
Instruction-Level Parallelism
compiler techniques and branch prediction

prepared and instructed by
 Shmuel Wimer

Eng. Faculty, Bar-Ilan University

Jan 2021 Instruction-Level Parallelism 1 1

Concepts and Challenges

Jan 2021 Instruction-Level Parallelism 1 2

The potential overlap among instructions is called
instruction-level parallelism (ILP).

Two approaches exploiting ILP:
• Hardware discovers and exploit the parallelism dynamically.
• Software finds parallelism, statically at compile time.

CPI for a pipelined processor:
Ideal pipeline CPI + Structural stalls + Data hazard stalls +
Control stalls

Basic block: a straight-line code with no branches.
• Typical size 3-6 instructions.
• Too small to exploit significant amount of parallelism.
• Exploit ILP across multiple basic blocks.

Jan 2021 Instruction-Level Parallelism 1 3

Loop-level parallelism Completely parallel loop adding
two 1000-element arrays:

No overlap opportunity within iteration, but every
iteration can overlap with any other.

The loop can be unrolled either statically by compiler or
dynamically by hardware.

Vector processing is also possible. Supported in DSP,
graphics, and multimedia applications.

Jan 2021 Instruction-Level Parallelism 1 4

Loop increments a vector in memory by a scalar in
F2, starting at 0(R1), with last index at 8(R2)).

Data dependent instructions cannot be executed
simultaneously or completely overlap.

There are data dependences of floating-point and
integer data.

Jan 2021 Instruction-Level Parallelism 1 5

Detecting dependence of registers is straightforward.
• Register names are fixed in the instructions.

Dependences that flow through memory locations are
more difficult to detect.

• Two addresses may refer to the same location but
look different: 100(R4) and 20(R6).

• Effective address of a load or store may change from
one execution to another so that 100(R4) and
20(R6) may be different.

Compiler Techniques for Exposing ILP

Jan 2021 Instruction-Level Parallelism 1 6

Pipeline is kept full by finding sequences of unrelated
instructions that can be overlapped.

To avoid stall, dependent instruction is separated
from source by a distance (clock cycles) equals to
pipeline latency of that source.

Example: Latencies of FP operations

Jan 2021 Instruction-Level Parallelism 1 7

Code adding
scalar to vector:

Straightforward MIPS assembly code:

R1 is initially the top element address in the array.
F2 contains the scalar value 𝑠.
R2 is pre computed, so that 8(R2) is the array bottom.

Jan 2021 Instruction-Level Parallelism 1 8

Without any scheduling
the loop takes 9 cycles:

Scheduling the loop
obtains only two stalls,
taking 7 cycles:

April 2019 Instruction-Level Parallelism 1 9

The actual work on the array is just 3 7 cycles (load,
add, and store). The other 4 are loop overhead. Their
elimination requires more operations relative to the
overhead.

Loop unrolling replicates the loop body multiple times.

• Adjustment of the loop termination code is required.

• Used also to improve scheduling.

Instruction replication is insufficient. Different registers
for each replication are required.

Required to increase the number of registers.

Jan 2021 Instruction-Level Parallelism 1 10

Useful work in the array is 3 7 of cycles (load, add, and
store). Other 4 are overhead.

Amortize overhead over more operations.

Unrolled code (not rescheduled)

Jan 2021 Instruction-Level Parallelism 1 11

2 stalls

2 stalls

2 stalls

2 stalls

1 stall

1 stall

1 stall

1 stall

1 stall

Stalls are still there.
Runs in 27 clock cycles, 6.75 per block.

Register
Renaming

Jan 2021 Instruction-Level Parallelism 1 12

Unrolled and rescheduled code

No stalls are required!

Execution dropped to 14
clock cycles, 3.5 per
block.

Compared with 9 before
unrolling or scheduling
and 7 when scheduled
but not unrolled.

Homework: Is it a hazard?

Jan 2021 Instruction-Level Parallelism 1 13

Problem: Number of iterations 𝑛 may be unknown.
Unrolling copies body 𝑘 times, but 𝑛 % 𝑘 ≠ 0.

Two consecutive loops are generated.

The first executes 𝑛 % 𝑘 with the original loop.

The second is the unrolled body surrounded by an
outer loop that iterates 𝑛 𝑘 times.

For large 𝑛, most of the execution time will be spent
in the unrolled loop body.

Homework: study the solution below.

Branch Prediction

Jan 2021 Instruction-Level Parallelism 1 14

Recall the performance losses occurred by control
hazards, e.g., 3 stalls after conditional jumps.

Losses can be reduced by predicting how branches will
behave.

Branch prediction (BP) can be done statically at
compilation (SW) and dynamically at execution (HW).

Simplest static scheme is to predict a branch as taken.
Misprediction equal the untaken frequency (34% for
the SPEC benchmark).

Dynamic Branch Prediction

Jan 2021 Instruction-Level Parallelism 1 15

The simplest is a BP buffer, a small 1-bit memory
indexed by the LSBs of the branch instruction address
(no tags).

Useful when the branch delay (# stalls, e.g., 𝑖𝑓 sin 𝑥
< 0…) is longer than the target PC address prediction.

Note that BP may have been put there by another
branch with same LSBs address bits!

IF begins in the predicted direction. If it was wrong, the
BP bit is inverted and stored back.

Jan 2021 Instruction-Level Parallelism 1 16

Problem: Even if almost always taken, we will likely
predict incorrectly twice. (why?)

Example: Consider a loop. Loop exit causes miss
prediction. Re-entering the loop causes another miss
prediction.

Solution:
saturation counter.

Jan 2021 Instruction-Level Parallelism 1 17

It is a 2-bit saturation counter. It must miss twice
before it is changed. 2-bit counter is stored at every BP
buffer entry.

It can be implemented as a special cache, read at IF
(why?), or by adding two special bits to the I-cache.

An 𝑛-bit counter is also possible. counter ≤ 2𝑛−1 − 1
yields not taken prediction. Otherwise, taken predicted.

The counter is then updated according to the real
branch decision.

2-bit do almost as well, thus used by most systems.

Correlating Branch Predictors

Jan 2021 Instruction-Level Parallelism 1 18

2-bit BP uses only the recent behavior of a single
branch for a decision.

But branch result may depend on other branches.

Consider the code:

Compiler generates the typical MIPS code, assigning
aa and bb to R1 and R2.

Jan 2021 Instruction-Level Parallelism 1 19

Behavior of b3 is correlated to that of b1 and b2.

Predictor using only the behavior of a single branch is
blind of this behavior.

Correlating or two-level predictors add info about the
most recent branches to decide the present branch.

Jan 2021 Instruction-Level Parallelism 1 20

An 𝑚, 𝑛 BP uses 𝑚 recent branches global history,
(stored in 𝑚-bit shift register) to choose from 2𝑚 𝑛 –
bit branch predictors (per branch).

More accurate than 2-bit and requires simple HW.

A (2𝑚+𝑟)-size BP buffer is indexed by 𝑚 + 𝑟 -bit using
the 𝑟 LSBs branch address and 𝑚-bit recent history.

Example: 2,2 BP buffer with 64 = 26 entries. 6-bit
index is formed by 4 LSBs of branch address + 2 global
bits of the two most recent branches outcome.

Jan 2021 Instruction-Level Parallelism 1 21

To compare fairly BPs performance, same total
number of state bits are used.

Number of total bits of 𝑚, 𝑛 predictor buffer storing
branch addresses by their 𝑟 LSBs is 2𝑚+𝑟 × 𝑛.

A 2-bit predictor w/o global history is a 0,2 predictor.

Example: How many bits in 0,2 BP with 4𝐾 entries?

How many prediction entries (addresses) are in a 2,2
predictor with the same number of bits?

Jan 2021 Instruction-Level Parallelism 1 22

A 4K-entries 0,2 BP has 20 × 2 × 4K=8K bits.

A 2,2 BP having a total of 8K bits satisfies:

2𝑚 × 𝑛 × 2𝑟 = 8K=213

22 × 2 × 2𝑟 = 8K=213

entries selected by the branch address = 8K bits.

𝑟 = 10 ⇒ # of prediction entries (addresses) is 1K.

Jan 2021 Instruction-Level Parallelism 1 23

not much
improvement

significant
improvement

Tournament Predictors

Jan 2021 Instruction-Level Parallelism 1 24

Tournament predictors combine predictors based on
global and local information.

They achieve better accuracy and effectively use very
large numbers of prediction bits.

BP uses a 2-bit saturating counter per branch to select
between two different BP (local, global), based on
which was most effective in recent predictions.

Like simple 2-bit predictor, saturating counter requires
two mispredictions before changing the preferred BP.

Jan 2021 Instruction-Level Parallelism 1 25

