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ILP Limitations 
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Pipelining, multiple issue, dynamic scheduling and 
speculation have limits. 

Since late 90’s focus turned to clock speedup, without 
increasing issue rates. 

In 2010 clock speedup ended too.   

Multithreading is an addition to ILP. 

Multiprocessing: Driven by huge silicon integration 
technology, data processing explosion, internet, cloud 
computing, ...  



Jan 2021 Multithreading and Multiprocessing 3 

1. 2.0 GHz two-issue static-pipe simple MIPS, achieving 
0.6 CPI. Its cache yields 1.0 % misses/Instruction. 

2. 5.0 GHz single-issue with deep static pipe MIPS, 
achieving 1.2 CPI . Its larger cache yields 0.5% 
misses/Instruction. 

3. 1.0 GHz four-issue speculative superscalar MIPS. Its 
smallest cache yields 1.5% misses/instruction, but its 
dynamic scheduling hides 50% of the miss penalty. 

Cache miss penalty is 100 nSec in all processors.  

Example. Compare three CPUs running on benchmark 
achieving ideal issue rate as shown. 
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Answer. Miss rate is first used to compute the 
contribution to CPI from cache misses. 

Determine the relative MIPS (106 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑐 ) 
performance of these three processors. 

Cache Miss CPI=Misses per instruction × Miss penaly 

Miss penalty= Memory access time Clock cycle  

Miss penalty1= 100 nSec 0.5 nSec = 200 cycles 

Miss penalty2= 100 nSec 0.2 nSec = 500 cycles 

Miss penalty3= 0.5 × 100 nSec 1.0 nSec = 50 cycles 
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Combine Miss penalty and miss rate for CPI penalty. 

Cache Miss CPI1=0.01 × 200 = 2.0 

Cache Miss CPI2=0.005 × 500 = 2.5 

Cache Miss CPI3=0.015 × 50 = 0.75 

CPI is known for the first two CPUs. For 3rd, there is 

Pipeline CPI3=1 Issue rate = 1 4.0 = 0.25 

CPI is the sum of the pipeline and cache miss CPIs 

CPI1=0.6 + 2.0=2.6 

CPI2=1.2 + 2.5=3.7 

CPI3=0.25 + 0.75=1.0 
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The three CPUs are compared in terms of their MIPS. 

Instr. execution rate=Clock rate CPI  

Instr. execution rate1=2000MHz 2.6 = 770 MIPS 

Instr. execution rate2=5000MHz 3.7 = 1351 MIPS 

Instr. execution rate3=1000MHz 1.0 = 1000 MIPS 
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Multithreading 

Significant parallelism occurring naturally at higher 
levels in apps cannot be exploited by ILP techniques. 

Multithreading (MT) tolerates or masks long and often 
unpredictable latency operations by switching to 
another context, which is able to do a useful work. 

Such higher-level parallelism is called Thread-Level 
Parallelism (TLP).  

A threads is a separate process with its own 
instructions, data, PC, and registers, must for execution. 
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TLP and ILP exploit two different kinds of parallel 
structure in a program. 

FUs of a CPU designed to exploit ILP are often idle 
(stalls, dependences). 

Question: Can ILP-designed processor exploit TLP? 

MT allows multiple threads sharing FUs of a single CPU. 

Memory is shared through the VM, already supporting 
multiprogramming. 

CPU must support quick thread switching, much faster 
than process switch taking 100s-1000s CPU cycles. 
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LW r1, 0(r2) 

LW r5, 12(r1) 

ADDI r5, r5, #12 

SW r5, 12(r1)  

F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

F D X M W D D D 

F D X M W D D D F F F 

F D D D D F F F 

t9 t10 t11 t12 t13 t14 

Each instruction may depend on the previous. 

T1: LW r1, 0(r2) 

T2: ADD r7, r1, r4 

T3: XORI r5, r4, #12 

T4: SW r5, 0(r7) 

T1: LW r5, 12(r1) 

t9 

F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

F D X M W 

F D X M W 

F D X M W 

F D X M W 

Interleave 4 threads on non-bypassed 5-stage pipe 

Resolve RAW 
hazards 

??? 
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Carry thread select down pipeline to ensure correct 
state bits read/written at each pipe stage. 

Appears to SW (OS) as multiple, albeit slower, CPUs. 

Design challenges: cache miss increases, slower RF. 
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Thread B Thread A Thread D Thread C 

MT Approaches 

Example: 4-Issue Machine 
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Two approaches: Fine-grained and Coarse-grained.  

Coarse-grained MT switches threads only on costly 
stalls (L2 misses), where pipeline refill is negligible 
compared to the stall time. 

CPU is hardly slowed down by thread switching. 

Cannot exploit short stalls (employment of FUs). 

Start-up overhead: thread switching must empty 
pipeline. New thread must fill it before instructions will 
complete. 
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Coarse-grained MT  



Jan 2021 Multithreading and Multiprocessing 14 

Fine-grained MT switches between threads on each 
instruction (every cycle), multiple threads interleave. 

Round-robin thread switching, skipping any stalled 
threads.  

Advantage: hiding throughput losses arising from short 
stalls, instructions of other threads are executed when 
other are stalled. 

Disadvantage: Individual threads execution slowdown, 
thread ready to execute without stalls is delayed by 
other threads. 
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Simultaneous Multithreading 
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Simultaneous multithreading (SMT) is a variation on 
MT to exploit TLP simultaneously with ILP. 

Motivated by multiple-issue CPUs which have more FU 
parallelism than a single thread can effectively use. 

Register renaming and dynamic scheduling enables 
issuing multiple instructions from independent threads 
ASAP regardless of the dependences among them. 

Dependences resolution can be handled by the 
dynamic scheduling capability (Tomasulo, ROB).  
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Approaches to use the issue slots. 
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Many CPUs, memory is distributed among CPUs rather 
than centralized. Otherwise long latency occurs.  

Cost-effective to scale memory bandwidth if most 
accesses are to local memory. Complex communication. 

Distributed Shared Memory (DSM) 
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Communication occurs through shared address space 
via load and store operations. 

Physically separate memories are addressed as one 
logical address space. 

Memory reference made by any processor to any 
address. 

Speedups is limited by parallelism in programs. High 
communications cost, 50 ÷ 1000 clock cycles. 

Example. What fraction of original computation must 
be parallel to achieve 80X speedup with 100 CPUs?  
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Program operates in two modes: 

• parallel - all processors (100) fully used or 

• serial - only one processor in use.  

total speedup =
1

parallel
speedup parallel

+(1− parallel)
 

0.8 ×  parallel + 80 × 1 − parallel = 1 

parallel = 0.9975! (less than 0.25% serial code!) 

For linear speedup the entire must have no serial 
portions. Not realistic. ∎ 



Jan 2021 Multithreading and Multiprocessing 22 

Centralized Shared-Memory (SMP) 

Single memory (address space) satisfies the demands 
of few CPUs.  

Called Symmetric (shared-memory) Multiprocessors 
(SMPs). 
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SMPs support caching of both: 

Private data used by a single CPU.  

shared data used by all CPU, providing communication 
through reads and writes of the shared data. 

For private item caching the program behaves as 
uniprocessor since no other CPU uses the data.  

For shared data caching the shared value may be 
replicated in multiple caches.  

New problem: cache coherence. Different CPUs may 
see different values for same address. 
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A memory system is coherent if: 

1. Preserves program order. A read by 𝑃1 to 𝑋 after a 
write by 𝑃1 to 𝑋, with no intervening writes of 𝑋 by 
𝑃2, always returns the value written by 𝑃1. 

Expect also in uniprocessors. 

2. A read by 𝑃2 to 𝑋 after a write by 𝑃1 to 𝑋 returns 
the value written by 𝑃1 if the read and write are 
sufficiently separated in time and no other writes 
to 𝑋 intervene. 

If insufficiently separated, 𝑋 may not left 𝑃1 yet. 

Cache Coherence 
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3. Serialization. Two writes to same location by any 
two CPUs are seen in same order by all CPUs. 

When exactly a written value must be seen by a reader 
is defined by memory consistency model. 

Assume write does not complete (not allowing next 
write) until all CPUs see the effect of that write. 

Assume CPU not changing order of any write w.r.t any 
other memory access. 

Above implies that if CPU writes address 𝐴 followed by 
address 𝐵, any CPU seeing new 𝐵 must also see new 𝐴. 
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A program running on multiple processors will normally 
have copies of the same data in several caches. 

The protocols to maintain coherence for multiple 
processors are called cache coherence protocols. 

Cache coherence protocol implementation must track 
the state of any sharing of a data block. 

Two classes of protocols. A directory based keeps the 
sharing status a block of physical memory in one 
location, called the directory. 

Coherence Enforcement 
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Snooping protocols have no centralized state. 

Every cache having copy of block of physical memory 
has a copy of the block’s sharing status (status bits).  

All caches are accessible via a bus or switch. 

All cache controllers snoop (monitor) to determine 
whether they own a copy of block requested for access. 

Write invalidate protocol is a method ensuring that a 
processor has exclusive access to a data item before it 
writes that item, invalidating other copies on a write.  
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Consider a write followed by a read by another CPU. 
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For invalidation, the writing CPU acquires bus access 
and broadcasts the address to be invalidated. All CPUs 
continuously snoop on the bus, watching the 
addresses. 

The CPUs check whether the address on the bus is in 
their cache. If so, the corresponding data in the cache 
are invalidated. 

If two processors attempt to write shared blocks at the 
same time, their attempts to broadcast invalidation are 
serialized when they arbitrate for the bus. 

Write Invalidate Implementation 
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Also need to locate a data item when a cache miss 
occurs. In a write-through cache, it is easy to find the 
recent value in the memory.  

Finding the most recent data value in write-back cache 
is harder, since most recent data item is in a cache. 
Write-back caches use snooping both for cache misses 
and for writes. 

Each CPU snoops every address placed on the bus. If it 
finds to have a dirty copy of the requested block, it 
provides that block in response to the read request and 
aborts the memory access. 
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A snooping coherence protocol is implemented by 
incorporating a finite state controller in each node. 

The controller responds to requests from the processor 
and the bus, changing the state of the selected block 
and using the bus to access data or to invalidate it. 

The protocol has three states: invalid, shared, and 
modified. 

The shared state indicates that the block is potentially 
shared. The modified state indicates that the block has 
been updated in the cache, implying that it is exclusive.  

Snooping Protocol Example  
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Cache block state transitions for CPU requests 



Jan 2021 Multithreading and Multiprocessing 33 

Cache block state transitions for bus requests 

This protocol is for a write-back cache but is easily 
modified for a write through cache.  
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Shared Memory Example 

Assumes A1 and A2 map to same cache block 


