 Behavior of Correct
Nondeterministic Algorithm

Nondeterministic Polynomial Time Algorithm

 Typical Structure
‐Step 1 (nondeterministic)
 Generate an evidence in polynomial time

(Pick up one arbitrary among exponential candidates)

‐Step 2 (deterministic)
 Check the evidence in polynomial time
‐ If the evidence is correct, then output YES

‐ If the evidence is incorrect, then output NO

2021

Problem: Is Graph a Hamiltonian?

Evidence : sequence of vertices
Correct
Answer

Algorithm
Output

YES YES

No No

7VLSI Layout Design (Overview 2)

Problem: Is NOT Graph a Hamiltonian?

Evidence (Proof) for YES

 Problem: Is Graph Hamiltonian?
 NP

‐An evidence that shows the graph is Hamiltonian which can be
checked in polynomial time exists

 Problem: Is NOT Graph Hamiltonian?
 ?? NP ?

‐An evidence that the graph is not Hamiltonian is not trivial

‐What is an evidence that shows the graph is not Hamiltonian?

2021

Problem: Is Graph a Hamiltonian?

Evidence : sequence of verticesEvidence : ???

8VLSI Layout Design (Overview 2)

𝚷𝚷𝟏𝟏 ∝ 𝚷𝚷𝟐𝟐

Easy Easy

Difficult Difficult

Polynomial Time Reduction (∝)
 Provides difficulty relation between decision problems
‐ Which is not difficult?

 Polynomial Time Recution of Problem (Π1 ∝ Π2)
‐ Instance of Π1 can be converted to instance of Π2

in polynomial time while maintaining Yes/No property
‐ Problem Π1 can be solved in polynomial time by utilizing

(hypothetical) polynomial time algorithm for problem Π2
 If Π2 is solved in polynomial time,

then Π1 can be solved in polynomial time

‐Π2 is not easier than Π1 (same or more difficult)

2021 VLSI Layout Design (Overview 2) 9

Π1 Instances 𝐼𝐼1

YES
YES

NO NO

Π2 Instances 𝐼𝐼2

𝜙𝜙 : 𝐼𝐼1 ⟶ 𝐼𝐼2

𝐾𝐾𝑛𝑛

𝑟𝑟 ≔ 𝑛𝑛

1 (𝑒𝑒 ∈ 𝐸𝐸 𝐺𝐺)

𝑤𝑤

2 (𝑒𝑒 ∉ 𝐸𝐸 𝐺𝐺)

TS

Example (HG ∝ TS)

 Hamilton Graph Decision Problem (HG)
‐INSTANCE : Graph 𝐺𝐺
‐QUESTION : Is 𝐺𝐺 Hamiltonian?

 Traveling Salesman Decision Problem (TS)
‐INSTANCE : 𝐾𝐾𝑛𝑛, 𝑤𝑤 ∶ 𝐸𝐸 𝐾𝐾𝑛𝑛 → ℛ+, 𝑟𝑟
‐QUESTION : Does Hamilton cycle 𝐶𝐶 exist such that

𝑤𝑤 𝐶𝐶 ≤ 𝑟𝑟, 𝐶𝐶 ⊆ 𝐾𝐾𝑛𝑛 ?

2021 VLSI Layout Design (Overview 2) 10

𝐺𝐺

𝑛𝑛 = 𝑉𝑉 𝐺𝐺

HG

Hamilton cycle
weight

𝑛𝑛 𝐺𝐺 edges only
≥ 𝑛𝑛 + 1 contains other

𝐺𝐺 is Hamiltonian iff the minimum Hamiltonian cycle weight is 𝑛𝑛

Property of ∝
 Theorem (subproblem):
‐Decision Problem Π = 𝑰𝑰,𝑄𝑄 𝑥𝑥
‐Subproblem Π′ = 𝑰𝑰′,𝑄𝑄 𝑥𝑥 , 𝑰𝑰′ ⊆ 𝑰𝑰
 Π′ ∝ Π

 Theorem (transitivity): ∝ satisfies transitivity
 Π1 ∝ Π2,Π2 ∝ Π3 ⇒ Π1 ∝ Π3
‐𝜓𝜓 ∘ 𝜙𝜙 ∶ 𝑰𝑰1 → 𝑰𝑰3

2021 VLSI Layout Design (Overview 2) 11

𝜙𝜙 ∶ 𝑰𝑰𝟏𝟏 → 𝑰𝑰𝟐𝟐 𝝍𝝍 ∶ 𝑰𝑰𝟐𝟐 → 𝑰𝑰𝟑𝟑Π1

YES

NO NO

Π2

YES
YES

NO

Π3

Π′ = 𝑰𝑰′,𝑄𝑄 𝑥𝑥 Π = 𝑰𝑰,𝑄𝑄 𝑥𝑥

NO

YES

NO

YES

𝜙𝜙 ∶ 𝑰𝑰′ ⟶ 𝑰𝑰 (identity mapping)

NP-complete Problem

 NP-complete problem Π0: ∀Π ∈NP, Π ∝ Π0
‐Not easier than any problem in NP

‐No polynomial time algorithm if P ≠ NP

 We will give up to design efficient algorithm

‐ Approximation algorithm

‐ Heuristic algorithm

2021

Π0

Π

Π

Π
Π

ΠΠ

Π
Π

Π
Π

ΠΠ 𝚷𝚷 ∝ 𝚷𝚷𝟎𝟎

Easy Easy

Difficult Difficult

12VLSI Layout Design (Overview 2)

Typical Proof of NP-completeness

 Theorem : Π is NP-complete if

1. Π ∈ NP

2. Π∗ ∝ Π for some NP-complete problem Π∗

 Proof
∀Π′ ∈NP,Π′ ∝ Π∗ and Π∗ ∝ Π ⇒ ∀Π′ ∈NP,Π′ ∝ Π

2021

Π∗ ∈ NP-C

YES
YES

NO NO

Π

𝜙𝜙

𝚷𝚷∗ ∝ 𝚷𝚷
Easy Easy

Difficult Difficult

13VLSI Layout Design (Overview 2)

Incorrect Proof of NP-completeness

 Incorrect proof of NP-completeness of Π
1. Π ∈ NP

2. Pick up NP-complete problem Π∗

 Show Π ∝ Π∗

 It is trivial by definition

 It does not mean that Π is NP-complete

2021 VLSI Layout Design (Overview 2) 14

Π

YES
YES

NO NO

Π∗ ∈ NP-C

𝜙𝜙

𝚷𝚷 ∝ 𝚷𝚷∗

Easy Easy

Difficult Difficult

Boolean Logic

 Boolean variable
‐ 𝑎𝑎, 𝑏𝑏 ∈ 𝔹𝔹 = 0, 1 = { False, True }

 Unary operator
¬ : NOT

 Binary operator
∧ : AND, ∨ : OR

 Truth Table

2021 VLSI Layout Design (Overview 2) 15

𝑎𝑎 𝑏𝑏 𝑎𝑎 ∧ 𝑏𝑏

0 0 0

0 1 0

1 0 0

1 1 1

𝑎𝑎 𝑏𝑏 𝑎𝑎 ∨ 𝑏𝑏

0 0 0

0 1 1

1 0 1

1 1 1

𝑎𝑎 ¬𝑎𝑎

0 1

1 0

𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑎𝑎 ∨ 𝑏𝑏 𝑎𝑎 ∨ 𝑏𝑏 ∧ 𝑐𝑐

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 1 1 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 0

1 1 1 1 1

SATISFIABILITY (SAT)

 Satisfiability (SAT)
‐INSTANCE : Boolean formula 𝐹𝐹 in CNF

 CNF

‐ Conjunctive Normal Form, Product of sums, NOT-OR-AND

‐QUESTION : Is 𝐹𝐹 satisfiable?

 Example
‐𝐹𝐹 = 𝑎𝑎 ∨ 𝑏𝑏 ∧ ¬𝑎𝑎 ∨ ¬𝑏𝑏 ∨ 𝑐𝑐 ∧ ¬𝑎𝑎 ∨ ¬𝑐𝑐
 𝐹𝐹 is satisfiable

 𝑎𝑎 = 1, 𝑏𝑏 = 0, 𝑐𝑐 = 0 ⟹ 𝐹𝐹 = 1

‐𝐹𝐹 = 𝑎𝑎 ∨ 𝑏𝑏 ∧ 𝑎𝑎 ∨ ¬𝑏𝑏 ∧ ¬𝑎𝑎 ∨ 𝑏𝑏 ∧ ¬𝑎𝑎 ∨ ¬𝑏𝑏
 𝐹𝐹 is unsatisfiable

2021 VLSI Layout Design (Overview 2) 16

SAT is NP-complete

 Theorem : SAT is NP-complete

 SAT is in NP

 Turing Machine behavior is modeled by polynomial
size Boolean formula

 SAT is a hardest decision problem

2021 VLSI Layout Design (Overview 2) 17

COLORING (COL)

 3-COLORING (3-COL)

‐INSTANCE
 Graph 𝐺𝐺

‐QUESTION
 Can 𝐺𝐺 be colored with 3 colors?

 Coloring of a graph

‐a coloring of the vertices of the graph such that
no two adjacent vertices have the same color

2021 VLSI Layout Design (Overview 2) 18

𝐺𝐺 𝑡𝑡
𝑢𝑢 𝑣𝑣

𝑤𝑤 𝑥𝑥

𝑦𝑦

Example (3-COL∝ SAT)

 Example: 3-COL ∝ SAT (cont.)

‐Certificate for 3-coloring
 coloring of a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 with three colors

‐ vertices are colored with three colors

‐ a vertex is colored by one color

‐ any two adjacent vertices are colored by different colors

‐𝑉𝑉 𝐺𝐺 = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 , 𝐸𝐸 𝐺𝐺 = 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚
‐three Boolean variables 𝑥𝑥𝑖𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖 for each vertex 𝑣𝑣𝑖𝑖

 𝑥𝑥𝑖𝑖𝑖𝑖 = �1 if 𝑣𝑣𝑖𝑖 is color 𝑗𝑗
0 otheriwise

2021 VLSI Layout Design (Overview 2) 19

𝑡𝑡

𝑢𝑢 𝑣𝑣

𝑤𝑤 𝑥𝑥

𝑦𝑦
𝐺𝐺

Example (3-COL∝ SAT)

 Example: 3-COL ∝ SAT (cont.)

 vertex 𝑣𝑣𝑖𝑖 is colored by a color in colors 1, 2, 3
𝑃𝑃𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖 ∨ 𝑥𝑥𝑖𝑖𝑖 ∨ 𝑥𝑥𝑖𝑖𝑖 ∧ 𝑥𝑥𝑖𝑖𝑖 ∨ 𝑥𝑥𝑖𝑖𝑖 ∧ 𝑥𝑥𝑖𝑖𝑖 ∨ 𝑥𝑥𝑖𝑖𝑖 ∧ 𝑥𝑥𝑖𝑖𝑖 ∨ 𝑥𝑥𝑖𝑖𝑖

 every vertex is colored by one color

�
𝑖𝑖∈𝑉𝑉 𝐺𝐺

𝑃𝑃𝑖𝑖

 adjacent vertices 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 are colored by different colors

𝑄𝑄 𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖𝑖 ∨ 𝑥𝑥𝑗𝑗𝑗 ∧ 𝑥𝑥𝑖𝑖𝑖 ∨ 𝑥𝑥𝑗𝑗𝑗 ∧ 𝑥𝑥𝑖𝑖𝑖 ∨ 𝑥𝑥𝑗𝑗𝑗
 every two adjacent vertices are colored by different colors

�
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸 𝐺𝐺

𝑄𝑄 𝑖𝑖,𝑗𝑗

2021 VLSI Layout Design (Overview 2) 20

𝑡𝑡

𝑢𝑢 𝑣𝑣

𝑤𝑤 𝑥𝑥

𝑦𝑦
𝐺𝐺

Example (3-COL∝ SAT)

 Example: 3-COL ∝ SAT (cont.)

‐𝐺𝐺 can be colored by three colors

‐𝑓𝑓 𝐺𝐺 = ⋀𝑖𝑖∈𝑉𝑉(𝐺𝐺)𝑃𝑃𝑖𝑖 ∧ ⋀ 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸 𝐺𝐺 𝑄𝑄 𝑖𝑖,𝑗𝑗 is satisfiable

‐𝜙𝜙 ∶ 𝐺𝐺 ↦ 𝑓𝑓 𝐺𝐺
 polynomial time reduction from 3-COLORING to SAT

2021 VLSI Layout Design (Overview 2) 21

𝑡𝑡

𝑢𝑢 𝑣𝑣

𝑤𝑤 𝑥𝑥

𝑦𝑦
𝐺𝐺

NP-Completeness (3-SAT)

 3-SAT
‐INSTANCE : Boolean formula 𝐹𝐹 in CNF

with three literals per clause

‐QUESTION : Is 𝐹𝐹 satisfiable?

 Example
‐𝐹𝐹 = 𝑎𝑎 ∨ 𝑏𝑏 ∨ 𝑐𝑐 ∧ ¬𝑎𝑎 ∨ ¬𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑎𝑎 ∨ ¬𝑐𝑐 ∨ ¬𝑑𝑑

2021 VLSI Layout Design (Overview 2) 22

NP-Completeness (3-SAT)

 Theorem : 3-SAT is NP-complete

 Proof
‐By showing that SAT ∝ 3-SAT

‐Polynomial time reduction from 3-SAT to SAT

 Prepare 𝑦𝑦 literals not in SAT formula 𝐹𝐹

‐One literal clause of 𝐹𝐹
 𝑥𝑥 ⟹ 𝑥𝑥 ∨ 𝑦𝑦1 ∨ 𝑦𝑦2 ∧ 𝑥𝑥 ∨ 𝑦𝑦1 ∨ 𝑦𝑦2 ∧ 𝑥𝑥 ∨ 𝑦𝑦1 ∨ 𝑦𝑦2 ∧ 𝑥𝑥 ∨ 𝑦𝑦1 ∨ 𝑦𝑦2

‐Two literals clause of 𝐹𝐹
 𝑥𝑥1 ∨ 𝑥𝑥2 ⟹ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑦𝑦 ∧ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ �𝑦𝑦

‐𝑘𝑘 literals clause of 𝐹𝐹 (𝑘𝑘 ≥ 4)
 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ ⋯∨ 𝑥𝑥𝑘𝑘 ⟹ 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑦𝑦1 ∧ 𝑦𝑦1 ∨ 𝑥𝑥3 ∨ 𝑦𝑦2 ∧

𝑦𝑦2 ∨ 𝑥𝑥4 ∨ 𝑦𝑦3 ∧ ⋯∧ 𝑦𝑦𝑘𝑘−3 ∨ 𝑥𝑥𝑘𝑘−1 ∨ 𝑥𝑥𝑘𝑘
‐The size of obtained 3-SAT formula is polynomial of 𝐹𝐹

2021 VLSI Layout Design (Overview 2) 23

NP-Completeness (3-COL)

 Theorem : 3-COLORING is NP-complete

 Proof
‐By showing that 3-SAT ∝ 3-COLORING

 Graph 𝐺𝐺 𝑓𝑓 corresponding to 𝑓𝑓 = 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∧ 𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4

2021 VLSI Layout Design (Overview 2) 24

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑡𝑡

𝑠𝑠

𝑢𝑢11 𝑢𝑢12 𝑢𝑢13 𝑢𝑢21 𝑢𝑢22 𝑢𝑢23

𝑣𝑣11
𝑣𝑣12

𝑣𝑣13 𝑣𝑣21
𝑣𝑣22

𝑣𝑣23

𝑥𝑥4 𝑥𝑥4

NP-Completeness (3-COL)

 Theorem : 3-COLORING is NP-complete

 Proof (cont.)
 Coloring of 𝐺𝐺 𝑓𝑓 corresponding to the assignment

‐ 𝑥𝑥1 = 1, 𝑥𝑥2 = 𝑥𝑥3 = 𝑥𝑥4 = 0

‐𝜙𝜙 ∶ 𝑓𝑓 ↦ 𝐺𝐺 𝑓𝑓
 polynomial time reduction from 3-SAT to 3-COLORING

2021 VLSI Layout Design (Overview 2) 25

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑡𝑡

𝑠𝑠

𝑢𝑢11 𝑢𝑢12 𝑢𝑢13 𝑢𝑢21 𝑢𝑢22 𝑢𝑢23

𝑣𝑣11
𝑣𝑣12

𝑣𝑣13 𝑣𝑣21
𝑣𝑣22

𝑣𝑣23

𝑥𝑥4 𝑥𝑥4

 Theorem 9.9 :

‐HG is NP-complete

‐TS is NP-complete

 T-TS is NP-complete

 MAX-TS is NP-complete

‐3-SAT is NP-complete

‐3-COL is NP-complete

‐…

Property of NP-completeness

2021 VLSI Layout Design (Overview 2) 26

NP-C

∝

Π
Π

Π

Π
Π

Π

Π

Π
Π

Π
Π

Π

Π

Π∝
Π

Π
P

in case P≠NP

 A problem is NP-hard if the decision problem
associated with the problem is NP-complete

 Optimization problem is
‐ neither in NP nor in NP-C

‐ not said to be NP-complete

‐ said to be NP-hard if a related decision problem is NP-complete

 If P≠NP, then
‐ No polynomial time algorithm for NP-hard problem

 If a problem is NP-hard, then
‐ Approximation algorithm or Heuristic algorithm are pursued

NP-hardness

2021 VLSI Layout Design (Overview 2) 27

Other types
of problem

Opt. Problem etc.

Decision Problem

NP-hard

PNP

NP-C

Problem
in case P≠NP

?

SAT,3-SAT
3-COLORING
(𝑛𝑛2 − 1)-PUZZLE

GRAPH ISOMORPHISM

EULERIAN GRAPH

 Dealing with NP-hard problems

‐Subproblem

‐Approximation algorithm

‐Randomized algorithm

‐Heuristic algorithm

 Open Problem

‐Clay Mathematics Institute

‐Millennium Problems

‐P vs. NP (P=NP?)
‐ http://www.claymath.org/millennium-problems/p-vs-np-problem

NP-hardness

2021 VLSI Layout Design (Overview 2) 28

First Step of Algorithm Design

 Check whether problem is easy or not?
 Assuming P ≠ NP

‐Difficult = NP-hard, NP-complete
 Design heuristic

‐Easy = P (or decision version is in P)
 Design exact polynomial time algorithm

 Reduce time and space complexity

 Most of practical problems are difficult
‐NP-hardness seems trivial

but proof of NP-hardness is not easy
‐So, proof is often skipped, recently

 In the following
‐P = problem solvable in polynomial time

2021 29VLSI Layout Design (Overview 2)

Exploration of Solution Space

 Exploration of Huge Design Space

 Increase of computation power enable us to
use computation power rich algorithms

‐Iterative improvement

‐Stochastic search

‐Analytical method

 Solution space design

‐Abandon useless area

‐Focus on promising area

‐Efficiency

2021 30VLSI Layout Design (Overview 2)

Automated vs. Manual

 Good tools have been developed so far
 For large chips
‐Huge number of nets and enough resources
‐Looser constraint
‐Too many nets to design manually
‐Lower quality is affordable
‐Tools are essential in recent design

 For small chips, IoT devices, and etc.
‐Medium number of nets and limited resources
‐Tighter constraint
‐Time consuming, but designer can handle
‐Higher quality is essential
‐Automated Tools are still not popular in high-end

designs

2021 VLSI Layout Design (Overview 2) 31

	VLSI Layout Design�Overview (2) Theoretical Aspect
	VLSI Design / Manufacturing
	VLSI Design (Synthesis)
	How many seconds can you spend?
	P and NP
	P and NP
	Nondeterministic Polynomial Time Algorithm
	Evidence (Proof) for YES
	Polynomial Time Reduction (∝)
	Example (HG ∝ TS)
	Property of ∝
	NP-complete Problem
	Typical Proof of NP-completeness
	Incorrect Proof of NP-completeness
	Boolean Logic
	SATISFIABILITY (SAT)
	SAT is NP-complete
	COLORING (COL)
	Example (3-COL∝ SAT)
	Example (3-COL∝ SAT)
	Example (3-COL∝ SAT)
	NP-Completeness (3-SAT)
	NP-Completeness (3-SAT)
	NP-Completeness (3-COL)
	NP-Completeness (3-COL)
	Property of NP-completeness
	NP-hardness
	NP-hardness
	First Step of Algorithm Design
	Exploration of Solution Space
	Automated vs. Manual

