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Concepts and Challenges 

Jan 2021 Instruction-Level Parallelism 1 2 

The potential overlap among instructions is called 
instruction-level parallelism (ILP). 

Two approaches exploiting ILP: 
• Hardware discovers and exploit the parallelism dynamically. 
• Software finds parallelism, statically at compile time.  

CPI for a pipelined processor: 
Ideal pipeline CPI + Structural stalls + Data hazard stalls + 
Control stalls 

Basic block: a straight-line code with no branches. 
• Typical size 3-6 instructions. 
• Too small to exploit significant amount of parallelism. 
• Exploit ILP across multiple basic blocks. 
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Loop-level parallelism Completely parallel loop adding 
two 1000-element arrays: 

No overlap opportunity within iteration, but every 
iteration can overlap with any other. 

The loop can be unrolled either statically by compiler or 
dynamically by hardware. 

Vector processing is also possible. Supported in DSP, 
graphics, and multimedia applications. 
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Loop increments a vector in memory by a scalar in 
F2, starting at 0(R1), with last index at 8(R2)).  

Data dependent instructions cannot be executed 
simultaneously or completely overlap.  

There are data dependences of floating-point and 
integer data. 
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Detecting dependence of registers is straightforward. 
• Register names are fixed in the instructions. 

Dependences that flow through memory locations are 
more difficult to detect. 

• Two addresses may refer to the same location but 
look different:   100(R4)   and   20(R6). 

• Effective address of a load or store may change from 
one execution to another so that 100(R4) and 
20(R6) may be different. 



Compiler Techniques for Exposing ILP 
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Pipeline is kept full by finding sequences of unrelated 
instructions that can be overlapped. 

To avoid stall, dependent instruction is separated 
from source by a distance (clock cycles) equals to 
pipeline latency of that source.  

Example: Latencies of FP operations 
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Code adding 
scalar to vector: 

Straightforward MIPS assembly code: 

R1 is initially the top element address in the array. 
F2 contains the scalar value 𝑠.  
R2 is pre computed, so that 8(R2) is the array bottom.  
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Without any scheduling 
the loop takes 9 cycles: 

Scheduling the loop 
obtains only two stalls, 
taking 7 cycles: 
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The actual work on the array is just 3 7  cycles (load, 
add, and store). The other 4 are loop overhead. Their 
elimination requires more operations relative to the 
overhead. 

Loop unrolling replicates the loop body multiple times. 

• Adjustment of the loop termination code is required. 

• Used also to improve scheduling. 

Instruction replication is insufficient. Different registers 
for each replication are required. 

Required to increase the number of registers. 
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Useful work in the array is 3 7  of cycles (load, add, and 
store). Other 4 are overhead. 

Amortize overhead over more operations. 



Unrolled code (not rescheduled) 
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2 stalls 

2 stalls 

2 stalls 

2 stalls 

1 stall 

1 stall 

1 stall 

1 stall 

1 stall 

Stalls are still there.  
Runs in 27 clock cycles, 6.75 per block. 

Register 
Renaming 
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Unrolled and rescheduled code 

No stalls are required! 

Execution dropped to 14 
clock cycles, 3.5 per 
block. 

Compared with 9 before 
unrolling or scheduling 
and 7 when scheduled 
but not unrolled. 

Homework: Is it a hazard? 
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Problem: Number of iterations 𝑛 may be unknown. 
Unrolling copies body 𝑘 times, but 𝑛 % 𝑘 ≠ 0. 

Two consecutive loops are generated. 

The first executes 𝑛 % 𝑘 with the original loop. 

The second is the unrolled body surrounded by an 
outer loop that iterates 𝑛 𝑘  times.  

For large 𝑛, most of the execution time will be spent 
in the unrolled loop body. 

Homework: study the solution below. 



Branch Prediction 
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Recall the performance losses occurred by control 
hazards, e.g., 3 stalls after conditional jumps. 

Losses can be reduced by predicting how branches will 
behave.  

Branch prediction (BP) can be done statically at 
compilation (SW) and dynamically at execution (HW). 

Simplest static scheme is to predict a branch as taken. 
Misprediction equal the untaken frequency (34% for 
the SPEC benchmark). 



Dynamic Branch Prediction 
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The simplest is a BP buffer, a small 1-bit memory 
indexed by the LSBs of the branch instruction address 
(no tags).  

Useful when the branch delay (# stalls, e.g., 𝑖𝑓 sin 𝑥
<  0…) is longer than the target PC address prediction. 

Note that BP may have been put there by another 
branch with same LSBs address bits! 

IF begins in the predicted direction. If it was  wrong, the 
BP bit is inverted and stored back. 
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Problem: Even if almost always taken, we will likely 
predict incorrectly twice. (why?) 

Example: Consider a loop. Loop exit causes miss 
prediction. Re-entering the loop causes another miss 
prediction. 

Solution: 
saturation counter. 
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It is a 2-bit saturation counter. It must miss twice 
before it is changed. 2-bit counter is stored at every BP 
buffer entry. 

It can be implemented as a special cache, read at IF 
(why?), or by adding two special bits to the I-cache. 

An 𝑛-bit counter is also possible. counter ≤ 2𝑛−1 − 1 
yields not taken prediction. Otherwise, taken predicted. 

The counter is then updated according to the real 
branch decision. 

2-bit do almost as well, thus used by most systems. 



Correlating Branch Predictors 
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2-bit BP uses only the recent behavior of a single 
branch for a decision. 

But branch result may depend on other branches. 

Consider the code: 

Compiler generates the typical MIPS code, assigning 
aa and bb to R1 and R2. 
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Behavior of b3 is correlated to that of b1 and b2. 

Predictor using only the behavior of a single branch is 
blind of this behavior. 

Correlating or two-level predictors add info about the 
most recent branches to decide the present branch. 
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An 𝑚, 𝑛  BP uses 𝑚 recent branches global history, 
(stored in 𝑚-bit shift register) to choose from 2𝑚 𝑛 – 
bit branch predictors (per branch). 

More accurate than 2-bit and requires simple HW. 

A (2𝑚+𝑟)-size BP buffer is indexed by 𝑚 + 𝑟 -bit using 
the 𝑟 LSBs branch address and 𝑚-bit recent history. 

Example: 2,2  BP buffer with 64 = 26 entries. 6-bit 
index is formed by 4 LSBs of branch address + 2 global 
bits of the two most recent branches outcome. 
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To compare fairly BPs performance, same total 
number of state bits are used. 

Number of total bits of 𝑚, 𝑛  predictor buffer storing 
branch addresses by their 𝑟 LSBs is 2𝑚+𝑟 × 𝑛. 

A 2-bit predictor w/o global history is a 0,2  predictor. 

Example: How many bits in 0,2  BP with 4𝐾 entries? 

How many prediction entries (addresses) are in a 2,2  
predictor with the same number of bits? 
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A 4K-entries 0,2  BP has 20 × 2 × 4K=8K bits. 

A 2,2  BP having a total of 8K bits satisfies: 

2𝑚 × 𝑛 × 2𝑟 = 8K=213 

22 × 2 × 2𝑟 = 8K=213 

entries selected by the branch address = 8K bits. 

𝑟 = 10 ⇒ # of prediction entries (addresses) is 1K. 



Jan 2021 Instruction-Level Parallelism 1 23 

not much 
improvement  

significant 
improvement  



Tournament Predictors 
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Tournament predictors combine predictors based on 
global and local information. 

They achieve better accuracy and effectively use very 
large numbers of prediction bits. 

BP uses a 2-bit saturating counter per branch to select 
between two different BP (local, global), based on 
which was most effective in recent predictions. 

Like simple 2-bit predictor, saturating counter requires 
two mispredictions before changing the preferred BP. 
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