
Multithreading and
Multiprocessing

prepared and instructed by
 Shmuel Wimer

Eng. Faculty, Bar-Ilan University

Jan 2021 Multithreading and Multiprocessing 1

ILP Limitations

Jan 2021 Multithreading and Multiprocessing 2

Pipelining, multiple issue, dynamic scheduling and
speculation have limits.

Since late 90’s focus turned to clock speedup, without
increasing issue rates.

In 2010 clock speedup ended too.

Multithreading is an addition to ILP.

Multiprocessing: Driven by huge silicon integration
technology, data processing explosion, internet, cloud
computing, ...

Jan 2021 Multithreading and Multiprocessing 3

1. 2.0 GHz two-issue static-pipe simple MIPS, achieving
0.6 CPI. Its cache yields 1.0 % misses/Instruction.

2. 5.0 GHz single-issue with deep static pipe MIPS,
achieving 1.2 CPI . Its larger cache yields 0.5%
misses/Instruction.

3. 1.0 GHz four-issue speculative superscalar MIPS. Its
smallest cache yields 1.5% misses/instruction, but its
dynamic scheduling hides 50% of the miss penalty.

Cache miss penalty is 100 nSec in all processors.

Example. Compare three CPUs running on benchmark
achieving ideal issue rate as shown.

Jan 2021 Multithreading and Multiprocessing 4

Answer. Miss rate is first used to compute the
contribution to CPI from cache misses.

Determine the relative MIPS (106 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑐)
performance of these three processors.

Cache Miss CPI=Misses per instruction × Miss penaly

Miss penalty= Memory access time Clock cycle

Miss penalty1= 100 nSec 0.5 nSec = 200 cycles

Miss penalty2= 100 nSec 0.2 nSec = 500 cycles

Miss penalty3= 0.5 × 100 nSec 1.0 nSec = 50 cycles

Jan 2021 Multithreading and Multiprocessing 5

Combine Miss penalty and miss rate for CPI penalty.

Cache Miss CPI1=0.01 × 200 = 2.0

Cache Miss CPI2=0.005 × 500 = 2.5

Cache Miss CPI3=0.015 × 50 = 0.75

CPI is known for the first two CPUs. For 3rd, there is

Pipeline CPI3=1 Issue rate = 1 4.0 = 0.25

CPI is the sum of the pipeline and cache miss CPIs

CPI1=0.6 + 2.0=2.6

CPI2=1.2 + 2.5=3.7

CPI3=0.25 + 0.75=1.0

Jan 2021 Multithreading and Multiprocessing 6

The three CPUs are compared in terms of their MIPS.

Instr. execution rate=Clock rate CPI

Instr. execution rate1=2000MHz 2.6 = 770 MIPS

Instr. execution rate2=5000MHz 3.7 = 1351 MIPS

Instr. execution rate3=1000MHz 1.0 = 1000 MIPS

Jan 2021 Multithreading and Multiprocessing 7

Multithreading

Significant parallelism occurring naturally at higher
levels in apps cannot be exploited by ILP techniques.

Multithreading (MT) tolerates or masks long and often
unpredictable latency operations by switching to
another context, which is able to do a useful work.

Such higher-level parallelism is called Thread-Level
Parallelism (TLP).

A threads is a separate process with its own
instructions, data, PC, and registers, must for execution.

Jan 2021 Multithreading and Multiprocessing 8

TLP and ILP exploit two different kinds of parallel
structure in a program.

FUs of a CPU designed to exploit ILP are often idle
(stalls, dependences).

Question: Can ILP-designed processor exploit TLP?

MT allows multiple threads sharing FUs of a single CPU.

Memory is shared through the VM, already supporting
multiprogramming.

CPU must support quick thread switching, much faster
than process switch taking 100s-1000s CPU cycles.

Jan 2021 Multithreading and Multiprocessing 9

LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW r5, 12(r1)

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W D D D

F D X M W D D D F F F

F D D D D F F F

t9 t10 t11 t12 t13 t14

Each instruction may depend on the previous.

T1: LW r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW r5, 0(r7)

T1: LW r5, 12(r1)

t9

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W

F D X M W

F D X M W

F D X M W

Interleave 4 threads on non-bypassed 5-stage pipe

Resolve RAW
hazards

???

Jan 2021 Multithreading and Multiprocessing 10

Carry thread select down pipeline to ensure correct
state bits read/written at each pipe stage.

Appears to SW (OS) as multiple, albeit slower, CPUs.

Design challenges: cache miss increases, slower RF.

Jan 2021 Multithreading and Multiprocessing 11

Thread B Thread A Thread D Thread C

MT Approaches

Example: 4-Issue Machine

Jan 2021 Multithreading and Multiprocessing 12

Two approaches: Fine-grained and Coarse-grained.

Coarse-grained MT switches threads only on costly
stalls (L2 misses), where pipeline refill is negligible
compared to the stall time.

CPU is hardly slowed down by thread switching.

Cannot exploit short stalls (employment of FUs).

Start-up overhead: thread switching must empty
pipeline. New thread must fill it before instructions will
complete.

Jan 2021 Multithreading and Multiprocessing 13

Coarse-grained MT

Jan 2021 Multithreading and Multiprocessing 14

Fine-grained MT switches between threads on each
instruction (every cycle), multiple threads interleave.

Round-robin thread switching, skipping any stalled
threads.

Advantage: hiding throughput losses arising from short
stalls, instructions of other threads are executed when
other are stalled.

Disadvantage: Individual threads execution slowdown,
thread ready to execute without stalls is delayed by
other threads.

Jan 2021 Multithreading and Multiprocessing 15

Skip A

Fine-grained MT

1

2

3

4

5

6

7

8

9

10

11

12

3 3 3

3

6

4 4

4 4

4

7

5 5

5 5 5 5

5

8 8 8

6 6 6 6

7 7 7 7

9 9

7 7

11

8 8

8 8

10 10 10

1 1

1 1 1

1 1 1

1

Time stamp of single
thread execution

2

2 2

5 5

3 3 3

Simultaneous Multithreading

Jan 2021 Multithreading and Multiprocessing 16

Simultaneous multithreading (SMT) is a variation on
MT to exploit TLP simultaneously with ILP.

Motivated by multiple-issue CPUs which have more FU
parallelism than a single thread can effectively use.

Register renaming and dynamic scheduling enables
issuing multiple instructions from independent threads
ASAP regardless of the dependences among them.

Dependences resolution can be handled by the
dynamic scheduling capability (Tomasulo, ROB).

Jan 2021 Multithreading and Multiprocessing 17

1

2

3

4

5

6

7

8

9

10

11

12

2 2 2

Skip C 3 3 3 3

3 3 3 4

4 4

4 4

5

5 5

5 5

5 5

5 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Skip A
6

6

6 6 6

7

7 7 7 7

7

7 11

9 9

9 9

10 10 10

8 8 8

8

8

8

8 12 12 12

1 1 1 1

1 1 1 1

1

Time stamp of single
thread execution

Why thread B
cannot issue?

Jan 2021 Multithreading and Multiprocessing 18

Approaches to use the issue slots.

Jan 2021 Multithreading and Multiprocessing 19

Many CPUs, memory is distributed among CPUs rather
than centralized. Otherwise long latency occurs.

Cost-effective to scale memory bandwidth if most
accesses are to local memory. Complex communication.

Distributed Shared Memory (DSM)

Jan 2021 Multithreading and Multiprocessing 20

Communication occurs through shared address space
via load and store operations.

Physically separate memories are addressed as one
logical address space.

Memory reference made by any processor to any
address.

Speedups is limited by parallelism in programs. High
communications cost, 50 ÷ 1000 clock cycles.

Example. What fraction of original computation must
be parallel to achieve 80X speedup with 100 CPUs?

Jan 2021 Multithreading and Multiprocessing 21

Program operates in two modes:

• parallel - all processors (100) fully used or

• serial - only one processor in use.

total speedup =
1

parallel
speedup parallel

+(1− parallel)

0.8 × parallel + 80 × 1 − parallel = 1

parallel = 0.9975! (less than 0.25% serial code!)

For linear speedup the entire must have no serial
portions. Not realistic. ∎

Jan 2021 Multithreading and Multiprocessing 22

Centralized Shared-Memory (SMP)

Single memory (address space) satisfies the demands
of few CPUs.

Called Symmetric (shared-memory) Multiprocessors
(SMPs).

Jan 2021 Multithreading and Multiprocessing 23

SMPs support caching of both:

Private data used by a single CPU.

shared data used by all CPU, providing communication
through reads and writes of the shared data.

For private item caching the program behaves as
uniprocessor since no other CPU uses the data.

For shared data caching the shared value may be
replicated in multiple caches.

New problem: cache coherence. Different CPUs may
see different values for same address.

Jan 2021 Multithreading and Multiprocessing 24

A memory system is coherent if:

1. Preserves program order. A read by 𝑃1 to 𝑋 after a
write by 𝑃1 to 𝑋, with no intervening writes of 𝑋 by
𝑃2, always returns the value written by 𝑃1.

Expect also in uniprocessors.

2. A read by 𝑃2 to 𝑋 after a write by 𝑃1 to 𝑋 returns
the value written by 𝑃1 if the read and write are
sufficiently separated in time and no other writes
to 𝑋 intervene.

If insufficiently separated, 𝑋 may not left 𝑃1 yet.

Cache Coherence

Jan 2021 Multithreading and Multiprocessing 25

3. Serialization. Two writes to same location by any
two CPUs are seen in same order by all CPUs.

When exactly a written value must be seen by a reader
is defined by memory consistency model.

Assume write does not complete (not allowing next
write) until all CPUs see the effect of that write.

Assume CPU not changing order of any write w.r.t any
other memory access.

Above implies that if CPU writes address 𝐴 followed by
address 𝐵, any CPU seeing new 𝐵 must also see new 𝐴.

Jan 2021 Multithreading and Multiprocessing 26

A program running on multiple processors will normally
have copies of the same data in several caches.

The protocols to maintain coherence for multiple
processors are called cache coherence protocols.

Cache coherence protocol implementation must track
the state of any sharing of a data block.

Two classes of protocols. A directory based keeps the
sharing status a block of physical memory in one
location, called the directory.

Coherence Enforcement

Jan 2021 Multithreading and Multiprocessing 27

Snooping protocols have no centralized state.

Every cache having copy of block of physical memory
has a copy of the block’s sharing status (status bits).

All caches are accessible via a bus or switch.

All cache controllers snoop (monitor) to determine
whether they own a copy of block requested for access.

Write invalidate protocol is a method ensuring that a
processor has exclusive access to a data item before it
writes that item, invalidating other copies on a write.

Jan 2021 Multithreading and Multiprocessing 28

Consider a write followed by a read by another CPU.

Jan 2021 Multithreading and Multiprocessing 29

For invalidation, the writing CPU acquires bus access
and broadcasts the address to be invalidated. All CPUs
continuously snoop on the bus, watching the
addresses.

The CPUs check whether the address on the bus is in
their cache. If so, the corresponding data in the cache
are invalidated.

If two processors attempt to write shared blocks at the
same time, their attempts to broadcast invalidation are
serialized when they arbitrate for the bus.

Write Invalidate Implementation

Jan 2021 Multithreading and Multiprocessing 30

Also need to locate a data item when a cache miss
occurs. In a write-through cache, it is easy to find the
recent value in the memory.

Finding the most recent data value in write-back cache
is harder, since most recent data item is in a cache.
Write-back caches use snooping both for cache misses
and for writes.

Each CPU snoops every address placed on the bus. If it
finds to have a dirty copy of the requested block, it
provides that block in response to the read request and
aborts the memory access.

Jan 2021 Multithreading and Multiprocessing 31

A snooping coherence protocol is implemented by
incorporating a finite state controller in each node.

The controller responds to requests from the processor
and the bus, changing the state of the selected block
and using the bus to access data or to invalidate it.

The protocol has three states: invalid, shared, and
modified.

The shared state indicates that the block is potentially
shared. The modified state indicates that the block has
been updated in the cache, implying that it is exclusive.

Snooping Protocol Example

Jan 2021 Multithreading and Multiprocessing 32

Cache block state transitions for CPU requests

Jan 2021 Multithreading and Multiprocessing 33

Cache block state transitions for bus requests

This protocol is for a write-back cache but is easily
modified for a write through cache.

Jan 2021 Multithreading and Multiprocessing 34

Shared Memory Example

Assumes A1 and A2 map to same cache block

