


THIRD EDITION

Computer Organization Design

THE HARD W ARE / SOFTWARE INTERFACE



ACKNOWLEDGEMENTS

Figures 1.9, 1.15 Courtesy of Intel.

Figure 1.11 Courtesy of Storage Technology Corp.

Figures 1.7.1, 1.7.2,6.13.2 Courtesy of the Charles Babbage Institute,
University of Minnesota Libraries, Minneapolis.

Figures 1.7.3, 6.13.1, 6.13.3,7.9.3,8.11.2 Courtesy of IBM.

Figure 1.7.4 Courtesy ofCray Inc.

Figure 1.7.5 Courtesy ofApple Computer, Inc.

Figure 1.7.6 Courtesy of the Computer History Museum.

Figure 7.33 Courtesy ofAMD.

Figures 7.9.1, 7.9.2 Courtesy of Museum of Science, Boston.

Figure 7.9.4 Courtesy of MIPS Technologies, Inc.

Figure 8.3 e Peg Skorpinski.

Figure 8.11.1 Courtesy of the Computer Musru.m of America.

Figure 8.11.3 Courtesy of the Commercial Computing Museurll.

Figures 9.11.2, 9.11.3 Courtesy of NASA Ames Research Center.

Figure 9.11.4 Courtesy of Lawrence Livermore National Laboratory.

Computers in the Real World:

Photo of "A Laotian villager," courtesy of David Sanger.

Photo of an "Indian villager," property of Encore Software, Ltd., India.

Photos of "Block and students~ and "a pop-up archival satellite tag,~

courtesy of Professor Barbara Block. Photos by Scott T.1ylor.

Photos of "Professor Dawson and student" and "the Mica micromote,~

courtesy of AP/World Wide Photos.

Photos of "irn.1ges of pottery fragments" and "a computer reconstruc
tion,~ courtesy of Andrew Willis and David B. Cooper, Brown University,
Division of Engineering.

Photo of "the Eurostar TGV train," by los van der Kolk.

Photo of "the interior of a Eurostar TGV cab," by Andy Veitch.

Photo of "firefighter Ken Whitten," courtesy of'W"orld Economic Forum.

Graphic of an "artificial retina,~ Cl The San Francisco Chronicle.
Reprinted by permission.

Image of "A laser scan of Michelangelo's statue of David," courtesy of
Muc Levoy and Dr. Franca Falletti, director of the Galleria dell 'Acca
demia, Italy.

"An image from the Sistine Chapel," courtesy of Luca Feuati. IR image
recorded using the scanner for IR reflectography of the INOA (National
Institute for Applied Optics, http://arte.ino.it ) at the Opificio delle Pietre
Dure in Florence.



THE HARDWARE / SOFTWARE INTERFACE

Computer Organization and Design

David A. Patterson
University of California. Berkeley

Daniel J. Sarin

Duke Un iversity

James R. Lams

Microsoft Research

EDITION

With a co ntribution by

Peter J. Ashenden

Ashenden Designs Pty Ltd

T H I R D

John L Hennessy
Stanford University

ELSEVIER

AMSTERDAM ' BOSTON ' HEIDELBERG ' WNDON
NEW YORK ' OXFORD ' PARIS ' SAN DIEGO

SAN FRANCISCO ' SINGAPORE ' SYDNEY ' roJ,.'YO

Morgan Kaufmann is an imprint of Elsevier MORGAN KAUFMANN PUBLISHERS



Senior Editor
Publishing Services Manager
Editorial Assistant
Cover Design
Cover and Chapter Illustration
Text Design
Composition
TechnicallUustration
Copyeditor
Proofreader
Indexer
Interior printer
Cover primer

Denise E. M. Penrose
Simon Cnullp
Summer Block
Ross Caron Design
ChrisAsimoudis
GGS Book Services
Nancy Logan and Dartmouth Publishing, Inc.
Dartmouth Publishing, Inc.
Ken DeUaPenta
lacqui Brownstein
Linda Buskus
Courier
Courier

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisw, CA 94111

This book is printed on acid-free paper.

Cl 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In aU instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial c.1pital or aU capital letters. Readers, however, should wntact the appropriate companies
for more complete information reg.uding trademarks and registration.

No part of this publication may be reproouced, stored in a retrieval system, or transmitted in any form or
by any means------electronic, mechanical, photocopying, scanning, or otherwise-----without prior written per
mission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865843830, fax: (+44) 1865853333, e-mail: permissions@elsevier.com.uk.Youmay
also complete your request on-line via the Elsevier homepage (http://elsevier.wm) by selecting "Customer
Support" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN: 1-55860-604-1

For information on aU Morgan Kaufmann publications,
visit our Web site at www.mkp.com.

Primed in the United States of America
040506070854321



Contents

Contents

Preface IX

CHAPTERS

a Computer Abstractions and Technology 2

1.1 Introduction 3
1.2 Below Your Program I I
1.3 Under the Covers IS
1.4 Real Stuff: Manufacturing Pentium 4 Chips 28
1.5 Fallacies and Pitfalls 33
1.6 Concluding Remarks 35
1.7 Historical Perspective and Further Reading 36
1.8 Exercises 36

COMPUTERS IN THE REAL WORLD
Information Technology for the 4 Billion without IT 44

B Instructions: Language of the Computer 46

2. 1 Introduction 48
2.2 Operations of the Computer Hardware 49
2.3 Operands of the Computer Hardware 52
2.4 Representing Instructions in the Computer 60
2.5 Logical Operations 68
2.6 Instructions for Making Decisions 72
2.7 Supporting Procedures in Computer Hardware 79
2.8 Communicating with People 90
2.9 MIPS Addressing for 32-Bit Immediates and Addresses 95
2.10 Translating and Starting a Program 106
2. I I How Compilers Optimize 116
2. 12 How Compilers Work: An Introduction 121

v



vI Contents

2. 13 ACSort Example to Put It All Together 121
2. 14 Implementing an Object-Oriented Language 130
2.1 5 Arrays versus Pointers 130
2.1 6 Real Stuff: IA-32 Instructions 134
2.1 7 Fallacies and Pitfalls 143
2.18 Concluding Remarks 145
2. 19 Historical Perspective and Further Reading 147
2.20 Exercises 147

COMPUTERS IN THE REAL WORLD
Helping Save Our Environment with Data 156

II Arithmetic for Computers 158

3. 1 Introduction 160
3.2 Signed and Unsigned Numbers 160
3.3 Addition and Subtraction 170
3.4 Multiplication 176
3.5 Division 183
3.6 Floating Point 189
3.7 Rea l Stuff: Floating Point in the IA-32 217
3.8 Fallacies and Pitfalls 220
3.9 Concluding Remarks 225
3.10 Historical Perspective and Further Reading 229
3. 11 Exercises 229

COMPUTERS IN THE REAL WORLD
Reconstructing the Ancient World 236

a Assessing and Understanding Performance 238

4.1 Introduction 240
4.2 CPU Perfonnance and Its Factors 246
4.3 Evaluating Performance 254
4.4 Rea l Stuff: Two SPEC Benchmarks and the Performance of Recent

Intel Processors 259
4.5 Fallacies and Pitfalls 266
4.6 Concluding Remarks 270
4.7 Historical Perspective and Further Reading 272
4.8 Exercises 272

COMPUTERS IN THE REAL WORLD
Moving People Faster and More Safely 280



Contents .11

The Processor: Datapath and Control 282

5. 1
5.2
5.3
5.4
5.5
5.6.. 5.7.. 5.8

5.9

5.10
5. II
5. 12
5.13

Introduction 284
Logic Design Conventions 289
Building a Datapath 292
A Simple Implementation Scheme 300
A Multicycle Implementation 3 18
Exceptions 340
Microprogramming: Simplifying Co ntrol Design 346
An Introduction to Digital Design Using a Hardware Design
Language 346
Real Stuff: The Organization of Recent Pentium
Implementations 347
Fallacies a nd Pitfalls 350
Concluding Remarks 352
Historical Perspective and Further Reading 353
Exercises 354

COMPUTERS IN THE REAL WORLD
Empowering the Disabled 366

II Enhancing Performance with Pipelining 368

6.1 An OverviewofPipelining 370
6.2 A Pipelined Datapath 384
6.3 Pipelined Cont rol 399
6.4 Data Hazards and Forwarding 402
6.5 Data Hazards and Stalls 41 3
6.6 Branch Hazards 416
6.7 Using a Hardware Description Language to Describe and Model a

Pipeline 426
6.8 Exceptions 427
6.9 Adva nced Pipelining: Extracting More Performance 432
6.10 Real Stuff: The Pentium 4 Pipeline 448
6.11 Fallacies and Pitfalls 451
6. 12 Concluding Remarks 452
6. 13 Historical Perspective and Further Reading 454
6.14 Exercises 454

COMPUTERS IN THE REAL WORLD
Mass Communication without Gatekeepers 464



vIII Contents

II Large and Fast: Exploiting Memory Hierarchy 466

7.1 Introduction 468
7.2 The Basics of Caches 473
7.3 Measuring and Improving Cache Performance 492
7.4 Virtual Memory 511
7.5 A Common Framework for Memory Hierarchies 538
7.6 Real Stuff: The Pentium P4 and the AMD Opteron Memory

Hierarchies 546
7.7 Fallacies and Pitfalls 550
7.8 Concluding Remarks 552
7.9 Historical Perspective and Further Reading 555
7. 10 Exercises 555

COMPUTERS IN THE REAL WORLD
Saving the World's Art Treasures 562

EI Storage, Networks, and Other Peripherals 564

8.1 Introduction 566
8.2 Disk Storage and Dependability 569
8.3 Networks 580
8.4 Buses and Other Connections between Processors, Memory, and I/O

Devices 581
8.5 Interfacing I/O Devices to the Processor, Memory, and Operating

System 588
8.6 I/O Performance Measures: Examples from Disk and File

Systems 597
8.7 Designing an I/O System 600
8.8 Real Stuff: A Digital Camera 603
8.9 Fallacies and Pitfalls 606
8.10 Concluding Remarks 609
8.11 Historical Perspective and Further Reading 6 11
8.12 Exercises 6 11

COMPUTERS IN THE REAL WORLD
Saving Uves through Better Diagnosis 622

ra Multiprocessors and Clusters 9-2

9. 1 Introduction 9-4
9.2 Progra mming Multiprocessors 9-8
9.3 Multiprocessors Connected by a Single Bus 9-11



Contents

9.4 Multiprocessors Connected by a Network 9-20
9.5 Clusters 9-25
9.6 Network Topologies 9-27
9.7 Multiprocessors Inside a Chip and Multithreading 9-30
9.8 Real Stuff: The Coogle Cluster of PCs 9-34
9.9 Fallacies and Pitfalls 9-39
9. 10 Concluding Remarks 9-42
9. I I Historical Perspective and Further Reading 9-47
9. 12 Exercises 9-55

APPENDICES

a Assemblers, Linkers, and the SPIM Simulator A-2

A. I Int roduction A-3
A.2 Assemblers A- I0
A.3 Linkers A- 18
AA Loading A- 19
A.5 Memory Usage A-20
A.6 Procedure Call Co nvention A-22
A.7 Exceptions and Interrupts A-33
A.8 Input and Output A-38
A.9 SPIM A-40
A. IO MIPS R2000 Assembly Language A-45
A. I I Concluding Remarks A-8 I
A.I2 Exercises A-82

[I The Basics of Logic Design B-2

8.1 Int roduction B-3
8. 2 Gates, Truth Tables, and Logic Equations B-4
8.3 Combinational Logic B-8
B.4 Using a Hardware Description Language B-20
8.5 Constructing a Basic Arithmetic Logic Unit B-26
B.6 Faster Addition: Car ry Lookahead B-38
B.7 Clocks B-47
B.8 Memory Elements: Flip -fl ops, Latches, and Registers B-49
8.9 Memory Elements: SRAMs and DRAMs B-57
8. 10 Finite State Machines B-67
B. I I Timing Methodologies B-72

Ix



x Contents

B.12 Field ProgrJmlT1able Devices B-77
B.13 Concluding Remarks B-78
8.14 Exercises B-79

Mapping Control to Hardware C·2

C I Int roduction C-3
C2 Implementing Co mbinational Co nt rol Units C-4
C3 Implementing Finite State Machine Control C-8
CA Implementing the Next-State Funct ion with a Sequencer C-2 1
C5 TrJ nslating a Microprogra m to Hardware C-27
C6 Concluding Remarks C-3 1
C7 Exercises C-32

A Survey of RiSe Architectures for Desktop, Server,
and Embedded Computers 1).2

D.I Int roduction D-3
D.2 Addressing Modes and Instruction Formats D-5
D.3 Instructions: Th e MIPS Core Subset D-9
D.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs D-16
D.5 Instructions: Digital Signal-Processing Extensions of the

Embedded RI SCs D- 19
D.6 Instructions: Common Extensions to MIPS Co re D-20
D.7 Instructions Unique to MIPS64 D-25
D.8 Instructions Unique to Alpha D-27
D.9 Instructions Unique to SPARC v.9 D-29
D.lO Instructions Unique to PowerPC D-32
D.II Instructions Unique to PA- RI SC 2.0 D-34
D.12 Instructions Unique to ARM D-36
D.13 Instructions Unique to Thumb D-38
D.14 Instructions Unique to SuperH D-39
D.15 Instructions Unique to M32R D-40
D.16 Instructions Unique to MIPSI6 D-41
D.17 Concluding Remarks D-43
D.18 Acknowledgments D-46
D.19 References D-47

Index I- I

tel Glossary G- I

II Further Reading FR- I



Preface

Preface

Tile most beautiful tiling we call experience is the mysterious.
It is tile source ofall true art and sciwce.

Albert Einstein, What I Believe, 1930

About This Book

We believe that lea rning in computer science and engineering should refl ect the
current state of the field , as well as introduce the principles that are shaping com
puting. We also feel that readers in every specia lty of computing need to appreci
ate the organizational paradigms that determine the capabilities, performance,
and , ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing spe
cialty to understand both hardwa re and softwa re. The interaction between hard 
wa re and softwa re at a va riety of levels also offers a framewo rk for understanding
the fundamentals of computing. Whether your primary interest is hardwa re or
software, computer science or electrical engineering, the central ideas in computer
o rga nization and design are the sa me. Thus, our emphasis in this book is to show
the relationship between hardware and softwa re and to focus on the concepts that
are the basis for current computers.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
wa nt to lea rn how to design a computer or understand how a system works and
why it performs as it does.

About the Other Book

Some readers may be familiar with Computer Architecture: A Quantitative
Approach, popularly known as Hennessy and Patterson. (This book in turn is
called Patterson and Hennessy.) Our motivation in writing that book was to
describe the principles of computer architecture using solid engineering funda -

xl



xII Preface

mentals and quantitative cost/performance trade-offs. We used a ll approach that
combined exam ples and measu rements, based on commercial systems, to create
realistic design experiences. Our goal was to demonstrate that computer architec
ture could be lea rned using quantitative methodologies instea d of a descriptive
approach. It is intended for the serious computing professional who wants a
deta iled understanding of computers.

A majority of the rea ders for this book do not plan to become com puter archi
tects. The performance of future softwa re systems will be dramatically affected ,
however, by how well softwa re designers understand the basic hardwa re tech 
niques at wo rk in a system. Thus, compiler writers, operating system designers,
database programmers, and m ost other softwa re engineers need a firm grounding
in the principles presented in this book. Similarly, hardwa re designers must
understand clea rly the effects of their work on softwa re applications.

Thus, we knew that this book had to be much more than a subset of the mate
rial in Computer Architecture, and the material was extensively revised to match
the different audience. We were so happy with the result th at the subsequent edi
tions of Compl/ter Architecture were revised to remove most of the introductory
material; hence, there is much less overlap today than with the first editions of
both books.

Changes for the Third Edition

We had six major goals for the third edition of Computer Organization and Design:
make the book work equally well for rea ders with a software focus or with a hard 
wa re focus; improve pedagogy in general; enhance understanding of program per
formance; update the technical content to refl ect changes in the industry sin ce the
publication of the second edition in 1998; tie the ideas from the book mo re closely
to the real world outside the computing indust ry; and reduce the size of this book.

First, the table on the next page shows the hardware and software paths th rough
the material. Chapters 1, 4, and 7 are found on both paths, no matter what the expe
rience or the focus. Chapters 2 and 3 are likely to be review material for the hard 
wa re-oriented , but are essential rea ding for the software-oriented, especia lly for
those readers interested in lea rning more about compilers and object-oriented pro
gramming languages. The first sections of Chapters 5 and 6 give overviews for those
with a software focus. Those with a hardware focus, however, will find that these
chapters present core material; they may also, depending on background , want to
read Appendix B on logic design first and the sections on microprogramming and
how to use hardwa re description languages to specify control. Chapter 8 on
input/output is key to readers with a software focus and should be read if time per
mits by others. The last chapter on multip rocessors and clusters is aga in a question
of time for the reader. Even the history sections show this balanced focus; they
include short histories of programming languages, compilers, numerical softwa re,
operating systems, networking protocols, and databases.
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xlv Preface

The next goal was to improve the exposition of the ideas in the book, based on
difficulties mentioned by readers of the second edition. We added five new book
elements to help. To make the book work better as a reference, we placed defini
tions of new terms in the margins at their first occurrence. We hope this will help
readers find the sections when they wa nt to refer back to material they have
already read. Another change was the in sertion of the "Check Yourself" sections,
which we added to help readers to check their comprehension of the material on
the first time through it. A third change is that added extra exercises in the " For
More Pra ctice" section. Fourth, we added the answers to the "Check Yourself" sec
tions and to the For More Practice exercises to help readers see for themselves if
they understand the material by comparing their answers to the book. The final
new book element was inspired by the "Green Card" of the IBM System/360. We
believe that you will find that the MIPS Reference Data Card will be a handy refer
ence when writing MIPS assembly language programs. Our idea is that you will
remove the card from the front of the book, fold it in half, and keep it in your
pocket, just as IBM S/360 programmers did in the 1960s.

Third, computers are so complex today that understanding the performance of
a program involves understanding a good deal about the underlying principles
and the organization of a given computer. Our goa l is that readers of this book
should be able to understand the performance of their progams and how to
improve it. To aid in that goal, we added a new book element called "Understand
ing Progra m Performance" in several chapters. These sections often give concrete
exa mples of how ideas in the chapter affect performance of real programs.

Fourth, in the interva l since the second edition of this book, Moore's law has
marched onward so that we now have processors with 200 million transistors,
DRAM chips with a billion transistors, and clock rates of multiple gigahertz. The
" Real Stuff" exa mples have been updated to describe such chips. This edition also
includes AMD64/1A-32e, the 64-bit address version of the long- lived 80x86 archi
tecture, which appears to be the nemesis of the more recent IA-64. It also reflects
the transition from parallel buses to serial networks and switches. Later chapters
describe Coogle, which was born after the second edition , in terms of its cluster
techn ology and in novel uses of search.

Fifth, although many computer science and engineering students enj oy infor
mation technology for technology's sake, some have more altruistic interests. This
latter group tends to have more women and underrepresented minorities. Conse
quently, we have added a new book element, "Computers in the Rea l World ;' two
page layouts found between each chapter. Our perspective is that information
techn ology is more va luable for humanity than most other topics you could
study-whether it is preserving our art heritage, helping the Third Wo rld, saving
our environment, or even changing political systems-a nd so we demonstrate our
view with concrete examples of nontraditional applications. We think readers of
these segments will have a greater appreciation of the computing culture beyond
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the inherently interesting technology, much like those who read the histo ry sec
tions at the end of each chapter

Finally, books are like people: they usually get larger as they get older. By using
techn ology, we have managed to do all the above and yet shrink the page count by
hundreds of pages. As the table illustrates, the core portion of the book for hard
wa re and softwa re readers is on paper, but sections that some readers would value
more than others are found on the companion CD. This technology also allows
your authors to provide longer histories and more extensive exercises without
concerns about lengthening the book. Once we added the CD to the book, we
could then include a grea t deal of free softwa re and tuto rials that many instructors
have told us they would like to use in their courses. This hybrid paper-CD publi
cation weighs about 30% less than it did six years ago-an impressive goa l for
books as well as for people.

Instructor Support

We have collected a great deal of material to help instructo rs teach courses using
this book. Solutions to exercises, figures from the book, lecnlfe notes, lecture
slides, and other materials are available to adopters from the publisher. Check the
publisher's Web site for more information:

www .mkp . com/companions/1558606041

Concluding Remarks

If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the oppornmity to make even more co rrections. If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at cod3bllgs@mkp.com
or by low-tech mail using the address found on the copyright page. The first person
to repo rt a technical error will be awarded a $1.00 bounty upon its implementation
in futu re printings of the book!

This book is truly collabo rative, despite one of us running a major university.
Together we brainstormed about the ideas and method of presentation, then indi 
vidually wrote about one- half of the chapters and acted as reviewer for every draft
of the other half. The page count suggests we again wrote almost exactly the same
number of pages. Thus, we equally share the blame for what you are about to read.

Acknowledgments for the Third Edition

We'd like to again express our appreciation to Jim Larus fo r his willingness in con
tributing his expertise on assembly language programming, as well as for welcom
ing readers of this book to use the simulator he developed and maintains. Our
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exercise editor Dan Sorin took on the Herculea n task of adding new exercises and
answers. Peter Ashenden worked similarly hard to collect and orga nize the com 
panion CD.

We are grateful to the many instructors who answered the publisher's surveys,
reviewed our proposals, and attended focus groups to analyze and respond to our
plans for this edition. They include the following individuals: Michael Anderson
(University of Hartford), David Bader (University of New Mexico), Rusty Baldwin
(Air Force Institute of Technology), John Barr (Ithaca College), Jack Briner
(Charleston Southern University), Mats Brorsson (KTH , Sweden), Colin Brown
(Franklin University), Lori Ca rter (Point La ma Nazarene University), John Casey
(Northeastern University), Gene Chase (Messiah College), Geo rge Cheney (Univer
sity of Massadm setts, Lowell), Daniel Citron (Jerusalem College of Technology,
Israel), Albert Cohen (I NRIA, France), Lloyd Dickman (PathScale), Jose Duato
(Universidad Politecnica de Valencia , Spain), Ben Duga n (University of Washing
ton), Derek Eager (University of Saskatchewan , Ca nada), Magnus Ekman (Chalm
ers University of Technology, Sweden), Ata Elahi (Southern Connecticut State
University), Soundararajan Ezekiel (I ndiana University of Pennsylvania), Ernest
Ferguson (Northwest Missouri State University), Michael Fry (Lebanon Valley Col
lege, Pennsylvania), R. Gaede (University of Arkansas at Little Rock), Jean-Luc
Gaudiot (University of California, Irvine), Thomas Gendreau (University of Wis
consin, La Crosse), George Geo rgiou (California State University, Sa n Bernardino),
Paul Gillard (Memorial University of Newfoundland , Canada), Joe Grimes (Califor
nia Polytechnic State University, SLO), Max Hailperin (Gustavus Adolphus Col
lege), Jayantha Herath (St. Cloud State University, Minnesota), Mark Hill
(University of Wisconsin , Madison), Michael Hsa io (Virginia Tech), Richard
Hugh ey (University of California, Santa Cruz), Tony Jeba ra (Columbia University),
Elizabeth Johnson (Xavier University), Peter Kogge (University of Notre Dame),
Morris Lancaster (BAH), Doug Lawrence (University of Montana), David Lilja
(University of Minnesota), Nam Ling (Santa Clara University, Ca lifornia), Paul Lum
(Agilent Technologies), Stephen Mann (University of Waterloo, Ca nada), Diana
Marculescu (Carnegie Mellon University), Ma rga ret McMahon (U.S. Naval Acad
emy Computer Science), Uwe Meyer-Baese (Florida State University), Chris Milner
(University of Virginia), Tom Pittman (Southwest Baptist University), Jalel Rejeb
(San Jose State University, Ca lifornia), Bill Siever (University of Missouri, Rolla),
Kevin Skadron (University of Virginia), Pam Smallwood (Regis University, Colo
rado), K. Stuart Smith (Rocky Mountain College), William 1. Taffe (Plymouth State
University), Michael E. Thomodakis (Texas A&M University), Ruppa K. Thulasiram
(University of Manitoba, Canada), Ye Tung (University of South Alabama), Steve
Vander leest (Calvin College), Neal R. Wagner (University of Texas at San Antonio),
and Kent Wilken (University of California, Davis).
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We are grateful too to th ose who ca refully read our draft manuscripts; some
read successive draft s to help ensure new errors didn't creep in as we revised.
They include Krste Asa novic (Massachusetts In stitute of Technology), lea n-Loup
Baer (University of Washington), David Brooks (Harva rd University), Doug Clark
(Princeton University), Dan Connors (University of Colorado at Boulder), Matt
Fa rrens (University of California, Davis), Manoj Franklin (University of Maryland
College Park), lohn Greiner (Rice University), David Harris (Harvey Mudd Col
lege), Paul Hilfinger (University of California, Berkeley), Norm louppi (Hewlett 
Packard), David Kaeli (No rtheastern University), David Oppenheimer (University
of Califo rnia, Berkeley), Timothy Pinkston (University of Southern California),
Mark Smotherman (Clemson University), and David Wood (University of Wis
consin , Ma dison).

To help us meet our goal of crea ting 70% new exercises and solutions for this
edition , we recruited several graduate students recommended to us by their pro
fessors. We are grateful fo r their creativity and persistence: Michael Black (Uni
versity of Ma ryland), Lei Chen (University of Rochester), Nirav Dave
(Massachusetts Institute of Technology), Wael EI Essawy (University of Roches
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Welcome to this book! We're delighted 10 have this opportunity to convey the
excitement of the world of com puter systems. This is not a dry and drc::ary field ,
where progress is glacial and where new ideas atrophy from neglect. No! Comput
ers are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of th e gross nati onal product of
th e United Sl3tes. This unusual industry embra ces innovatio n at a breathtaking
ratc. Since 1985 there have been a number of new computers wh ose introduction
appeared to revolutionize the computing industry; th ese revolutions were cut
short onl y beca use so meone else built an even better computer.

This race to innovate has led to unprecedented progress since the in ception of
electronic computing in the late 1940s. Had the transpo rtatio n industry kept pace
with the computer industry, for example, today we could travel coast to coast in
;Ibout ;1 second fo r roughly a few cents. Take just a moment to co ntemplate how
such an improvement would change society- living in T;lhiti whi le wo rking in
Sa n Fr;lllcisco, go ing to Moscow for an evening at the Bolshoi Ballet-and you ca n
appreciate the implications of such a change.
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Computers have led to :I third revolution for civilization , with the information
revolution taking its place alongside the agricultural and the industrial revolu
tions. The resulting multiplication of humankind's intellectual strength and reach
naturally has affected our everyday lives profoundly and also changed the ways in
which the search for new knowledge is carried out. There is now a new vein of sci
entific investigation, with computational scientists joining theoretical and experi
mental scientists in the exploration of new frontiers in astronomy, biology,
chemistry, physics, ...

The computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications
that were economically infeasible suddenly become practical. In the recent past,
the following applications were "computer science fi ction."

• Automatic teller machines: A computer placed in the wall of banks to dis
tribute and collect cash would have been a ridiculous concept in the 1950s,
when the cheapest computer cost at least $500,000 and was the size of a car.

• Computers in automobiles: Until microprocessors improved dramatically in
price and performance in the ea rly 1980s, computer control of ca rs was ludi 
crous. Today, computers reduce pollution and improve fuel effici ency via
engine controls and increase sa fety through the prevention of dangerous
skids and through the inflation of air bags to protect occupants in a crash.

• Laptop computers: \-VllO would have dreamed that advances in computer
systems would lead to laptop computers, allowing students to bring com 
puters to coffeehouses and on airplanes?

• Human genome project: The cost of computer equipment to map and ana
lyze hum an DNA sequences is hundreds of millions of dollars. It 's unlikely
that anyone would have considered this project had the computer costs been
10 to 100 times higher, as they would have been 10 to 20 years ago.

• World Wide Web: Not in existence at the time of the first edition of this
book, the World Wide Web has transformed our society. Among its uses are
distributing news, sending flowers, buying from online ca talogues, taking
electronic tours to help pick vaca tion spots, finding others who share your
esoteric interests, and even more mundane topics like finding the lecture
notes of the authors of your textbooks.

Clea rly, advances in this technology now affect almost every aspect of our society.
Hardware adva nces have allowed programmers to create wonderfully useful soft
ware, and expla in why computers are omnipresent. Tomorrow's science fi ction
computer applications are the cashless society, automated intelligent high ways,
and genuinely ubiquitous computing: no one carries computers because they are
available everywhere.



1.1 Introduction

Classes of Computing Applications and Their
Characteristics

Although a common set of hardware technologies (discussed in Sections 1.3 and
1.4) is used in computers ranging from smart home appliances to cell phones to
the largest supercomputers, these different applications have different design
requirements and employ the core hardwa re technologies in different ways.
Broadly speaking, computers are used in three different classes of applications.

Desktop computers are possibly the best-known form of computing and are
characterized by the personal computer, which most readers of this book have
probably used extensively. Desktop computers emphasize delivering good perfor
man ce to a single user at low cost and usually are used to execute third -pa rty soft
ware, also called shrink-wrap software. Desktop computing is one of the largest
markets for computers, and the evolution of many computing technologies is
driven by this class of computing, which is only about 30 years old!

Servers are the modern form of what was once mainframes, minicomputers,
and supercomputers, and are usually accessed only via a network. Servers are ori
ented to carrying large workloads, which may consist of either single complex
applications, usually a scientific or engineering application, or handling many
small jobs, such as would occur in building a large Web server. These applications
are often based on softwa re from another source (such as a database or simulation
system ), but are often mod ified or customized for a particular function. Servers
are built from the same basic technology as desktop computers, but provide for
greater expa ndability of both computing and input/output capacity. As we will see
in the Chapter 4, the performance of a server ca n be measured in several different
ways, depending on the application of interest. In general, servers also place a
greater emphasis on dependability, since a crash is usually more costly than it
would be on a single-user desktop computer.

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop machine without a screen or keyboard and with
a cost of a thousand dollars. These low-end servers are typica lly used for fil e stor
age, small business applications, or simple web serving. At the other extreme are
supercomputers, which at the present consist of hundreds to thousands of pro
cessors, and usually gigabytes to terabytes of memory and terabytes to petabytes
of storage, and cost millions to hundreds of millions of dollars. Supercomputers
are usually used for high-end scientific and engineering calculations, such as
weather forecasting, oil exploration , protein structure determination , and other
large-scale problems. Although such supercomputers represent the peak of com
puting capability, they are a relatively small fraction of the servers and a relatively
small fraction of the overall computer market in terms of total revenue.

Embedded computers are the largest class of computers and spa n the widest
range of applications and performance. Embedded computers include the micro
processors found in your washing machine and ca r, the computers in a cell phone
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desktop computer A com
puter designed for use by an
individual, usually incorporat
ing a graphics display, keyboard,
and mouse.

Server A computer used for
running larger programs for
multiple users often simulta
neously and typically accessed
only via a network.

supercomputer A class of
computers with the highest per
formance and cost; they are
configured as servers and typi
cally cost millions of dollars.

terabyte Originally
1,099,511,627,776 (240) bytes,
although some communications
and secondary storage systems
have redefined it to mean
1,000,000,000,000 ( 1012

) bytes.

embedded computer A com
puter inside another device used
for rulming one predetermined
application or collection of soft
ware.
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o r persollal digital assistant, the computers in a video ga me or digital television ,
and the networks of processors that control a modern airplane or ca rgo ship.
Embedded computing systems are designed to run one application or one set of
related applications, which is normally integra ted with the hardware and delivered
as a single system ; thus, despite the large number of embedded computers, most
users never really see that they are using a computer!

Embedded applications often have unique application requirements that com 
bine a minimum performance with stringent limitations on cost or power. For
exa mple, consider a cell phone: the processor need only be as fast as necessary to
handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers often
have the least tolera nce for fa ilure, since the results ca n vary from upsetting (when
your new television crashes) to devastating (such as might occur when the com 
puter in a plane or car crashes). In consumer-oriented embedded applications,
such as a digital home appliance, dependability is achieved primarily through
simplicity-the emphasis is on doing one function, as perfectly as possible. In
large embedded systems, techniques of red undan cy, which are used in servers, are
often employed. Although this book focuses on general-purpose computers, most
of the concepts apply directly, or with slight m odifications, to embedded comput 
ers. In several places, we will touch on some of the unique aspects of embedded
computers.

Figure 1.1 shows that during the last several yea rs, the growth in the number of
embedded computers has been much faster (40% compounded annual growth
rate) than the growth rate among desktop computers and servers (9% annually).
Note that the embedded computers include cell phones, video ga rnes, digital TVs
and set-top boxes, personal digital assistants, and a variety of such consumer
devices. Note that this data does not include low-end embedded control devices
that use 8-bit and 16-bit processors.

Elaboration: Elaborations are short sections used throughout the text to provide
more detail on a particular subject, which may be of interest. Dis interested readers
may skip over an elaboration, s ince the subsequent material will never depend on the
contents of the elaboration .

Many embedded processors are designed using processor cores, a version of a pro
cessor written in a hardware description language such as Veri log or VHDL. The core
allows a designer to integrate other application-spec ific hardware with the processor
core for fabrication on a sing le chip. The availability of synthesis tools that can gener
ate a chip from a Verilog specification, together with the capacity of modern s ilicon
chips, has made such special-purpose processors highly attractive . Since the core ca n
be synthesized for different sem iconductor manufacturing lines, using a core provides
flexibility in choosing a manufacturer as well. In the last few years, the use of cores has
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FIGURE 1.1 The number of distinct processors sold between 1998 and 2002. These counts
are obtained somewhat diffefently, so some caution is fequired in interpfeting the results. For example, the
totals fOf desktops and servers count complete computer systems, because some fraction of these include
ntultiple pfocessors, the number of processors sold is somewhat highef, but probably by only 10--20% in
total (since the sefvers, which ntay average mOfe than one proCessof per system, afe only about 3% of the
desktop sales, which afe pfedominantly single-processof systents). The totals fOf entbedded computers actu
ally count pfocessors, ntany of which are not even visible, and in sonte cases there ntay be multiple pfOCes
sors pef device.

been growing very fast. For example, in 1998 only 31% of the embedded processors
were cores . By 2002, 56% of the embedded processors were cores . Furthermore,
while the overall growth rate in the embedded market has been 40% per year, this
growth has been primarily driven by cores, where the compounded annual growth rate
has been 63%!

Figure 1.2 shows the major architectures sold in these markets with counts for
each architecture, across all three types of products (embedded , desktop, and
server). Only 32-bit and 64-bit processors are included, although 32-bit proces
sors are the vast majority for most of the architectures.
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FIGURE 1.2 Sales of microprocessors between 1998 and 2002 by Instruction set archi
tecture combining all uses. The "other" category refers to processors that are either application
specific or customized architectures. In the case of ARM, roughly 80% of the sales are for cell phones, where
an ARM core is used in conjunction with application-specific logic on a chip.

What You Can Learn in This Book

Successful programmers have always been concerned about the performance of
their programs because getting results to the user quickly is critical in creating
successful software. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer's memory. Thus progra mmers often
followed a simple credo: Minimize memory space to make progra ms fast. In the
last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other th an
those in embedded computing systems.

Programmers interested in perfo rmance now need to understand the issues
that have replaced the simple memory m odel of the 1960s: the hierarchical nature
of memories and the pa rallel nanlfe of processors. Programmers who seek to
build competitive versions of compilers, operating system s, databases, and even
applications will therefo re need to in crease their knowledge of computer orga ni 
zation.



1.1 Introduction

We are honored to have the opportunity to explain what's inside this rev
olutionary machine, unraveling the softwa re below your program and the hard 
wa re under the covers of your computer. By the time you complete this book, we
believe you will be able to answer the following questions:

• How are programs written in a high-level language, such as C or Java, trans
lated into the langll3ge of the hardwa re, and how does the hardwa re execute
the resulting program? Comprehending these concepts fo rms the basis of
understanding the aspects of both the hardwa re and softwa re that affect pro
gram performance.

• What is the interface between the softwa re and the hardwa re, and how does
softwa re instruct the hardwa re to perform needed functions? These con
cepts are vital to understanding how to write many kind s of soft wa re.

• What determines the perform ance of a program, and how ca n a program
mer improve the perfo rm ance? As we will see, this depends on the original
program, the softwa re translation of that program into the computer's lan 
gll3ge, and the effectiveness of the hardwa re in executing the program.

• What techniques ca n be used by hardwa re designers to improve perfor
mance? This book will introduce the basic concepts of modern computer
design. The interested reader will find much more material on this topic in
our adva nced book, A Computer Architecture: A Qllantitlltive Approach .

Without understanding the answers to these questions, improving the perfor
mance of your program on a modern computer, or eva luating what features might
make one computer better than another for a particular application, will be a
complex process of trial and error, rather than a scientific procedure driven by
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the
basic ideas and definitions, places the major components of softwa re and hard 
wa re in perspective, and int roduces integrated ci rcuits, the techn ology that fuels
the computer revolution. In this chapter, and later ones, you will likely see a lot of
new words, or wo rd s th at you may have hea rd, but are not sure what they mea n.
Don't panic! Yes, there is a lot of special termin ology used in describing modern
computers, but the termin ology acnlally helps sin ce it enables us to describe pre
cisely a function or capability. In addition , computer designers (including your
authors) love using acronyms, which are easy to understand once you know what
the letters stand for! To help you remember and locate terms, we have included a
highlighted definition of every term , the first time it appea rs in the text. After a
short time of working with the terminology, you will be fluent, and your fri ends
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acronym A word constructed
by taking the initial letters of
string of words. For example:
RAM is an acronym for Ran
dom Access Memory, and CPU
is an acronym for Central Pro
cessing Unit.
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will be impressed as you correctly use wo rds such as BIOS, DIMM, CPU, cache,
DRAM, ATA, PCI, and many others.

To reinforce how the software and hardwa re systems used to run a program will
affect performance, we use :I specia l sect ion, " Understanding Progra m Perfor
man ce," throughout the book, with the first one appea ring below. These elements
summarize impo rtant insights into program performance.

The performance of a program depends on a combination of the effectiveness of
the algorithms used in the program, the softwa re systems used to create and trans
late the program into ma chine instructions, and the effectiveness of the computer
in executing those instructions, which may include I/O operations. The following
table summarizes how the hardware and softwa re affect performance.

Hardware or software How this component affects Where Is this
component performance topic covered?

Algorithm Detennines both the number of source-level Other books!
statements and the number of I/O operations
executed

Programming language. Detennines the number of machine instructions Chapters 2 and 3
compiler. and architecture for each source~evel statement

Processor and memory Detennines how fast instructions can be Chapters 5. 6.
system executed and 7

I/O system (hardware and Detennines how fast I/O operations may be Chapter 8
operating system) executed

"Check Yourself" sections are designed to help readers assess whether they have
comprehended the major concepts introduced in a chapter and understand the
implications of those concepts. Some "Check Yourself" questions have simple
answers; others are for discussion among a group. Answers to the specific ques
tions ca n be found at the end of the chapter. "Check Yourself" questions appear
only at the end of a section, making it easy to skip them if you are sure you under
stand the material.

I. Section 1.1 showed that the number of embedded processors sold every
yea r greatly outnumbers the number of desktop processors. Ca n you con
firm or deny this insight based on your own experience? Try to count the
number of embedded processors in your home. How does it compa re with
the number of desktop computers in your home?
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2. As mentioned earlier, both the software and hardwa re affect the perfor
mance of a program. Can you think of examples where each of the follow
ing is the right place to look for a perfo rmance bottleneck?

• The algorithm chosen

• The programming language o r compiler

• The operating system

• The processor

• The I/O system and devices

Below Your Program

A typical application, such as a wo rd processo r o r a large database system, may
consist of hundreds of th ousand s to millions of lines of code and rely on sophisti
cated software libraries that implement complex fun ctions in support of the
application. As we will see, the hardware in a computer ca n only execute extremely
simple low-level in structions. To go from a complex application to the simple
instructions involves several layers of softwa re that interpret or translate high 
level operations into simple computer instructions.

These layers of soft wa re are orga nized primarily in a hiera rchical fashion , with
applications being the outermost ring and a va riety of systems software sitting
between the hardwa re and applications softwa re, as shown in Figure 1.3.

There are many types of systems software, but two types of system s softwa re are
central to every computer system today: an operating system and a compiler. An
operating system interfa ces between a user's program and the hardwa re and pro
vides a va riety of services and supervisory functions. Am ong the m ost important
functions are

• handling basic input and output operations

• allocating sto rage and memory

• providing fo r sharing the computer am ong multiple applications using it
simultaneously

Exa mples of operating systems in use today are Windows, Linux, and MacOS.
Compilers perform another vital function: the translation of a program writ 

ten in a high -level language, such as C or Java, into instructions that the hardwa re
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In Paris they simply stared
when 1spoke to them in
French; I never did succeed
in making those idiots
understand their own lan
guage.

Mark Twain, The lll lloeellts
Abroad, 1869

system s software Software
that provides services that are
commonly useful, including
operating systems, compilers,
and assemblers.

operating system Supervising
program that manages the
resources of a computer for the
benefit ofthe programs that run
on that machine.

compiler A program that
translates high-level language
statements into assembly
language statements.
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binary digit Also called a bit.
One of the two numbers in base
2 (0 or 1) that are the compo
nents of information.
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FIGURE 1.3 A simplified view of hardware and software as hierarchical layers, shown as
concentric circles with hardware In the center and applications software outermost. In
complex applications there are often multiple layers of application software as weU. For example, a database
system may run on top of the systems software hosting an application, which in turn nms on top of the
database.

ca n execute. Given the sophistication of modern programming languages and the
simple instructions executed by the hardwa re, the translation from a high-level
language program to hardwa re instructions is complex. We will give a brief over
view of the process and return to the subject in Chapter 2.

From a High-Level Language to the Language of Hardware

To actually speak to an electronic machine, you need to send electrical signals. The
easiest signals fo r machines to understand are on and off, and so the machine
alphabet is just two letters. Just as the 26 letters of the English alphabet do not
limit how much ca n be written , the two letters of the computer alphabet do not
limit what computers ca n do. The two symbols for these two letters are the num 
bers 0 and 1, and we commonly think of the machine language as numbers in base
2, or binary nllmbers. We refer to each "letter" as a binary digit or bit. Computers
are slaves to our commands, which are called instructions. Instructions, which are
just collections of bits that the computer understands, ca n be thought of as num 
bers. For exam ple, the bits

1000110010100000

tell one computer to add two numbers. Chapter 3 explains why we use numbers
for instructions and data; we don't want to stea l that chapter's thunder, but using
numbers fo r both instructions and data is a foundation of computing.
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The first programmers communicated to computers in binary numbers, but
this was so tedious that they quickly invented new notations that were closer to
the way humans think. At first these notations were translated to bill3ry by hand ,
but this process was still tiresome. Using the machine to help program the
machine, the pioneers invented programs to translate from symbolic notation to
binary. The first of these programs was named an assembler. This program trans
lates a symbolic version of an instruction into the binary version. For example, the
programmer would write

add A, S

and the assembler would translate this notation into

1000110010100000

This instruction tells the computer to add the two numbers A and B. The name
coined for this symbolic langll3ge, still used today, is assembly language.

Although a tremendous improvement, assembly language is still far from the
notation a scientist might like to use to simulate fluid flow or that an accountant
might use to balan ce the books. Assembly language requires the programmer to
write one line for every instruction th at the machine will follow, forcing the pro
grammer to think like the machine.

The recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakth roughs in the
ea rly days of computing. Programmers today owe their productivity-and their
sanity-to the creation of high-level programming languages and compilers that
translate programs in such languages into instructions.

A compiler enables a programmer to write this high-level language expression:

A + B

The compiler would compile it into this assembly language statement:

add A, S

The assembler would translate this statement into the binary instruction that tells
the computer to add the two numbers Aand S:

1000110010100000

Figure 1.4 shows the relationships among these programs and languages.
High-level programming langll3ges offer several important benefit s. First, they

allow the programmer to think in a mo re natural language, using English wo rds
and algebraic notation , resulting in programs th at look much more like text th an
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to
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assembler A program that
translates a symbolic version of
instructions into the binary ver
sion.

assembly language A sym
bolic representation of machine
instructions.

high-level programming
language A portable language
such as C, Fortran, or Java com
posed of words and algebraic
notation that can be translated
by a compiler into assembly
language.
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High-level
language
program
(in C)

Assembly
language
program
(for MIPS)

Binary machine
language
program
(for MIPS)

swap(i nt v[ ]. i nt K)
(int t emp:

temp - v[n:
v[ k] - v[ H1 ]:
v[ k+ 1] - temp:

l

j
( Compiler

swa p:
mLll i $2 . $5 .4
add $2 . $4. $2
lw $15. 0($2)
lw $16. 4 ($2)
sw $16. 0($2)
sw $15. 4 ($2)
j r $31

j
( Assembler

000000001010000100000000000 11 000
00000000000110000001100000100001
1000 11 0001 1000100000000000000000
100011 001111 00100000000000000100
10101 100111 100100000000000000000
10101 10001 1000100000000000000100
00000011 111000000000000000001000

FIGURE 1.4 C program complied Into assembly language and then assembled Into
binary machine language. Although the translation from high· level language to binary machine Ian·
guage is shown in tm> steps, some compilers cut out the middleman and produce binary machine language
directly. These languages and this program are examined in more detail in Chapter 2.

be designed acco rding to their intended use. Hence, Fortran was designed for sci
entific computation, Cobol for business data processing, Lisp for symbol manipu 
lation , and so OIL

The second adva ntage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in softwa re develop
ment is that it takes less time to develop programs when they are written in lan 
guages th at require fewer lines to express an idea . Conciseness is a clea r advantage
of high-level languages over assembly language.
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The final advantage is that programming languages allow programs to be inde
pendent of the computer on which they were developed, since compilers and
assemblers ca n translate high -level language programs to the binary instructions
of any ma chine. These three advantages are so strong that today little program
ming is done in assembly language.
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Under the Covers

Now that we have looked below your program to uncover the underlying software,
let's open the covers of the computer to lea rn about the underlying hardwa re. The
underlying hardware in any computer performs the same basic functions: input 
ting data, outputting data, processing data, and storing data. How these functions
are performed is the primary topic of this book, and subsequent chapters deal
with different parts of these four tasks. When we come to an important point in
this book, a point so important that we hope you will remember it forever, we
emphasize it by identifying it as a "Big Picture" item. We have about a dozen Big
Pictures in this book, with the first being the five components of a computer that
perform the tasks of inputting, outputting, processing, and storing data.

The five classic components of a computer are input, output, memory,
data path, and control, with the last two sometimes combined and called
the processor. Figure 1.5 shows the standard organization of a computer.
This organization is independent of hardware technology: You can place
every piece of every computer, past and present, into one of these five cat
egories. To help you keep all this in perspective, the five components of a
computer are shown on the front page of the following chapters, with the
portion of interest to that chapter highlighted.

Figure 1.6 shows a typica l desktop computer with keyboard, mouse, screen,
and a box containing even more hardware. What is not visible in the photograph
is a network that connects the computer to other computers. This photograph
revea ls two of the key components of computers: input d evices, such as the key
board and m ouse, and o utput d evices, such as the screen. As the names suggest,
input feeds the computer, and output is the result of computation sent to the user.
Some devices, such as networks and disks, provide both input and output to the
computer.

The BIG
Picture

input device A mechanism
through which the computer is
fed information, such as the
keyboard or mouse.

output device A mechanism
that conveys the result of a com
putation to a user or another
computer.
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Interlace

Evaluating
performance

1got the idea for the mouse
while attending a talk at a
compl/ter conference. The
speaker was 50 boring that 1
started daydreaming and hit
IIpon the idea.

Doug Engelhart

FIGURE 1.5 The organization of a computer, showing the five classic: components. The
processor gels instructions and data from memory. Input WTiles data to memory, and outpul reads data
from memory. Control sends the signals that determine the operations of the datapath, memory, input, and
output.

Chapter 8 describes input/output 0/0) devices in more detail, but let's take an
introductory tour through the computer hardwa re, starting with the external I/O
devices.

Anatomy of a Mouse

Although many users now take mice for granted, the idea of a pointing device
such as a mouse was first shown by Engelbart using a resea rch prototype in 1967.
The Alto, which was the inspiration fo r all workstations as well as for the Macin
tosh , included a mouse as its pointing device in 1973. By the 1990s, all desktop
computers included this device, and new user interfaces based on graphics dis
plays and mice beca me the norm.
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FIGURE 1.6 A desktop computer. The liquid crystal display (LCD) scre;,on is the primary output
device, and the keyboard and mouse are the primary input devices. The box contains the processor as well
as additional If0 devices. This system is a Dell Optiplex GX260.

The o riginal mouse was elect romechanical and used a large ball that when
rolled across a surface would cause an x and y counter to be incremented. The
amount of increase in each counter told how far the mouse had been moved.

The elect romechan ical mouse has largely been replaced by the newer all-optical
mouse. The optical mouse is actually a miniature optical processo r including an
LED to provide lighting, a tiny black-a nd-white ca mera, and a simple optical p ro
cesso r. The LED illuminates the surface undernea th the mouse; the ca mera takes
1500 sa mple pictures a second under the illumination. Successive pictures are sent
to a simple optica l processor th at compa res the images and determines whether
the m ouse has m oved and how far. The replacement of the elect romechanical
mouse by the elect ro-optica l mouse is an illustration of a common phenomenon
where the decreasing costs and higher reliability of electronics cause an electronic
solution to replace the older electromechanical technology.
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Through compl/ter displays
1have landed an airplane on
the deck ofa moving carrier,
observed a fluclear particle
hit a potential well, j10wn in
a rocket at nearly the speed
oflight and watched a com
puter reveal its innermost
workings.

Ivan Sutherland, the "father"
of computer graphics, quoted
in "Computer Software for
Graphics:' Scientific American,
1984

cathode ray tube (CRT)
display A display, such as a
television set , that displays an
image using an electron beam
scanned across a screen.

pixel The smallest individual
picnlrc element. Screen are
composed of hundreds of thou
sands to millions of pixels, orga
nized in a matrix.

fl at panel display, liquid uys
ta l display A display technol
ogy using a thin layer ofliquid
polymers that can be used to
transmit or block light accord
ing to whether a charge is
applied.

active matrix display Aliquid
crystal display using a transistor
to control the transmission of
light at each individual pixel.
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Through the Looking Glass

The most fascinating I/O device is probably the graphics display. Based on televi
sion technology, a cathode ray tube (CRT) display scans an image one line at a
time, 30 to 75 times per second. At this refresh rate, people don't notice a fli cker on
the screen.

The image is composed of a matrix of picture elements, or pixels, which ca n be
represented as a matrix of bits, called a bit map. Depending on the size of the
screen and the resolution, the display m atrix ranges in size from 512 X 340 to
1920 X 1280 pixels in 2003. The simplest display has I bit per pixel, allowing it to
be black or white. For displays that support 256 different shades of black and
white, sometimes ca lled gray-scale displays, 8 bits per pixel are required. A color
display might use 8 bits for each of the three colo rs (red, blue, and green), for
24 bits per pixel, permitting millions of different colors to be displayed.

All laptop and handheld computers, calculators, cellular phones, and many
desktop com puters use flat-panel or liquid crystal displays (LCDs) instead of
C RTs to get a thin, low-power display. The main difference is that the LCD pixel is
not the source of light; instead it cont rols the transmission of light. A typica l LCD
includes rod -shaped molecules in a liquid that fo rm a twisting helix that bends
light entering the display, from either a light source behind the display o r less
oft en from refl ected light. The rods straighten out when a current is applied and
no longer bend the light; since the liquid crystal m aterial is between two screens
polarized at 90 degrees, the light ca nnot pass th rough unless it is bent. Today,
most LCD displays use an active matrix that has a tiny transistor switch at each
pixel to precisely cont rol current and make sharper images. As in a CRT, a red 
green-blue mask associated with each pixel determines the intensity of the three
colo r components in the final image; in a color active matrix LCD, there are three
transistor switches at each pixel.

No matter what the display, the computer hardwa re support for graphics con 
sists mainly of a raster refresh buffer, or frame buffer, to store the bit map. The
im age to be represented on-screen is sto red in the frame buffer, and the bit pattern
per pixel is read out to the graphics display at the refresh rate. Figure 1.7 shows a
frame buffer with 4 bits per pixel.

The goa l of the bit map is to faithfully represent what is on the screen. The
challenges in graphics systems arise because the human eye is very good at
detecting even subtle changes on the screen . For exa mple, when the screen is being
updated, the eye ca n detect the inconsistency between the po rtion of the screen
that has changed and that which hasn't.

Opening the Box

If we open the box containing the computer, we see a fascinating boa rd of thin
green plastic, covered with dozens of small gray or black rectangles. Figure 1.8
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Frame buffer

Raster scan CRT display
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FtGURE 1.7 Each coordinate In the frame buffer on the left determines the shade of the
corresponding coordinate for the raster scan CRT display on the right. Pixel (Xo, Yo) contains
the bit pattern 0011, which is a lighter shade of gray on the screen than the bit pattern 1101 in pixel (X t, Yt).

power supply

fan with cover

motherboard --0----.1

DVD drive

~~- Zip drive

FtGURE 1.8 Inside the personal computer of Figure 1.6 on page 17. This packaging is sometimes called a clamshell because of the way
it opens with hinges on one side. To see what's inside, let's start on the top left-hand side. The shiny metal box on the top far left side is the power sup
ply. Just below that on the far left is the fan, with its cover pulled b.1ck. To the right and below the fan is a printed circuit board (PC board), called the
motherboard in a Pc, that contains most of the electronics of the computer; Figure 1.10 is a close-up of that boord. The processor is the large raised
rectangle just to the right of the fan. On the right side we see the bays designed to hold types of disk drives. The top bay contains a DVD drive, the mid
dle bay a Zip drive, and the bottom bay contains a hard disk.
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motherboard A plastic board
containing packages of
integrated circuits or chips,
including processor, cache,
memory, and connectors for va
devices such as networks and
disks.

integrated circuit Also called
chip. A device combining doz
ens to millions of transistors.

memory The storage area in
which programs are kept when
they are running and that con
tains the data needed by the
rUfimng programs.

central processor unit (CPU)
Also called processor. The active
part of the computer, which
contains the datapath and COI1

trol and which adds numbers,
tests numbers, signals I/O
devices to activate, and so on.

datapath The component of
the processor that performs
arithmetic operations.

control The component of the
processor that commands the
datapath, memory, and I/O
devices according to the instruc
tions of the program.

dynamic random access
memory (DRAM) Memory
built as an integrated circuit, it
provides random access to any
location.

cache memory A small, fast
memory that acts as a buffer for
a slower, larger memory.
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shows the contents of the desktop computer in Figure 1.6. This motherboard is
shown vertica lly on the left with the power supply. Three disk drives-a DVD
drive, Zip drive, and hard drive-appear on the right.

The small recta ngles on the motherboard contain the devices that drive our
adva ncing technology, integrated circuits or chips. The board is composed of
three pieces: the piece connecting to the I/O devices mentioned ea rlier, the mem 
ory, and the processor. The I/O devices are connected via the two large boa rds
atta ched perpendicularly to the motherboard toward the middle on the right 
hand side.

The memory is where the programs are kept when they are running; it also
contain s the data needed by the running programs. In Figure 1.8, memory is
found on the two small boa rds that are attached perpendicularly towa rd the mid 
dle of the motherboa rd. Each small memory board contains eight integrated cir
cuits.

The processor is the active pa rt of the boa rd , following the instructions of a pro
gram to the letter. It adds numbers, tests numbers, signals I/O devices to activate,
and so on. The processor is the large square below the mem ory boards in the
lower-right co rner of Figure 1.8. Occasionally, people call the processor the CPU,
for the more bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of the pro
cessor in Figure 1.8. The processor comprises two main components: datapath
and control, the respective brawn and brain of the processor. The datapath per
forms the arithmetic opera tions, and control tells the data path , memory, and I/O
devices what to do according to the wishes of the instructions of the program.
Chapter 5 explains the datapath and control for a straightforwa rd implementa 
tion , and Chapter 6 describes the changes needed for a higher-performance
design.

Descending into the depths of any component of the hardware reveals insights
into the machine. The memory in Figure 1.10 is built from DRAM chips. DRAM
stands for dynamic random access memory. Several DRAMs are used together to
contain the instructions and data of a program. In contrast to sequential access
memories such as magnetic tapes, the RAM portion of the term DRAM mea ns
that memory accesses take the same amount of time no matter what portion of
the memory is read. Inside the processor is another type of mem ory-cache
memory. Cache memory consists of a small, fa st memory that acts as a buffer for
the DRAM memory. (The nontechnica l definition of cache is a safe place for hid
ing things.) Cache is built using a different memory technology, static random
access memory (SRAM). SRAM is fa ster but less dense, and hence more expen 
sive, than DRAM.
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FIGURE 1.9 Inside the processor chip used on the board shown In Figure 1.8. The left-hand side is a microphotograph oflh.. Pentium
4 processor chip, and the right-hand side shows the major blocks in the processor.

You may have noticed:1 common theme in both the software and the hardware
descriptions: delving into the depths of hardware or software reveals more infor
mation or, conversely, lower-level details are hidden to offer a simpler model at
higher levels. The use of such layers, or ab stractions, is a principal technique for
designing very sophisticated computer systems.

One of the most important abstractions is the interface between the hardware
and the lowest-level software. Because of its importance, it is given a special

abstraction A model that ren
ders lower-level details of com
puter systems temporarily
invisible in order to facilitate
design of sophisticated systems.
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Processor

Processor
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slots
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and USB
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DlMM (dual inline memory
module) A small board that
contains DRAM chips on both
sides. SIMMs have DRAMs on
only one side. Both DIMMs and
SIMMs are meant to be plugged
into memory slots, usually on a
motherboard.

instruction set architecture
Also called architecture. An
abstract interface between the
hardware and the lowest level
software of a machine that
encompasses all the information
necessary to write a machine
language program that will run
correctly, including instruc
tions, registers, memory access,
I/O, and so a ll.

application binary interface
(ABI) The user portion of the
instruction set plus the operat
ing system interfaces used by
application programmers.
Defines a standard for binary
portability across computers.

implementation Hardware
that obeys the architecture
abstraction.

FIGURE 1.10 Close-up of PC motherboard. This board uses the Intel Pentiwn 4 processor, which is
located on the left-upper quadrant of the board. It is covered by a set of metal fins, which look like a radia
tor. This structure is the hear sink, used to help cool the chip. The main memory is contained on one or
more small boards that are perpendicuiar to the motherboard near the middle. The DRAM chips are
mounted on these bo.uds (caUed DIMMs, for dua l inline memory moouies) and then plugged into the con
nectors. Much of the rest of the bo.ud comprises connectors for external If0 devices: audio/MIDI and par
alleVserial at the right edge, two PCI card slots near the boltom, and an ATA connector used for attaching
hard disks .

name: the instruction set architecture, or simply architecture, of a machine.
The instruction set architecnlfe includes anything programmers need to know to
make a binary machine language program work correctly, including instructions,
I/O devices, and so on. Typica lly the operating system will enca psulate the details
of doing I/O, allocating memory, and other low-level system functions, so that
application programmers do not need to wo rry about such details. The combin a
tion of the basic instruction set and the operating system interface provided for
application programmers is called the application binary interface (AB!).

An instruction set architecture allows computer designers to talk about func
tions independently from the hardwa re that performs them. For exa mple, we can
talk about the functions of a digital clock (keeping time, displaying the time, set
ting the alarm) independently from the clock hardware (quartz crystal, LED dis
plays, plastic buttons). Computer designers distinguish architecture from an
implementation of an architecture along the sa me lines: an implementation is
hardwa re that obeys the architecnlfe abstraction. These ideas bring us to another
Big Picture.
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A Safe Place for Data

Thus far we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile-that is, when it loses power,
it forgets. In contra st, a cassette tape for a stereo doesn't forget the recorded music
when you turn off the power because the tape is magnetic and is thus a nonvola
tile memory techn ology.

To distinguish between the memory used to hold programs while they are run 
ning and this nonvolatile memory used to store programs between runs, the term
primary memory or main memory is used for the former, and secondary mem
ory for the latter. DRAMs have dominated main memory since 1975, but mag
netic disks have dominated secondary memory since 1965. In embedded
applications, FLASH, a nonvolatile semiconductor memory is also used.

Today the primary nonvolatile storage used on all desktop and server comput 
ers is the magnetic hard disk. As Figure 1.11 shows, a magnetic hard disk consists
of a collection of platters, which rotate on a spindle at 5400 to 15,000 revolutions
per minute. The metal platters are covered with magnetic recording material on
both sides, similar to the material found on a cassette or video tape. To read and
write information on a hard disk, a movable arm containing a small electromag
netic coil ca lled a read/write head is located just above each surface. The entire
drive is permanently sealed to control the environment inside the drive, which, in
turn, allows the disk heads to be much closer to the drive surface.

Diameters of hard disks vary by more than a fa ctor of 3 today, from less than I
inch to 3.5 inches, and have been shrunk over the years to fit into new products;
workstation servers, personal computers, laptops, palmtops, and digital cameras
have all inspired new disk form factors. Traditionally, the widest disks have the
highest performance, the smallest disks have the lowest unit cost, and the best cost
per megabyte is usually a disk in between. Although most hard drives appear
inside computers (as in Figure 1.8) , hard drives ca n also be attached using external
interfaces such as Firewire or USB.

The use of mechanical components means that access times for magnetic disks
are much slower than for DRAMs: disks typically take 5- 15 millisecond s, while
DRAMs take 40--80 nanoseconds-making DRAMs about 100,000 times faster.
Yet disks have much lower costs than DRAM for the sa me storage capacity because
the production costs for a given amount of disk storage are lower than for the
same amount of integrated circuit. In 2004, the cost per megabyte of disk is about
100 times less expensive than DRAM.

Thus there are three primary differences between magnetic disks and main
memory: disks are nonvolatile because they are magnetic; they have a slower
access time because they are mechanical devices; and they are cheaper per mega
byte because they have very high storage capacity at a modest cost.
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memory The storage area in
which programs are kept when
they are running and that con
tains the data needed by the
runmng programs.

volatile memory Storage, such
as DRAM, that only retains data
only if it is receiving power.

nonvolatile memory A form
of memory that retains data
even in the absence of a power
source and that is used to store
programs between runs. Mag
netic disk is nonvolatile and
DRAM is not.

primary memory Also called
main memory. Volatile memory
used to hold programs while
they are running; typically
consists of DRAM in today's
computers.

secondary memory Non
volatile memory used to store
programs and data between
runs; typically consists of mag
netic disks in today's computers.

magnetic disk (also called
hard disk) A form of nonvola
tile secondary memory com
posed of rotating platters coated
with a magnetic recording
material.

megabyte Traditionally
1,048,576 (220) bytes, although
some communications and sec
ondary storage systems have
redefined it to mean 1,000,000
(106 ) bytes.
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The BIG
Picture

Chapter 1 Computer Abstractions and Technology

FIGURE 1.11 A disk showing 10 disk platters and the read/ write heads.

Both hardwa re and software consist of hierarchical layers, with each
lower layer hiding details from the level above. This principle of abstrac
tion is the way both hardwa re designers and software designers cope with
the complexity of computer systems. One key interface between the levels
of abstraction is the instruction set arch itecture-the interface between the
hardware and low-level softwa re. This abstract interface enables many
implementations of varying cost and performance to run identical soft 
ware.
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Although hard drives are not rem ovable, there are several storage technologies
in use that include the following:

• Optical disks, including both compact disks (CDs) and digital video disks
(DVDs), constitute the most common form of removable storage.

• Magnetic tape provides only slow serial access and ha s been used to back up
disks, in a role now often replaced by duplicate hard drives.

• FLASH-based removable memo ry cards typically attach by a USB (Universal
Serial Bus) connection and are often used to transfer fil es.

• Floppy drives and Zip drives are a version of magnetic disk technology with
removable fl exible disks. Floppydisks were the original primary storage for
personal computers, but have now largely va nished.

Optical disk technology works in a completely different way than magnetic disk
techn ology. In a CD, data is reco rded in a spiral fashion, with individual bits being
recorded by burning small pits-approximately I micron ( 10--6 meters) in diame
,,,-into the disk surface. The disk is read by shining a laser at the CD surfa ce and
determining by exa mining the refl ected light whether there is a pit or flat (reflec
tive) surface. DVDs use the sa me approach of bouncing a laser beam off a series of
pits and flat surfaces. In addition, there are multiple layers that the laser beam ca n
be focused on , and the size of each bit is much smaller, which together yield a sig
nifica nt increase in capacity.

CD and DVD writers in personal computers use a laser to m ake the pits in the
recording layer on the CD or DVD surface. This writing process is relatively slow,
taking from tens of minutes (for a full CD) to close to an hour (for a full DVD).
Thus, for large quantities a different technique called pressing is used, which costs
only pennies per CD or DVD.

Rewritable CDs and DVDs use a different recording surfa ce that ha s a crystal
line, refl ective material; pits are formed that are not refl ective in a manner similar
to that for a write-once CD or DVD. To erase the CD or DVD, the surfa ce is
heated and cooled slowly, allowing an annealing process to restore the surfa ce
reco rding layer to its crystalline structure. These rewritable disks are the most
expensive, with write-once being cheaper; for read-only disks-used to distribute
softwa re, music, or movies-both the disk cost and recording cost are much
lower.

Communicating with Other Computers

We've explained how we ca n input , compute, display, and save data, but there is
still one missing item found in today's computers: computer networks. Just as the
processor shown in Figure 1.5 on page 16 is connected to memory and I/O
devices, netwo rks connect whole computers, allowing computer users to extend
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floppy disk A portable form of
secondary memory composed of
a rotating mylar platter coated
with a magnetic recording
material.
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lo(;al area network (LAN) A
network designed to carry data
within a geographically confined
area , typically within a single
building.

wide area network A network
extended over hundreds of kilo
meters which can span a conti
nent.
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the power of computing by including commun ication. Networks have become so
popular that they are the backbone of current computer systems; a new machine
without an optional netwo rk interface would be rid iculed. Netwo rked computers
have several major adva ntages:

• Comm unication: Information is exchanged between computers at high
speeds.

• Resource sharing: Rather than each machine having its own I/O devices,
devices ca n be shared by computers on the netwo rk.

• Non/ocal access: By connecting computers over long distances, users need
not be nea r the computer they are using.

Networks va ry in length and perfo rmance, with the cost of communication
increasing acco rding to both the speed of communica tion and the distance that
information travels. Perhaps the most popular type of network is the Ethernet. Its
length is limited to about a kilometer, and the most popular version in 2004 takes
about a tenth of a second to send 1 million bytes of data. Its length and speed
make Ethernet useful to connect computers on the sa me floo r of a building;
hence, it is an example of what is generica lly called a local area network. Local
area networks are interconnected with switches that ca n also provide routing ser
vices and security. Wide area networks cross continents and are the backbone of
the Internet , which supports the Wo rld Wide Web. They are typica lly based on
optical fibers and are leased from telecommunica tion companies.

Networks have changed the face of computing in the last 25 yea rs both by
becoming much more ubiquitous and by dramatic increases in perfo rmance. In
the 1970s, very few individuals had access to elect ronic mail, the Internet and Web
did not exist, and physica lly mailing magnetic tapes was the primary way to trans
fer large amounts of data between two locations. In the 1970s, local area networks
were almost nonexistent, and the few existing wide area netwo rks had limited
capacity and restricted access.

As netwo rking technology improved, it beca me much cheaper and had a much
higher capacity. For example, the first stand ardized loca l area network technology
developed about 25 yea rs ago was a version of Ethernet that had a maximum
capacity (also ca lled bandwidth) of 10 million bits per second , typica lly shared by
tens, if not a hundred, computers. Today, local area netwo rk techn ology offers a
capacity of from 100 million bits per second to a gigabit per second, usually
shared by at most a few computers. Furthermore, lO-gigabit technology is in
development! Optical communications techn ology has allowed similar growth in
the capacity of wide area networks from hundreds of kilobits to gigabits, and from
hundreds of computers connected to a wo rldwide network to millions of com put 
ers connected. This combination of dramatic rise in deployment of networking
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combined with the increases in capacity ha ve made netwo rk techn ology central to
the information revolution of the last 25 years.

Recently, another innovation in networking is reshaping the way computers
communicate. Wireless technology has become widely deployed , and most lap
tops now incorporate this technology. The ability to make a radio in the same low
cost semiconductor techn ology (CMOS) used for memory and microprocessors
enabled a significa nt improvement in price, leading to an explosion in deploy
ment. Currently available wireless technologies, called by the IEEE standard name
802.11, allow for tran smission rates from I to less than 100 million bits per sec
ond. Wireless technology is quite a bit different from wire-based networks, since
all users in an immed iate area share the airwaves.

1. Semiconductor DRAM and disk storage differ significa ntly. Describe the
fundamental difference for each of the following: volatility, access time, and
cost.

Technologies for Building Processors and Memories

Processors and memory have improved at an incredible rate because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.1 2 shows the techn ologies that have
been used over time, with an estimate of the relative performance per unit cost for
each techn ology. This section explores the technology that has fueled the com
puter industry sin ce 1975 and will continue to do so for the foreseeable future.
Since this technology shapes what computers will be able to do and how quickly
they will evolve, we believe all computer professionals should be familiar with the
basics of integrated circuits.

A transistor is simply an on/off switch controlled by electricity. The integrated
circuit (Ie) combined dozens to hundreds of transistors into a single chip. To
describe the tremendous increase in the number of transistors from hundreds to

Technology used In computers Relative performance/ unit cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit 900

1995 Very large scale integrated circuit 2,400,000

2005 Ultra large scale integrated circuit 6,200,000,000

FIGURE 1.12 Relative performance per unit cost of technologies used In computers
over time. Source: Computer Museum, Boston, with 2005 extrapolated by the authors.
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Check
Yourself

t ransistor An on/off switch
controlled by an electric signal.

vacu um tu be An electronic
component, predecessor of the
transistor, that consists of a hol
low glass ntbe about 5 to 10 em
long from which as much air has
been removed as possible and
which uses an electron beam to
transfer data.
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very large 5':ale integrated
(VLSI) circuit A device con
taining hundreds of thousands
to millions of transistors.

I thol/ght {computers} would
be a universally applicable
idea, like a book is. Blit 1
didn't think it would develop
as fast as it did, because 1
didn't envision we'd be able
to get as many parts on a
chip as we finally got. The
transistor came along l/nex
pectedly. It all happened
milch faster thall we
expected.

J. Presper &kert, coinventor of
ENIAC, speaking in 199 1
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FIGURE 1.13 Growth of capacity per DRAM chip over time. The y-axis is measured in Kbits,
where K = 1024 (210 ). The DRAM industry quadrupled capacity almost every 3 years, a 60% increase per
year, for 20 years. This "four times every three years~ estimate was called the DRAM growth rule. In recent
years, the rate has slowed down somewhat and is somewhat closer to doubling every two years or four times
every four years.

millions, the adjective very large scale is added to the term, crea ting the
abbreviation VLSI, for very large scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.1 3
shows the growth in DRAM capacity since 1977. For 20 years, the industry has
consistently quadrupled capacity every 3 years, resulting in atl increase in excess of
16,000 times! This increase in transistor count for an integrated circuit is popu
larly known as Moore's law, which states that transistor capacity doubles every 18
24 months. Moore's law resulted from a prediction of such growth in IC capacity
made by Gordon Moore, one of the founders of Intel during the 1960s.

Sustaining this rate of progress for almost 40 years has required incredible
innovation in the manufa cturing techniques. In Section 1.4, we discuss how inte
grated circuits are manufactured.

Real Stuff: Manufacturing Pentium
4 Chips

Each chapter has a section entitled " Real Stuff" that ties the concepts in the book
with a computer you may use every day. These sections cover the technology
underlying the IBM-compatible PC, the Apple Macintosh, a common server, or
atl embedded computer. For this first "Rea l Stuff" section , we look at how inte
grated circuits are manufactured, with the Pentium 4 as an exa mple.
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Let's start at the beginning. The manufacture of a chip begins with silicon, a
substance found in sand. Because silicon does not conduct elect ricity well, it is
called a semiconductor. With a special chemical p rocess, it is possible to add
materials to silicon that allow tiny areas to transfo rm into one of three devices:

• Excellent conductors of elect ricity (using either microscopic copper or alu 
minum wire)

• Excellent insulators from electricity (like plastic sheathing or glass)

• Areas that ca n conduct or insulate under specia l conditions (as a switch )

Transistors fa ll in the last category. A VLSI circuit , then , is just billions of combi
nations of conductors, in sulators, and switches manufactured in a single, small
package.

The manufacturing p rocess for integrated circuits is critica l to the cost of the
chips and hence im portant to computer designers. Figure 1. 14 shows that process.
The p rocess starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8-12 inches in dia meter and about 12-24 inches long. An ingot
is finely sliced into wafers no mo re than 0. 1 inch thick. These wafers then go
th rough a series of processing steps, during which patterns of chemicals are placed
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silicon A natural element
which is a semiconductor.

semiconductor A substance
that does not conduct electricity
well.

silicon crystal ingot A rod
composed of a silicon crystal
that is between 6 and 12 inches
in diameter and about 12 to 24
inches long.

wafer A slice from a silicon
ingot no more than 0. 1 inch
thick, used to create chips.

Packaged dies

1i:iI1i:iI1i:iI __ P,rt
IQIIQIIQI . tester

Teste d packaged dies

Ship to
customers

FIGURE 1.14 The chip manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.15 on page 31). These pat
terned wafers are then tested with a wafer tester and a map of the good parts is m.1de. Then, the wafers are
diced into dies (see Figure 1.9 on page 21). ln this figure, one wafer produced 20 dies, of which 17 passed
testing. (X means the die is b.1d.) The yield of good dies in this case was 17/20, or 85%. These good dies are
then bonded into packages and tested one more time before shipping the packaged parts to customers. One
bad packaged part was found in this final test.
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defect A microscopic flaw in a
wafer or in patterning steps that
can result in the failure of the
die containing that defect.

die The individual rectangular
sections that are cut from a
wafer, more informally known
as chips.

yield The percentage of good
dies from the total number of
dies on the wafer.
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on each wa fer, creating the transistors, conductors, and insulators discussed ea r
lier. Today's integrated circuits contain only one layer of transistors but may have
from two to eight levels of metal conductor, separated by layers of insulators.

A single microscopic fla w in the wa fer itself or in one of the dozens of pattern 
ing steps ca n result in th at area of the wafer failing. These defects, as they are
called, make it virnlally impossible to mallufacnlre a perfect wafer. To cope with
imperfection, several strategies have been used, but the simplest is to place many
independent components on a single wafer. The patterned wa fer is then chopped
up, or diced, into these components, ca lled dies and more informally kn own as
chips. Figu re 1.1 5 is a photograph of a wa fer containing Pentium 4 microproces
sors before they have been diced; ea rlier, Figure 1.9 on page 21 showed all indi
vidual die of the Pentium 4 and its majo r components.

Dicing enables you to disca rd only those dies that were unlucky enough to con
tain the flaws, rather than the whole wa fer. This concept is quantified by the yield
of a process, which is defined as the percentage of good dies from the total number
of dies on the wafer.

The cost of all integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of large dies that fit on a wa fer. To
reduce the cost, a large die is often "shrunk" by using the next generation process,
which in co rpo rates smaller sizes for both transistors and wires. This improves the
yield and the die count per wafer. (An " Integrated Circuit Cost section on the
CD probes these issues further. )

Once you've found good dies, they are connected to the input/output pins of
a package, using a process called bonding. These packaged parts are tested a fin al
time, sin ce mistakes ca n occur in packagin g, and then they are shipped to cus
tomers.

Another increasingly important design constraint is power. Power is a chal
lenge for two reasons. First, power must be brought in alld distributed around the
chip; modern microprocessors use hundreds of pins just for power and ground!
Similarly, multiple levels of interconnect are used solely for power and ground dis
tribution to po rtions of the chip. Second , power is dissipated as heat and must be
removed. An Intel Pentium 4 at 3.06 GHz burns 82 watts, which must be removed
from a chip whose surface area is just over I cm21 Figure 1.1 6 shows a 3.06 GHz
Pentium 4 mounted on top of its hea t sink, which in turn sits right next to the fan
in the box shown in Figure 1.8 (on page 19)!

What determines the power consumed by all integrated circuit? Ignoring tech
nology and circuit specifics, the power is proportional to the product of the num 
ber of transistors switched times the frequency they are switched. Thus, in general,
higher clock rates or higher transistor counts lead to higller power. For example,
the Intel Itanium 2 has four times the transistors of the Intel Pentium 4; alth ougll
its clock rate is only one-half that of the Pentium 4, the Itanium burns 130 watts
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FtGURE 1.15 An 8-1nch (20~m) diameter wafer containing Intel Pentium 4 processors.
The number of Pentium dies per wafer at 100% yield is 165. Figure 1.9 on page 21 is a photomicrograph of
one of these PentiwlI 4 dies. The die area is 250 mm2, and it contains about 55 miUion transistors.This die
uses a 0.18 micron technology, which means that the smallest transistors are approximately 0.18 microns in
size, although they are typically somewhat smaller than the actual feature size, which refers to the size of the
transistors as ~drawn " versus the final manufactured size. The Pentium 4 is also made using a more
advanced 0.13 micron technology. The several dozen partially rounded chips at the bowldaries of the wafer
are useless; they are included becaU'ie it's easier to create the masks used to pattern the silicon.

compared to the 82 watts consumed by the Pentium 4. As we will see in later chap
ters, both performance and power consumption vary widely.

Elaboration: In CMOS (Complementary Metal Oxide Semiconductor), which is the
dominant technology for integrated circuits, the primary source of power dissipation is
so-called "dynamic power"-that is, power that is consumed during switching. CMOS
technology, unlike earlier technologies, does not directly consume power when it is
idle-hence the use of low clock rates to allow a processor to "sleep" and conserve
power. The dynamic power dissipation depends on the capacitive loading of each tran
sistor, the voltage applied, and the frequency that the transistor is switched :

Power = Capacitive load x Voltage2 x Frequency switched
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FIGURE 1.16 An Intel Pentium 4 (3.06 GHz) mounted on top of Its heat sink, which Is
designed to remove the 82 watts generated within the die.

Power can be reduced by lowering the voltage, which typically occurs with a new gen
eration of technology; in 20 years, voltages have gone from 5V to 1 .5V, significantly
reducing power. The capacitive load per transistor is a function of both the number of
transistors connected to an output (called the fanout) and the technology, which deter
mines the capacitance of both wires and transistors.

Although dynamic power is the primary source of power dissipation in CMOS, static
power dissipation occurs because of leakage current that flows even when a transistor
is off. In 2004, leakage is probably responsible for 20-30% of the power consumption .
Thus, increasing the number of transistors increases power dissipation , even if the
transistors are always off. A variety of design techniques and technology innovations
have been deployed to control leakage.
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A key facto r in determining the cost of an integrated circuit is volume. \Vhich of
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

2. It is less work to design a high -volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

4. Engineering development costs are high and largely independent of vol
ume; thus, the development cost per die is lower with high -volume parts.

5. High -volume parts usually have smaller die sizes than low-volume parts
and therefore have higher yield per wa fer.

Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every
chapter, is to explain some commonly held misconceptions that you might
encounter. We ca ll such misbeliefs fallacies. When discussing a fallacy, we try to
give a counterexa mple. We also discuss pitfalls, or easily made mistakes. Often pit
fall s are genera lizations of principles that are true in a limited context. The pur
pose of these sections is to help you avoid making these mistakes in the machines
you may design or use.

Fallacy: Computers have been built in the same, old-fashioned way for far too
long, and this antiquated model ofcomputation is running Ollt of steam.

For an antiquated model of computation , it surely is improving quickly.
Figure 1.1 7 plots the top performance per yea r of workstations between 1987 and
2003. (Chapter 4 explains the proper way to measure performance.) The graph
shows a line indica ting an improvement of 1.54 per yea r, or doubling performance
approximately every 18 months. In contrast to the statement above, computers are
improving in performance faster today than at any time in their history, with over
a thousandfold improvement between 1987 and 2003!

Pitfall: Ignoring the inexorable progress of hardware when plann ing a new
machine.

Suppose you plan to introduce a machine in three years, and you claim the
machine will be a terrific seller because it's three times as fast as anything available
today. Unfortunately, the ma chine will probably sell poorly because the average
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FIGURE 1.17 Performance Increase of workstations, 1987-2003. Here performance is given
as approximately the number of times faster than the VAX-II/780, which was a commonly used yardstick.
The rate of performance improvement is between 1.5 and 1.6 times per year. These performance numbers
are based on SPECint performance (see Chapter 2) and scaled over time to deal with changing benchmark
sets. For processors listed with xly after their name, x is the model nwnber andy is the speed in megahertz.

performance growth rate for the industry will yield ma chines with the same
performance. For example, assuming a 50% yea rly growth rate in performance, a
machine with performance x today ca n be expected to have performance l.S3x =
3.4x in three yea rs. Your ma chine would have no performance advantage! Many
projects within computer companies are ca nceled , either because they ignore this
rule or because the project is completed late and the performance of the delayed
machine is below the industry average. This phenomenon may occur in any
industry, but rapid improvements in cost/performan ce make it a maj or concern in
the computer industry.



1.6 Concluding Remarks

Concluding Remarks

Although it is difficult to predict exactly what level of cost/performance comput 
ers will have in the future, it's a safe bet that they will be much better than they are
today. To participate in these advances, computer designers and programmers
must understand a wider variety of issues.

Both hardware and software designers construct computer systems in hierar
chicallayers, with each lower layer hiding details from the level above. This princi
ple of abstraction is fundamental to understanding today's computer systems, but
it does not mean that designers ca n limit themselves to knowing a single technol
ogy. Perhaps the most important exa mple of abstraction is the interface between
hardware and low- level software, ca lled the instruction set architecture. Maintain 
ing the instruction set architecture as a constant enables many implementations of
that architecture-presumably va rying in cost and performance-to run identical
software. On the downside, the architecture may preclude introducing innova
tions that require the interface to change.

Key technologies for modern processors are compilers and silicon. Clea rly, to
participate you must understand some of the characteristics of both. Equal in
importance to an understanding of integrated circuit technology is an under
standing of the expected rates of technological change. While silicon fuels the
rapid adva nce of hardware, new ideas in the organization of computers have
improved price/performance. Two of the key ideas are exploiting parallelism in
the processor, typica lly via pipelining, and exploiting loca lity of accesses to a
memory hierarchy, typically via caches.

Road Map for This Book

At the bottom of these abstractions are the five classic components of a
computer: datapath, control, memory, input, and output (refer back to Figure
1.5). These five components also serve as the framework for the rest of the chap
ters in this book:

• Datapath: Chapters 3, 5, and 6

• Control: Chapters 5 and 6

• Memory: Chapter 7

• Inpllt: Chapter 8

• Outpllt: Chapter 8
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Chapter 6 describes how processor pipelining exploits parallelism, and Chapter 7
describes how the memory hierarchy exploits loca lity. The remaining chapters
provide the introduction and the conclusion to this material. Chapter 2 describes
instruction sets- the interfa ce between compilers and the machine-a nd empha 
sizes the role ofcompilers and programming languages in using the features of the
instruction set. Chapter 3 describes how computers perform arithmetic opera
tions and handle arithmetic data. Chapter 4 covers performance and thus
describes how to evaluate the whole computer. Chapter 9 describes multiproces
sors and is included on the CD. Appendix B, also on the CD, discusses logic
design.

Historical Perspective and Further
Reading

For each chapter in the text, a section devoted to a historical perspective can be
found on the CD that accompanies this book. We may trace the development of
an idea through a series of ma chines or describe some important projects, and we
provide references in case you are interested in probing further.

The historical perspective for this chapter provides a background for some of
the key ideas presented in this opening chapter. Its purpose is to give you the
human story behind the technological advances and to place achievements in
their historical context. By understanding the past, you may be better able to
understand the forces that will shape computing in the future. Each historica l per
spectives section on the CD ends with suggestions for further reading, which are
also collected sepa rately on the CD under the section "Further Reading." The rest
of this 'II Section 1.7 is on the CD.

Exercises

The relative time ratings of exercises are shown in square brackets after each exer
cise number. On average, an exercise rated (10 ) will take you twice as long as one
rated [5J . Sections of the text that should be read before attempting an exercise
will be given in angled brackets; for exa mple, <§ 1.2> means you should have read
Section 1.3, "Under the Covers;' to help you solve this exercise. If the solution to
an exercise depends on others, they will be listed in cu rly brackets; for example,
{Ex.I.I } mea ns that you should answer Exercise 1.1 before trying this exercise.

II In More Depth Exercises introduce a new topic or explore a topic in more
detail. Such exercises include sufficient background to understand the concepts, as
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well as exercises to explore its implica tion or use. The In More Depth sections
appea r on the CD associated with the specific chapter.

Starting in Chapter 2, you will also find For More Practice Exercises. For More
Practice Exercises include additional problems intended to give the interested
reader more practice in dea ling with a subject. These exercises have been collected
primarily from ea rlier editions of this book as well as exercises developed by other
instructors. The For More Practice sections appea r on the CD associated with the
speci fi c chapter.

Exercises 1.1 through 1.28 Find the word or phrase from the list below that
best matches the description in the following questions. Use the numbers to the
left of wo rd s in the answer. Each answer should be used only once.

1 abstraction 15 embedded system

2 assembler 16 instruction

3 bit 17 instruction set architecture

4 cache 18 local area network (LAN)

5 centra l processor unit (CPU) 19 memory

6 chip 20 operating system

7 compiler 21 semiconductor

8 computer family 22 server

9 control 23 supercomputer

10 datapath 24 transistor

11 desktop or personal computer 25 VLSI (very large scale integrated circuit)

12 Digital Video Disk (DVD) 26 wafer

13 defect 27 wide area network (WAN)

14 DRAM (dynamic random access memory) 28 yield

1.1 121Active part of the com puter, following the instructions of the programs to
the letter. It adds numbers, tests numbers, controls other components, and so on.

1.2 121 Approach to the design of hardware or software. The system consists of hi
erarchicallayers, with each lower layer hiding details from the level above.

1.3 121 Binary digit.

1.4 121 Collection of implementations of the sa me instmction set architecnlfe.
They are usually made by the same company and vary in price and performance.
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1.5 [2J Component of the computer where all running progrJITIS and associated
data reside.

1.6 [2J Component of the processor that performs arithmetic operations.

1.7 [2J Component of the processor that tells the datapath, memory, and I/O de
vices what to do according to the in structions of the program.

1.8 [2J Computer designed for use by an individual, usually incorporating a
graphics display, keyboard, and mouse.

1.9 [2J Computer in side another device used for running one predetermined ap
plication or collection ofsoftware.

1.10 [2J Computer used for running larger programs for multiple users often si
multaneously and typically accessed only by a network.

1.11 [2J Computer network that connects a group of computers by a common
transmission cable or wireless link within a small geographic area (for example,
within the sa me floor of a building).

1.12 [2J Computer networks that connect computers spanning great distances,
the backbone of the Internet.

1.13 [2J High-performan ce machine, costing more than $1 million.

1.14 [2J Integra ted circuit commonly used to construct main memory.

1.15 [2J Microscopic fla w in a wa fer.

1.16 [2J Nickname for a die or integra ted circuit.

1.17 [2J On/off switch co ntrolled by electricity.

1.18 [2J Optical storage med ium with a storage capacity of more than 4. 7 GB. It
was initially marketed for entertainment and later for computer users.

1.19 [2J Percentage of good dies from the total number of dies on the wa fer.

1.20 [2J Progra m that converts a symbolic version of an instruction into the bi
nary versIon.

1.21 [2J Progra m that manages the resources ofa computer for the benefit of the
programs that run on that machine.

1.22 [2J Program that translates from a higher- level notation to assembly lan
guage.

1.23 [2J Technology in which single chip that contain s hundreds of thousands to
millions of transistors.
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1.24 [2J Single softwa re command to a processor.

1.25 [2J Small, fast memory that acts as a buffer for the main memory.

1.26 [2J Specific interface that the hardwa re provides the low-level software.

1.27 [2J Substance that does not conduct electricity well but is the foundation of
integra ted circuits.

1.28 [2J Thin disk sliced from a silicon crystal ingot, which will be later divided
into dies.

Exercises 1.29 through 1.45 Using the categories in the list below, classify
the following exa mples. Use the letters to the left of the words in the answer.
Unlike the previous exercises, answers in this group may be used more than once.

, applications software f personal computer

b high-level programming language , semiconductor

, input device h supercomputer

d integrated circuit systems software

, output device

1.29 [11 Assembler

1.30 [11 C++

1.31 [1J Liquid crystal display (LCD)

1.32 [11 Compiler

1.33 [11 Cray- l

1.34 [11 DRAM

1.35 [11 IBM PC

1.36 [11 Java

1.37 [1J Sca nner

1.38 [11 Macintosh

1.39 [11 Microprocessor

1.40 [1J Microsoft Word

1.41 [11 Mouse

1.42 [11 Operating system

39



40 Chapter 1 Computer Abstractions and Technology

1.43 (1J Printer

1.44 (11 Silicon

1.45 (11 Spreadsheet

1.46 (15) <§ 1.3> In :1 magnetic disk, the disks containing the data are constantly
rotating. On average it should take half a revolution for the desired data on the disk
to spin under the read/write head. Assuming that the disk is rotating at 7200 revo
lutions per minute (RPM ), what is the average time for the data to rotate under the
disk head? What is the average time if the disk is spinning at 10,000 revolutions per
minute?

1.47 [51 <§ 1.3> A DVD drive, however, works in the Constant Linear Velocity
(eLV) mode. The read head must interact with the concentric circles at a constant
rate, whether it is accessing data from the inner or outermost portions of the disc.
This is affected by varying the rotation speed of the disc, from 1600 RPM at the
center, to 570 RPM at the outside. Assuming that the DVD drive reads 1.35 MB of
user data per second , how many bytes ca n the center circle store? H ow many bytes
ca n the outside circle store?

1.48 [5 J <§ 1.3> If a computer issues 30 network requests per second and each re
quest is on average 64 KB, wiII a 100 Mbit Ethernet link be sufficient?

1.49 [5J <§ 1.3>What kinds of networks do you use on a regular basis? What
kinds of med ia do they use? How much bandwidth do they provide?

1.50 [15) <§ 1.3> End-to-end delay is an important performance m etric for net 
works. It is the time between the point when the source starts to send data and the
point when the data is completely delivered to the destination. Consider two hosts
A and B, connected by a single link of rate R bps. Suppose the two hosts are sepa
rated by 111 m eters, and suppose the propagation speed along the link is 5 m /sec.
Host A is sending a file of size L bits to host B.

a. Obtain an expression for the end -to-end delay in term s of R, L, 111, and s.

b. Suppose there is a router between A and B, and the data from A must be for
warded to B by the router. If the forwarding process takes t sec, then what is
the end -to-end delay?

c. Suppose the router is configured to provide QoS (Quality of Service) control
for different kinds of data. If the data is a multimedia strea m, such as video
conference data, it wiII forward it at a shorter delay of t/2 sec. For other
kinds of data, the delay is t sec. If host A is sending a multimedia stream of
size 2L, what is the end -to-end delay?
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1.51 [ IS) <§§ 1.4, 1.5> Assume you are in a company that will market a certain IC
chip. The fixed costs, including R&D, fabrication and equipments, and so on , add
up to $500,000. The cost per wafer is $6000 , and each wafer ca n be diced into 1500
dies. The die yield is 50%. Finally, the dies are packaged and tested , with a cost of
$10 per chip. The test yield is 90%; only those that pass the test wiII be sold to cus
tomers. If the retail price is 40% more than the cost , at least how many chips have
to be sold to break even?

1.52 [8] <§ 1.6> In this exercise, you will evaluate the performance difference be
tween two CPU architectures, CISC (Complex Instruction Set Computing) and
RI SC (Reduced Instruction Set Computing). Generally speaking, CISC CPUs have
more complex instructions th an RI SC CPUs and therefo re need fewer instructions
to perfo rm the same tasks. However, typically one CISC instruction , since it is
more complex, takes m ore time to complete than a RI SC instruction. Assume that
a certain task needs P CISC instructions and 2P RI SC instruct ions, and that one
CISC instruction takes 8T ns to complete, and one RI SC instruction takes 2T ns.
Under this assumption , which one has the better performance?

1.53 [ IS) <§§ 1.3, 1.6> Suppose there are five com puters connected together to
form a loca l area network. The maximum data transport rate (bandwidth) that the
network cable ca n p rovide is 10 Mbps. If we use a low-end device (Hub) to connect
them, all the computers in the network share the 10 Mbps bandwidth. If we use a
high -end device (Switch ), then any two of the com puters ca n communicate with
each other with out disturbing the other computers. If you wa nt to downloa d a 10
MB file from a remote server, which is located outside your local network, how
long will it take if using a Hub? How long wiII it take if using a Switch? Assume the
other fo ur computers only communicate with each other, and each has a constant
data rate of 2 Mbps.

1.54 [8] <§ 1.6> Sometimes softwa re optimization ca n dra m atically improve the
performance of a computer system. Assume that a CPU ca n perform a multiplica
tion operation in 10 ns, and a subtraction operation in 1 ns. How long will it take
for the CPU to ca lculate the result of d = a x b - a x c? Could you optimize the
equation so that it wiII take less time?

1.55 [8] <§§ 1.1- 1.5> This book covers abstract ions for computer systems at
many different levels of detail. Pick another system with which you are familiar and
write one or two pa ragraphs describing some of the many different levels of ab
straction inherent in that system. Some possibilities include automobiles, homes,
airplanes, geomet ry, the economy, a city, and the government. Be sure to identify
both high-level and low-level abstractions.
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1.56 (15) <§§ 1.1- 1.5> A less technically inclined friend has asked you to explain
how computers work. Write a detailed, one-page description for your friend.

1.57 (101 <§§ 1.1- 1.5> In what ways do you lack a dea r understa nding of how
computers work? Are there levels of abstraction with which you are particularly
unfamiliar? Are there levels ofabstraction with which you are familiar but still have
specific questions about? Write at least one paragraph addressing each of these
questions.

1.58 (15) <§ 1.3> In this exercise, you will lea rn more about interfaces or abstrac
tions. For example, we can provide an abstraction for a disk like this:

Performance characteristics:

• Capacity (how much data ca n it store?)

• Bandwidth (how fast ca n data be transferred between the computer and
disk?)

• Latency (how long does it take to find a specific position for access?)

Functions the interface provides:

• Read/write data

• Seek to a specifi c position

• Status report (is the disk ready to read/write, etc.?)

Following this pattern, please provide an abstraction for a network card.

1.59 [5J <§§ I.4, 1.5> " In More Depth: Integrated Circu it Cost

1.60 [15) <§§ 1.4, 1.5> .. In More Depth: Integra ted Circuit Cost

1.61 (10 ) <§§ I.4 , 1. 5> " In More Depth: Integra ted Circuit Cost

1.62 [5J <§§ I.4, 1.5> " In More Depth: Integrated Circuit Cost

1.63 (10 ) <§§ I.4 , 1. 5> . In More Depth: Integra ted Circuit Cost

1.64 (10 ) <§§ I.4 , 1.5> 'II In More Depth: Integra ted Circuit Cost

§ 1.1 , page 10: Discussion questions: lots of answers are acceptable.
§ 1.3, page 27: Disk memory: nonvolatile, long access time (milliseconds), and cost
$2-4/G B. Semiconductor memory: volatile, short access time (nanoseconds), and
cost $200-400/GB.
§ 1.4, page 33: I , 3, and 4 are valid reasons.





Computers
in the

Real World

Information Technology for the 4
Billion without IT

Throughout this book you will see sections

entitled "Computers in the Real World." These

sect ions describe compell ing uses for comput

ers outside of their typical functions in office

automation and data processing. The goal of

these sections is to illustrate the diversity of

uses for information technology.

Problem to solve: Make information tech

nology ava ilable to the rest of humanity, such

as farmers in rural villages, beyond a multilin

gual character set like Unicode.

Solution: Develop a computer, software, and

a communicat ion system for a rural farming

village. However, there is no electricity, no

telephone, no technical support, and the vil

lagers do not read English.

The Jhai Foundation took on this challenge

for five villages in the Hin Heup district of

Laos. This American-Lao foundation was

founded to raise the standard of living for

rural Laos by developing an export economy.

It also built schools, installed wells, and

started a weaving cooperative. When asked

what they wanted neA't, villagers sa id they

wanted access to the Internet! First, they

wanted to learn the prices before taking their

crops to the nearest market, which is 35 kilo

meters away. They could also learn about the

market abroad to make better decisions on

what crops to grow and to increase their bar

gaining power when it was time to sell them.

Second, they wanted to use Internet telephony

to talk to relatives in Laos and beyond.

The goal was "a rugged computer and

printer assembled from off-the-shelf compo

nents that draws less than 20 watts in normal

use- less than 70 watts when the printer is

printing-and that can survive dirt, heat, and

immersion in water."

The resulting Jhai PC design uses flash

memory instead of a disk drive, thereby elimi

nating moving parts from the PC to make it

more rugged and easier to maintain. Rather

than use a power-hungry cathode ray tube, it

has a liquid-crystal display. To lower costs and

power, it uses an 80486 microprocessor. The

power is supplied by a car battery, which can

be charged by a turning bicycle crank. An old



A laotian \llIIager who wanted

access to the Internet.
dot matrix printer completes the hardware,

bringing the cost to about $400. The operating

system is Linux, and the applications are
accounting, email, and letter writing, which

expatriates are tailoring to the Lao language.

The communication solutio n is to adapt the
WiFi (IEEE 802.llb) wireless network (see

Chapter 8) . The plan is to boost the signal
using larger antennas and then place repea ter

stations o n the hilltops between the village and

the market city. These repea ters ge t their

power from solar ce lls. The local phone system

ties to it at the far end, which completes the
connection to the Internet. Twenty- five volun

tee rs in Silicon Valley are developing this Thai

PC network.

An alternative attempt is the simputer,

which stands for "simple, inexpensive, multi 

lingual computer." Indian computer scientists

des igned this personal digital ass istant, which
is similar to the Palm Pilot, to meet the needs

of villagers in third world countries. Input is

through a touch screen and speech recogni 

tion so that people need not be able to write to
use it. It uses three AAA batteries, which last 3

to 4 hours. The cos t is $250, and there is no
special solution for communication. It's

unclear whether village rs in the developing

world would spend $250 on a PDA, where

even batteries are a luxury.

To learn more see these references on

the III library

"Making the Web world-wide," Tile Eco/lomist, Septem 
ber 26, 2002, www.jhai.orgleconornist

The Jhai Foundation, www.j ha i.org/

"Computers for the Third Wo rld," Scielltiftc AmcriCtJIl,
October 2002

Indian \llIIager using the Slmputer.
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48 Chapter 2 Instructions: Language of the Computer

Introduction

instruction set The vocabu
lary of commands understood
by a given architecnlre.

To command a computer's hardware, you must speak its language. The wo rds of a
computer 's language are called instructions, and its vocabulary is ca lled an
instruction set. In this chapter, you will see the instruction set of a real computer,
both in the form written by human s and in the form read by the computer. We
introduce instructions in a top- down fashion. Starting from a notation that looks
like a restricted programming language, we refine it step-by-step until you see the
real language of a real computer. Chapter 3 continues our downwa rd descent,
unveiling the representation of integer and floating-point numbers and the hard 
wa re that operates on them.

You might think that the languages of computers would be as diverse as th ose
of humans, but in reality computer languages are quite similar, more like regional
dialects than like independent languages. Hence, once you lea rn one, it is easy to
pick up others. This similarity occurs because all computers are constructed from
hardwa re technologies based on similar underlying principles and because there
are a few basic operations that all computers must provide. Moreover, computer
designers have a common goa l: to find a language that makes it easy to build the
hardwa re and the compiler while maximizing performance and minimizing cost.
This goa l is time-honored; the following quote was written before you could buy a
computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain {instrllction
sets} that are in abstract adequate to control and calise the execution ofany se
quence ofoperations. ... The really decisive considerations from the present
point of view, in selecting an {instrllction set}, are more ofa practical
nattlre: simplicity ofthe equipment demanded by the {instruction set}, and the
clarity ofits application to the actually important problems together with the
speed of its handling of those problems.

Burks, Goldstine, and yon Neumann, 1947

The "simplicity of the equipment" is as valuable a considera tion for com put 
ers of the 2oo0s as it was for th ose of the 1950s. The goal of this chapter is to
teach an instruction set that follows this advice, showing both how it is rep re
sented in hardware and the relationship between high-level programming lan 
gua ges and this more primitive one. Our examples are in the C programming
language; Section 2. 14 shows how these would change for an object-o riented
language like Java.



2.2 Operations of the Computer Hardware

By lea rning how to represent instructions, you will also discover the secret of
computing: the stored-program concept. Moreover you will exercise your "for
eign language" skills by writing programs in the language of the computer and
running them on the simulator that comes with this book. You will also see the
impact of programming languages and compiler optimization on performance.
We conclude with a look at the historical evolution of instruction sets and an
overview of other computer dialects.

The chosen instruction set comes from MIPS, which is typical of instruction
sets designed since the 1980s. Almost 100 million of these popular microproces
sors were manufactured in 2002, and they are found in products from ATI Tech 
nologies, Broadcom, Cisco, NEC, Nintendo, Silicon Graphics, Sony, Texas
Instruments, and Toshiba, among others.

We reveal the MIPS instruction set a piece at a time, giving the rationale along
with the computer strucnlfes. This top-down , step-by-step tutorial weaves the
components with their explanations, making assembly language more palatable.
To keep the overall picture in mind, each section ends with a figure summarizing
the MIPS instruction set revealed thus far, highlighting the portions presented in
that section.

Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The MIPS assembly language
notation

adda , b , c

instructs a computer to add the two va riables band c and to put their sum in a.
This notation is rigid in that each MIPS arithmetic instruction performs only

one operation and must always ha ve exactly three variables. For exa mple, suppose
we wa nt to place the sum of variables b, c, d, and e into va riable a. (I n this section
we are being deliberately vague about what a "variable" is; in the next section we'll
expla in in detail.)

The following sequence of instructions adds the four va riables:

49

stored -program concept The
idea that instructions and data
of many types can be stored in
memory as numbers, leading to
the stored program computer.

There must certainly be
instrllctions for performing
the fundamental arithmetic
operations.

Burks, Goldstine, and von
Neumann, 1947

adda , b , c
adda , a , d
adda , a , e

# The sum of band c is placed in a .
# The sum of b , c , and d is now in a .
# The sum of b , c , d , and e is now in a .
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Thus, it takes three instructions to take the sum of four va riables.
The words to the right of the sharp symbol (It) on each line above are comments

for the human reader, and the computer ignores them. Note that unlike other pro
gramming languages, each line of this language ca n contain at most one instruction.
Another difference from C is that comments always terminate at the end of a line.

The natural number of opera nds for an operation like addition is three: the
two numbers being added together and a place to put the sum. Requiring every
instruction to have exactly three opera nds, no more and no less, conforms to the
philosophy of keeping the hardware simple: hardware for a va riable number of
opera nds is more complicated than hardware for a fi xed number. This situation
illustrates the first of four underlying principles of hardwa re design:

Design Principle 1: Simplicity favors regularity.

We can now show, in the two exa mples that follow, the relationship of pro
gra ms written in higher-level programming languages to programs in this more
primitive notation.

Compiling Two C Assignment Statements into MIPS

This segment of a C program contains the five va riables a, b, C, ct, and e .
Since lava evolved from C, this example and the next few work for either
high -level programming language:

a
d

b + c ;
a e ;

ANSWER

The translation from C to MIPS assembly language instructions is per
formed by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result in
one destination operand. Hence, the two simple statements above compile
directly into these two MIPS assembly language instructions:

adda , b , c
subd , a , e
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Compiling a Complex C Assignment into MIPS

A somewhat complex statement contains the fi ve variables f, g, h, i, and j:

f = (g + h) - (i + j) ;

\Vhat might a C compiler produce?

The compiler must break this statement into several assembly instructions
since only one operation is performed per MIPS instruction. The first MIPS
instruction calculates the sum of 9 and h. We must place the result some
where, so the compiler crea tes a temporary variable, called to:

add tO , g , h # temporary variable to con tain s 9 + h

Although the next operation is subtract, we need to calculate the sum of i
and j before we ca n subtra ct. Thus, the second instruction places the sum i
and j in another temporary variable crea ted by the compiler, called ti:

add tl , i , j It temporary variable tl con tain s i + j

Finally, the subtract instruction subtracts the second sum from the first and
places the difference in the va riable f, completing the compiled code:

sub f , tO , ti/t f gets to - tl, which is (g + h) - (i + j)

Figure 2. 1 summarizes the portions of MIPS assembly language described in
this section. These instructions are symbolic representations of what the MIPS
processor acnlally understands. In the next few sections, we will evolve this sym
bolic representation into the real language of MIPS, with each step making the
symbolic representation more concrete.

MIPS assembly language

EXAMPLE

ANSWER
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Category

Arithmetic

Instruction

odd

subtract

Example

add a.b.c
sub a.b.c

Meaning

a - b + c
a - b c

Comments

Always three operands

Always three operands

FIGURE 2.1 MIPS architecture revealed In Section 2.2. The real computer operands will be
unveiled in the next section. Highlighted portions in such summaries show MIPS assembly language struc
tures imroduced in this section; for this first figure, aU is new.
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For a given function, which programming language likely takes the most lines of
code? Put the three representations below in order.

1. lava

2. C

3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a
software interpreter. The instruction set of this interpreter is called Java bytecodes,
which is quite different from the MIPS instruction set. To get performance close to the
equivalent C program, Java systems today typically compile Java bytecodes into the
native instruction sets like MIPS . Because this compilation is normally done much later
than for C programs, such Java compilers are often called Just-in-Time (J IT) compilers .
Section 2 .10 shows how JITs are used later than C compilers in the startup process,
and Section 2 .13 shows the performance consequences of compiling versus interpret
ing Java programs . The Java examples in this chapter skip the Java bytecode step and
just show the MIPS code that are produced by a compiler.

Operands of the Computer Hardware

word The natural unit ofaccess
in a computer, usually a group
of 32 bits; corresponds to the
size of a register in the MIPS
architecture.

Unlike programs in high-level languages, the operands of arithmetic instructions
are restricted; they must be from a limited number of special locations built
directly in hardware called registers. Registers are the bricks of computer construc
tion: registers are primitives used in hardware design that are also visible to the
programmer when the computer is completed. The size of a register in the MIPS
architecture is 32 bits; groups of 32 bits occur so frequently that they are given the
name word in the MIPS architecture.

One major difference between the variables of a programming language and
registers is the limited number of registers, typically 32 on current computers.
MIPS has 32 registers. (See Section 2.19 for the history of the number of regis
ters.) Thus, continuing in our top-down , stepwise evolution of the symbolic
representation of the MIPS language, in this section we have added the restriction
that the three operands of MIPS arithmetic instructions must each be chosen
from one of the 32 32-bit registers.

The reason for the limit of 32 registers may be found in the second of our four
underlying design principles of ha rdware technology:



2.3 Operands of the Computer Hardware

Design Principle 2: Sm aller is faster.

A very large number of registers may increase the clock cycle time simply because
it takes elect ronic signals longer when they must travel farther.

Guidelines such as "smaller is faster" are not absolutes; 31 registers may not be
faster than 32. Yet, the truth behind such observations causes computer designers
to take them seriously. In this case, the designer must balance the craving of pro 
grams fo r mo re registers with the designer's desire to keep the clock cycle fast.
Another reason for not using more than 32 is the number of bits it would take in
the in struction format, as Section 2.4 demonstrates.

Chapters 5 and 6 show the central role that registers play in hardwa re construc
tion; as we shall see in this chapter, effective use of registers is key to program per
formance.

Although we could simply write instructions using numbers for registers, from
o to 31, the MI PS convention is to use two-character na mes following a dollar sign
to represent a register. Section 2.7 will explain the reasons behind these names.
For now, we will use $sO, $sl , ... for registers that correspond to variables in C
and Java programs and $tO, H I, ... for temporary registers needed to compile
the program into MIPS instructions.

Compiling a C Assignment Using Registers

It is the compiler's job to associate program variables with registers. Take, for
in stance, the assignment statement from our ea rlier example:

f = (g + h) - (i + j) ;

The va riables f , g, h, i , and j are assigned to the registers $sO, $sl , $s2,
$s3 , and $s 4, respectively. What is the compiled MIPS code?

The compiled program is very similar to the prior exa mple, except we replace
the va riables with the register names mentioned above plus two temporary
registers, $tO and $t I , which co rrespond to the tempo rary va riables above:

EXAMPLE

ANSWER
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add $t O,$ sl , $s2
add $t1, $s3 , $s 4
sub $sO , $t O, $t l

# r egis t e r $t O con t ains g + h
# r egis t e r $t1 contains i + j
# f ge t s $tO - HI, which is (g + h) - (i + j)
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d ata transfer instructio n A
command that moves data
between memory and registers.

address A value used to delin
eate the location of a specific
data element within a memory
array.

Chapter 2 Instructions: Language of the Computer

Memory Operands

Programming languages have simple va riables that contain single data elements as
in these examples, but they also have more complex data structures-a rrays and
structures. These complex data structures ca n contain many m ore data elements
than there are registers in a computer. How ca n a computer rep resent and access
such large structures?

Recall the five components of a computer introduced in Chapter 1 and
depicted on page 47. The processor ca n keep only a small amount of data in regis
ters, but computer memory contains millions of data elements. Hence, data struc
tures (arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS
instructions; thus, MIPS must include in structions that transfer data between
memory and registers. Such instructions are called data transfer instruction s. To
access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting at O. For example, in Figure 2.2, the address of the
third data element is 2, and the value ofMemory(2] is 10.

The data transfer in struction that copies data from memory to a register is tra 
ditionally called load. The format of the load instruction is the name of the opera
tion followed by the register to be loaded, then a constant and register used to
access memo ry. The sum of the constant portion of the instruction and the con 
tents of the second register fo rms the mem ory address. The acnlal MIPS name fo r
this instruction is 1w, standing for load word.

•

3 100

2 10

1 101

0 1

Address Data

Processor Memory

FIGURE 2.2 Memory addresses and contents of memory at those Ioc:atlons. This is a sim
plification of the MIPS addressing; Figure 2.3 shows the actual MIPS addressing for sequential word
addresses in memory.
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Compiling an Assignment When an Operand Is in Memory

Let's assume th at A is an array of 100 wo rds and that the compiler has
associated the va riables 9 and h with the registers $ s 1 and $s 2 as before.
Let's also assume that the starting address, or base address, of the array is in
$s3 . Compile this C assignment statement:

9 = h + A[8] ;

Although there is a single operation in this assignment statement, one of the
operands is in memory, so we must first transfer A[8] to a register. The ad
dress of this array element is the sum of the base of the array A, found in reg
ister $ s3, plus the number to select element 8. The data should be placed in a
temporary register for use in the next instruction. Based on Figure 2.2, the
first compiled instruction is

lw $t O,8($s3l # Temporary r eg $t O ge t s A[8]

(On the next page we'll make a slight adjustment to this instruction , but we'll
use this simplified version fo r now.) The following instruction ca n operate on
the value in $tO (which equals A[8]) since it is in a register. The instruction
must add h (contained in $s 2) to A[ 8] ($ t O) and put the sum in the register
corresponding to g (associated with $s 1):

add $sl ,$ s2 , $tO # g = h + A[8]

The constant in a data transfer in struction is called the offset, and the register
added to form the address is ca lled the base register.

EXAMPLE

ANSWER

55
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Hardware
Software
Interface

alignment restriction
A requirement that data be
aligned in memory on natural
boundaries
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In addition to associating va riables with registers, the compiler alloca tes data
structures like arrays and structures to locations in memo ry. The compiler ca n
then place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in m any programs, most architectures address indi
vidual bytes. Therefo re, the address of a word matches the address of one of the 4
bytes within the wo rd. Hence, addresses of sequential wo rd s differ by 4. For exa m 
ple, Figure 2.3 shows the actual MIPS addresses for Figure 2.2; the byte address of
the third word is 8.

In MIPS, wo rds must start at addresses that are multiples of 4. This require
ment is ca lled an alignment restrictio n, and many architectures have it. (Chapter
5 suggests why alignment leads to faster data transfers.)

Computers divide into those that use the address of the leftmost or "big end"
byte as the wo rd address versus th ose that use the rightm ost or "little end" byte.
MIPS is in the Big Endian ca mp. (Appendix A, page A-43, shows the two options
to number bytes in a word.)

Byte addressing also affects the array index. To get the proper byte address in
the code above, the offset to be added to the base register $s3 must be 4 X 8, or 32,
so that the load address will select A[8] and not A[8/4] . (See the related pitfall
of page 144 of Section 2.1 7.)

,
12 100

8 10

4 101

0 1

Address Data

Processor Memory

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words.
The changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word
addresses are multiples of four : there are four bytes in a word.
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The instruction complementary to load is traditionally ca lled store; it copies
data from a register to memory. The format of a store is similar to that of a load:
the name of the operation, followed by the register to be stored, then offset to
select the array element, and finally the base register. Once again, the M IPS
address is specified in part by a constant and in part by the contents of a register.
The actual MIPS name is 5W, standing for store word.

Compiling Using Load and Store

Assume variable h is associa ted with register $ 5 2 and the base address of the
array A is in $53. What is the MIPS assembly code for the C assignment state
ment below?

A[12] ~ h + A[8] ;

Although there is a single operation in the C statement, now two of the oper
ands are in memory, so we need even more M IPS instructions. The first two
instructions are the same as the prior exa mple, except this time we use the
proper offset for byte addressing in the load word instruction to select A[8],
and the add instruction places the sum in $tO:

EXAMPLE

ANSWER
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lw HO , 32 ($53l

add HO , $s2 , HO

# Temporary reg $tO gets A[8]

# Temporary reg $tO gets h + A[8]

The final instruction stores the sum into A[ 12], using 48 as the offset and
register $ 53 as the base register.

sw 1t0 . 48(1s31 # Stores h + A[8] back into A[12]

Constant or Immediate Operands

Many times a program will use a constant in an opera tion- for exa mple, incre
menting an index to point to the next element of an array. In fact, more than half
of the M IPS arithmetic instructions have a constant as an opera nd when running
the SPEC2000 benchmarks.
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Many programs have more va riables than computers have registers. Consequently,
the compiler tries to keep the most frequently used va riables in registers and
places the rest in memory, using loa ds and stores to move va riables between regis
ters and memo ry. The process of putting less commonly used va riables (or th ose
needed later) into mem ory is called spilling registers.

The hardwa re principle relating size and speed suggests that memory must be
slower than registers sin ce registers are smaller. This is indeed the case; data
accesses are faster if data is in registers in stead of memory.

Moreover, data is more useful when in a register. A MIPS arithmetic in struc
tion ca n read two registers, operate on them, and write the result. A MIPS data
tran sfer instruction only reads one operand or writes one operand , without oper
ating on it.

Thus, MIPS registers take both less time to access and have higher th roughput
than memory--a rare combination- m aking data in registers both faster to
access and simpler to use. To achieve highest performance, compilers must use
registers effi ciently.

Using only the instructions we have seen so far, we would have to load a con 
stant from mem ory to use one. (The constants would have been placed in mem 
o ry when the program was loaded.) For example, to add the constant 4 to register
$s3, we could use the code

l w $t O, AddrCons t an t4 ( $sl) # $t O
add $s3 , $s3 ,$ tO # $s3

cons t an t 4
$s3 + $tO ($tO 4 )

assuming that Add r Cons t a nt4 is the memory address of the constant 4.
An alternative that avoids the load in struction is to offer versions of the arith 

metic instructions in which one operand is a constant. This quick add instruction
with one constant operand is ca lled add immediate or addi . To add 4 to register
$s3,we just write

addi $s3 , $s3 ,4 It$s3 = $s3 + 4

Immediate instructions illustrate the third hardwa re design principle, first
mentioned in the Fallacies and Pitfalls of Chapter 1:

Design Principle 3: Make the common case fast.

Constant operand s occur frequently, and by including constants inside arithmetic
instructions, they are much faster than if constants were loaded from memory.
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MIPS operands

Name Example Comments

32 registers
SsO. Ssl. • • • • Fast locations for data. In MIPS, data must be in registers to perform arithmetic.

stO. stl. • • •

Memory(OI, Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so
230 memory Memory(4l, ... , sequential word addresses differ by 4 . Memory holds data structures, arrays, and
words

Memory(42949672921 spilled registers .

MIPS assembly language

Category Instruction Example Meaning Comments

odd ~dd SsLSs2.Ss3 $sl _ Ss2 + Ss3 Three operands; data in registers

Arithmetic subtract sub SsLSs2.Ss3 Ss l_ Ss2_Ss3 Three operands; data in registers

add immediate ~ddi Ss1.Ss2.100 $sl - Ss2 + 100 Used to add constants

load word
"

$s1.100(Ss2) $sl - Memory[Ss2 + 100] Data from memory to register
Data transfer

store word " $sLl00(Ss2) Memory(Ss2 + 100] - Ssl Oata from register to memory

FIGURE 2.4 MIPS architecture revealed throug h Section 2.3. Highlighted portions show M IPS assembly language
structures introduced in Section 2.3.

Figure 2.4 summarizes the portions of the symbolic representation of the M IPS
instruction set described in this section. Loa d word and store wo rd are the
instructions that copy wo rd s between memory and registers in the MIPS architec
ture. Other brands of computers use instructions along with load and sto re to
tran sfer data. An architectu re with such alternatives is the Intel IA-32, described in
Section 2. 16.
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Given the importance of registers, what is the rate of increase in the number of
registers in a chip over time?

I. Very fast: They in crease as fa st as Moore's law, which predicts doubling the
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the
computer, there is inertia in instruction set architecture, and so the number
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a 64
bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight,
they are officially ca lled MIPS-32 and MIPS-64. In this chapter, we use a subset of
MIPS-32. Appendix D shows the differences between MIPS·32 and MIPS-54.

Check
Yourself
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The MIPS offset plus base register addressing is an excellent match to structures as
well as arrays, since the register can point to the beginning of the structure and the off
set can select the desired element. We'll see such an example in Section 2.13.

The register in the data transfer instructions was originally invented to hold an
index of an array with the offset used for the starting address of an array. Thus, the
base register is also called the index register. loday's memories are much larger
and the software model of data allocation is more sophisticated, so the base
address of the array is normally passed in a register since it won't fit in the offset,
as we shall see .

Section 2.4 explains that since MIPS supports negative constants, there is no need
for subtract immediate in MIPS.

Representing Instructions in the
Computer

binary digit Also called binary
bit. One of the two numbers in
base 2, 0 or 1, that are the com
ponents of information.

We are now ready to explain the difference between the way humans instruct
computers and the way computers see instructions, First, let's quickly review how
a computer represents numbers,

Humans are taught to think in base 10, but numbers may be represented in any
base, For example, 123 base 10 = 1111011base2.

Numbers are kept in computer hardware as a series of high and low electronic
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are
called decimal numbers, base 2 numbers are called binary numbers.) A single digit
of a binary number is thus the "a tom" of computing, since all information is com
posed of binary digits or bits. This fundamental building block can be one of two
values, which can be thought of as several alternatives: high or low, on or off, true
or false, or I or O.

Instructions are also kept in the computer as a series of high and low electronic
signals and may be represented as numbers. In fact , each piece of an instruction
can be considered as an individual number, and placing these numbers side by
side forms the instruction.

Since registers are part of almost all instructions, there must be a convention to
map register names into numbers. In MIPS assembly language, registers $50 to
$57 map onto registers 16 to 23, and registers $tO to $t7 map onto registers 8 to
IS. Hence, $5 0 mea ns register 16, $ s 1 mea ns register 17, $ s 2 mea ns register
18, ... , $tO means register 8, $t1 means register 9, and so on. We'll describe the
convention for the rest of the 32 registers in the following sections.
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Translating a MIPS Assembly Instruction into a Machine Instruction

Let's do the next step in the refinement of the MIPS language as an example.
We' ll show the real MIPS language version of the in struction represented
symbolica lly as

add $tO,$sl,$s2

first as a combination of decimal numbers and then of binary numbers.

The decimal representation is
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EXAMPLE

ANSWER

o 17 18 8 o 32

Eadl of these segm ents of an instruction is called a fie/d. The first and last fields
(containing 0 and 32 in this case) in combination tell the MIPS computer that
this instruction performs addition. The second fi eld gives the number of the reg
ister that is the first source operand of the addition operation ( 17 = $s 1), and the
third field gives the other source operand for the addition ( 18 = $s 2).The fourth
field contains the number of the register that is to receive the sum (8 = $to).The
fifth field is unused in this instruction, so it is set to O. Thus, this instruction adds
register $s 1 to register $s 2 and places the sum in register $to.

This instruction ca n also be represented as fields of binary numbers as op
posed to decimal:

000000

6 bits

10001

5 bits

10010

5 bits

01000

5 bits

00000

5 bits

100000

6 bits

To distinguish it from assembly language, we call the numeric version of
instructions machine language and a sequence of such instructions machine code.

This layout of the instruction is called the instruction format. As you ca n see
from counting the number of bits, this MIPS in struction takes exactly 32 bits
the same size as a data word. In keeping with our design principle that simplicity
fa vors regularity, all MIPS instructions are 32 bits long.

It would appear that you would now be reading and writing long, tedious strings of
binary numbers. We avoid that tedium by using a higher base than binary that con -

machine language Binary rep
resentation used for communi
cation within a computer
system.

instruction format A form of
representation of an instruction
composed of fields of binary
numbers.
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Hexadecimal Hexadecimal Hexadecimal Hexadecimal

O~, 0000_ 4~ 0100"", s,., 1000_ Che• 1100_

1~, 0001""0 5~ 0101""0 9~, 1001_ d~ 1101_

2~, 001°""0 6~ 011°""0 .~, 101O""" .~ 111O""",

",", 0011"'0 7~ 0111"'0 ,,", 1011_ f~ 1111_

FIGURE 2.5 The hexadeclmal-blnary conversion table. Just replace one hexadecimal digit by the corresponding four binary
digits, and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

hexadecimal Numbers in
base 16.

verts easily into binary. Since almost all computer data sizes are multiples of 4, hexa
decimal (base 16) numbers are popular. Since base 16 is a powerof2, we can trivially
convert by replacing each group of four binary digits by a single hexadecimal digit,
and vice versa. Figure 2.5 converts hexadecimal to binary, and vice versa.

Because we frequently deal with different number bases, to avoid confusion we
will subscript decimal numbers with tefl , binary numbers with two, and hexadeci
mal numbers with hex. (If there is no subscript, the default is base 10.) By the way,
C and Java use the notation Oxnnnn for hexadecimal numbers.

Binary-tcHIexadecimal and Back

EXAMPLE Convert the following hexadecimal and binary numbers into the other base:
eca8 6420hex

0001 0011 0101 0111 1001 1011 1101 1111 two

ANSWER Just a table lookup one way:

eca8

1110 1100 1010 1000 0110 0100 0 10 OOOOtwo

And then the other d irection too:

0001 0011 0101 0111 1001 1011 1101 11l1 two
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MIPS Fields

MIPS fields are given names to make them easier to discuss:
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op

6 bits 5 bits

ct

5 bits

cd

5 bits

srta mt

5 bits

f llnct

6 bits

Here is the mea ning of each name of the fi elds in MIPS instructions:

• op: Basic operation of the instruction , traditionally ca lled the apcade.

• rs: The first register source operand.

• rt: The second register source operand.

• rd: The register destination operand. It gets the result of the operation.

• shamt: Shift amount. (Section 2.5 explains shift instructions and this term;
it will not be used until then , and hence the field contains zero.)

• funct: Function. This field selects the specific va riant of the operation in the
op field and is sometimes called the f unction code.

A problem occurs when an instruction needs longer fi elds than those shown
above. Fo r exa mple, the loa d word instruction must specify two registers and a
constant. If the address were to use one of the 5-bit fields in the format above, the
constant within the load word instruction would be limited to only 25 o r 32. This
constant is used to select elements from arrays or data structures, and it oft en
needs to be much larger than 32. This 5-bit field is too sm all to be useful.

Hence, we have a confl ict between the desire to keep all instructions the sa me
length and the desire to have a single instruction format. This leads us to the final
hardwa re design principle:

Design Principle 4: Good design demands good compromises.

The compromise chosen by the MIPS designers is to keep all instructions the
sa me length , thereby requiring different kinds of instruction formats for different
kinds of in structions. For example, the format above is ca lled R-type (for register)
o r R-format. A second type of instruction format is called I-type (for immediate)
o r I-format and is used by the immediate and data transfer instructions. The fields
ofl -format are

opcode The field that denotes
the operation and format of an
instruction.

op

6 bits 5 bits

ct

5 bits

cons t ant or add r ess

16 bits
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The 16-bit address mea ns a load word instruction ca n load any word within a
region of ± 2 15 or 32,768 bytes (±213 or 8192 words) of the address in the base reRister rs. Similarly, add immediate is limited to constants no larger than ± 2 .
(Chapter 3 explains how to represent negative numbers.) We see that mo re than
32 registers would be difficult in this format, as the rs and rt fi elds would each
need another bit , making it harder to fit everything in one wo rd.

Let's look at the load word instruction from page 57:

1w $t O, 32 ( $s 3 l # Temporary r eg $t O ge t s A[8]

Here, 19 (fo r $ 53 ) is placed in the rs field , 8 (fo r $tO) is placed in the rt fi eld , and
32 is placed in the address field. Note th at the mea ning of the rt fi eld has changed
for this instruction: in a load word instruction , the rt fi eld specifies the destina
tion register, which receives the result of the load.

Although multiple formats complicate the hardwa re, we ca n reduce the com 
plexity by keeping the formats similar. For exa mple, the first three fi elds of the R
type and I-type formats are the same size and have the sa me names; the fourth
field in I-type is equal to the length of the last three fi elds of R-type.

In case you were wondering, the formats are distinguished by the values in the
first field: each format is assigned a distinct set of values in the first fi eld (op) so
that the hardwa re kn ows whether to treat the last half of the instruction as three
fi elds (R-type) or as a single fi eld (I-type). Figure 2.6 shows the numbers used in
each field for the MIPS instructions covered th rough Section 2.3.

...............Instruction address

'dd R 0 '"' '"' '"' 0 32,., n.a .

sub (subtract) R 0 '"' '"' '"' 0 34~ n.a .

add i mmediate I "". '"' '"' n.a. n.a . n.a . constant

1W(load word) I 35ten '"' '"' n.a. n.a . n.a . address

sw (store word) I 43ten '"' '"' n.a. n.a . n.a . address

FIGURE 2.6 MIPS Instruction encoding. In the table above, "reg~ means a register number between
o and 31, ·address~ means a I6-bit address, and "n .a.~ (not applic.1ble) means this field does not appear in
this format. Note that add and sub instructions have the &1me value in the op field; the hardware uses the
nUlct field to decide the variant of the operation: add (32) or subtract (34).
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Translating MIPS Assembly Language into Machine Language

We can now take an exa mple all the way from what the programmer writes to
what the computer executes. If $t 1 has the base of the array Aand $s2 corre
spond s to h, the assignment statement

EXAMPLE

A[300] ~ h + A[300J ;

is compiled into

lw ItO , 1200(1t!1 II Temporary reg ItO gets A[300]

add $t0 ,$ s2 , $tO II Temporary reg ItO gets h + A[300J

sw ItO , 1200(1t!1 II Stores h + A[300J back into A[300J

What is the MIPS machine language code for these th ree instructions?

For convenience, let's first represent the machine language instructions using
decimal numbers. From Figure 2.6, we ca n determine the three ma chine lan
guage instructions:

ANSWER

funa
address/

shamt•
1~~~:__ 1 ;;8~ ---':;-- __~8,---_ -~:;C:~:c.:~- --,"':"'--
The 1winstruction is identified by 35 (see Figure 2.6) in the first field

(op). The base register 9 ($t1) is specified in the second field (rs), and the
destination register 8 ($t O) is specified in the third field (rt). The offset to
select A[300J (1200 = 300 x 4) is found in the final field (address).

The add instruction that follows is specified with 0 in the first field (op)
and 32 in the last field (funct). The three register operands (18, 8, and 8) are
found in the second, third, and fourth fields and correspond to $s 2, $to,
and $tO.
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The s winstruction is identified with 43 in the first field . The rest of this
final ins truction is identical to the 1winstruction.

The binary equivalent to the decimal form is the following (1200 in base
10 is 0000 0100 1011 0000 base 2):

100011 01001 01000 0000 0100 10 11 ooסס

oo0סס0 10010 01000 01000 I 00000 I 100000

10 10 11 01001 01000 0000 0100 10 11 ooסס

N ote the similarity of the binary representations of the first and last in
structions. The only difference is in the third bit from the left.

Figure 2.7 summarizes the portions of MIPS assembly language described in
this section. As we shall see in Chapters 5 and 6, the similarity of the binary repre
sentations of related instructions simplifies hardware design. These instructions
are another example of regularity in the MIPS architecture.

Why doesn't MIPS have a subtract immediate instruction?

I. Negative constants appear much less frequently in C and Java, so they are
not the common case and do not merit special support.

2. Since the immediate field holds both negative and positive constants, add
immediate with a negative number is equivalent to subtract immediate
with a positive number, so subtract immediate is superfluous.

Today's computers are built on two key principles:

I. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like numbers.

These principles lead to the stored-program concept; its invention let the
computing genie out of its bottle. Figure 2.8 shows the power of the concept;
specifically, memory can contain the source code for an editor program, the
corresponding compiled machine code, the text that the compiled program
is using, and even the compiler that generated the machine code.
One consequence of instructions as numbers is that programs are often
shipped as files of binary numbers. The commercial implication is that
computers can inherit ready-made software provided they are compatible
with an existing instruction set. Such "binary compatibility" often leads
industry to align around a small number of instruction set architecnlfes.
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MIPS operands

Name Example Comments

32 $sO, $sl, ... , $s7 Fast locations for data . In MIPS, data must be in registers to perform arithmetic .
registers stO.$tl, ... , st7 Registers $sO - $s 7 map to 16-23 and st O- H7 map to 8-15.

2'" Memory[O), Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so
memory Memory[4), ... , sequential word addresses differ by 4 . Memory holds data structures, arrays, and
words Memory[4294967292) spilled registers .

MIPS assembly language

Category Instruction Example Meaning Comments

odd odd $sl,$s2.$s3 '" ,,2 + ,,3 Three operands; data in registers
Arithmetic

subtract ,"b $sl,$s2.$s3 '" ,,2 ,,3 Three operands; data in registers

0,,. load word
"

$sl,100($s2) $s 1 - Memory[ $s2 + 100] Data from memory to register
transfer store word " $sl,100($s2) Memory[$s2 + 100] - $sl Data from register to memory

MIPS machine language

...Name Example Comments

,dd R a 18 19 17 0 32 ,dd $s1.$s2. $s3

'"' R a 18 19 17 0 34 '"' $s1.$s2. $s3

addi I 8 18 17 100 addi $s1,$s2.1 00

"
I 35 18 17 100

"
$sl.1 00( $s2 )

" I 43 18 17 100 " $sl.1 00($s2 )

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

R.format R op ffi rt ,d shamt funct Arithmetic instruction format

Hormat I op ffi rt address Data transfer format

FIGURE 2.7 MIPS architecture revealed through Section 2.4. Highlighted portions show MIPS machine language structures
introduced in Section 2.4. The two MIPS instruction formats so far are R and I. The first 16 bits are the same: both contain an op field, giv.
ing the base operation: an rs field, giving one of the sources; and the rt field, which specifies the other source operand, except for lo.1d word,
where it specifies the destination register. R·format divides the last 16 bits into an rd field, specifying the destination register; slulInt field,
which Section 2.5 explains; and the fUllet field, which specifies the specific operation of R·format instructions. I·format keeps the last 16
bits as a single address field.

Elaboration: Representing decimal numbers in base 2 gives an easy way to represent
positive integers in computer words. Chapter 3 explains how to represent negative num
bers, but for now take it on faith that a 32-bit word can represent integers between _231

and +231 -lor -2,147,483,648 to +2,147,483,647, and the 16-bit constant field really
holds _215 to +215 -1 or-32,768 to 32,767. Such integers are called two's complement
numbers. Chapter 3 shows how we would encode addi $tO. $tO. - 1 or 1w $tO. - 4( $ sa),
which require negative numbers in the constant field of the immediate format.
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--------------I
I Editor program
I (machine axle)L I

Processor

--------------
: C compiler I

I (machine axle) l, ,--------------I-~--~-----I

: Payroll data :

~-----------_...!,-------------i
l ~::k_t:~ J
--------------
: Source code in C :

l_f~~:d~~..P~~~__:

"Contrariwise," continI/cd
Tweedledee, "if it was so, it
might be; and if it were 50, it
would be; bll t as it isn't, it
ain't. That's logic."

Lewis Carroll, Alice's A dven
tures ill Wonderland , 1865

FIGURE 2.8 The stored-program concept. Stored programs allow a computer that performs
accounting to become, in the blink of an eye, a computer that helps an author WTite a book. The switch hap
pens simply by loading memory with programs and data and then telling the computer to begin executing
at a given location in memory. Treating instructions in the same way as data greatly simplifies both the
memory hardware and the software of computer systems. Specifically, the memory technology needed for
data can also be used for programs, and programs like compilers, for instance, can translate code written in
a notation far more convenient for humans into code that the computer can understand.

Logical Operations

Although the first computers concentrated on full words, it soon became clear that
it was useful to operate on fields of bits within a word or even on individual bits.
Examining characters within a word, each of which are stored as 8 bits, is one exa m 
ple of such an operation. It follows that instructions were added to simplify, among
other things, the packing and unpacking of bits into words. These instructions are
called logical operations. Figure 2.9 shows logical operations in C and Java.
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Logical operations C operators Java operators MIPS Instructions

Shift left « « ;11

Shift right » ») ,,1
Bit.t>y.tlit AND , , and. andi
Bit.t>y.tlit OR I I or.o r i
Bit.tly-bit NOT '"

FtGURE 2.9 C and Java logical operators and their corresponding MIPS Instructions.

The first class of such operations is called sh ifts . They m ove all the bits in a
word to the left or right, filling the emptied bits with as. For exa mple, if register
$s a contained

0000 0000 0000 00000 000 0000 0000 0000 1001 two = 9 ten

and the instruction to shift left by 4 was executed , the new value would look like
th is:

0000 0000 0000 0000 0000 0000 0000 1001 OOOOtwo= 144ten

The dual of a shift left is a shift right. The actual name of the two M IPS shift
instructions are called shift left logical (s 11) and shift right logical (s r 1). The fol
lowing instruction performs the operation above, assuming that the result should
go in register H2:
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511 HZ . $sO .4 # reg $tZ = reg $sO « 4 bits

We delayed explaining the shamt field in the R-format. It stands fo r shift
amount and is used in shift instructions. Hence, the machine language version of
the instruction above is

0'
o o 16

'd

10

shamt

4

funct

o

The encoding of sll is a in both the op and funct fields, rd contains HZ, rt con 
tains $sO, and shamt contains 4. The rs fi eld is unused, and thus is set to O.

Shift left logica l provides a b.onus benefit. Shiftin g left by i bits gives the
sa me result as multiplying by 2' (Chapter 3 explains why). For exa mrle, the
above s 11 shifts by 4, which gives the sa m e result as multiplyin g by 2 o r 16.
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The first bit pattern above represents 9, and 9 X 16 = 144, the va lue of the sec
o nd bit pattern.

Another useful operation that isolates fields is AND. (We capitalize the word to
avoid confusion between the operation and the English conjunction. ) AND is a
bit-by-bit operation that leaves a 1 in the result only if both bits of the opera nds
are 1. For exa mple, if register $t 2 still contains

0000 0000 0000 0000 0000 1101 0000 OOOOtwo

and register $t 1 contains

0000 0000 0000 0000 00111100 0000 OOOOtwo

then, after executing the MIPS instruction

and $tO, Hi, $t2 # reg $tO - reg $t1 & reg $t2

NOT A logical bit-by-bit oper
ation with one operand that
inverts the bits; that is, it
replaces every 1 with a 0, and
every 0 with a 1.

NOR A logical bit-by-bit oper
ation with two operands that
calculates the NOT of the OR of
the two operands.

the value of register $tO would be

0000 0000 0000 0000 0000 1100 0000 OOOOtwo

As you can see, AND ca n apply a bit pattern to a set of bits to force as where there
is a a in the bit pattern. Such a bit pattern in conjunction with AND is tradition 
ally called a mask, sin ce the mask "conceals" some bits.

To place a value into one of these seas of as, there is the dual to AND, called OR.
It is a bit-by-bit operation that places a 1 in the result if either opera nd bit is a 1.
To elaborate, if the registers $tl and $t 2 are unchanged from the preceding
exa mple, the result of the MIPS instruction

or $tO,$tl,$t2 # reg $tO = reg $tl I reg $t2

is this value in register $t 0:

0000 0000 0000 0000 001111010000 OOOOtwo

The final logical operation is a contrarian. NOT takes one opera nd and places a
1 in the result if one opera nd bit is a 0, and vice versa. In keeping with the two
opera nd format, the designers of MIPS decided to include the instruction NOR
( NOT OR) instead of NOT. If one opera nd is zero, then it is equiva lent to NOT.
For exa mple, A NOR a = NOT (A OR 0) = NOT (A).

If the register $tl is unchanged from the preceding exa mple and register $t3
has the value 0, the result of the MI PS instruction

nor $tO,$tl,$t3 # reg $tO = - ( reg $t1 I reg $t3)
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is this va lue in register $to:

1111 111111111111 11000011 11l1l1l1two

Figure 2.9 above shows the relationship between the C and Java operators and
the MIPS instructions. Constants are useful in AND and OR logica l operations as
well as in arithmetic opera tions, so MIPS also provides the instructions and
immediate (andi) and or immediate (ori). Constants are rare for NOR, since its
main use is to invert the bits of a single opera nd; thus, the hardware has no imme
diate version. Figure 2.10, which summarizes the MIPS instructions seen thus far,
highlights the logical instructions.

MIPS operands

Name Example Comments

32 $sO, $s l , ... , $s7 Fast locations for data. In MIPS, data must be in registers to perfonn arithmetic.

registers StO. St 1 , ... , St7 Registers $ sO- $ s7 map to 16-23 and StO - St 7 map to 8-15.

2" Memory(O]. Accessed only by data transfer instructions. MIPS uses byte addresses, so

memory Memory(4]. ... , sequential word addresses differ by 4. Memory holds data structures, arrays, and

words Memory(4294967292] spilled registers .

MIPS assembly language

Category Instruction Example Meaning Comments

.dd odd $s1.$s2.$s3 $sl - $s2 + $s3 Three operands; overflow detected

Arithmetic subtract ;"b $s 1. $s2.$s3 $sl - $s2 $;3 Three operands; overflow detected

add immediate add i $ s l . $s2.100 $s1_ $s2 + 100 + constant ; overflow detected

.,d oed $s1,$s2 ,$s3 $sl _ $ s2 & $s3 Three reg. operands ; bit.t>y.t>it AND

0' 0' $s1,$s2 ,$s3 $sl _ $s21 $s3 Three reg. operands ; bit.t>y.t>it OR

'0' '0' $s1,$s2 ,$s3 $sl--( $ s2 1$s3 ) Three reg. operands ; bit.t>y.t>it NOR

Logical and immediate andi $s1,$s2 ,100 $sl _ $s2 & 100 Bit.t>y.t>it AND reg with constant

or immediate ori $s1,$s2 ,100 $sl" $s21 1oo Bit.t>y.t>it OR reg with constant

shift left logical ,II $s1,$s2 ,10 $sl" $s2 « 10 Shift left by constant

shift right logical 'ri $$s1,$s2,10 $sl" $s2» 10 Shift right by constant

D,,. load word " $s1.100($s2) $,1 Memory($ s2 + 100) Word from memory to register

transfer store word " $s1.100($s2) Memory($s2 + 100)- $; 1 Word from register to memory

FIGURE 2.10 MIPS architecture revealed thus far. Color indicates the portions imroouced since Figure 2.7 on page 67. The back
endpapers of this book also list the MIPS machine language.

71
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The utility ofan automatic
computer lies in the possibility
of /Ising a given sequence of
instructiollS repeatedly, the
llumber oftimes it is iterated
being dependent IIpon the
results ofthe computation.
W7lCfl the iteration is com
pleted a dif)erent sequence of
[illstrtlctions] is to be followed,
so we must, ill most roses, give
two parallel traillS of{instmc
tions] preceded by an illStruc
tion as to which routine is to be
followed. This choice call be
made to depend upon the sign
ofa number (zero being m::k
oned asplusfor machine pur
poses). COllSequcntly, we
introduce an {instruction] (the
conditional tramfer (instmc
tioll}) which will, depending
on the sign ofa given Illlmber,
ca lise the proper olle of two

routines to be exeruted.

Burks, Goldstine, and von
Neumann, 1947

EXAMPLE

ANSWER

Chapter 2 Instructions: Language of the Computer

Instructions for Making Decisions

Wh at distinguish es:1 computer from a simple calculat or is its ability to make
decis ions. Based on the input d ata and th e va lues crea ted durin g com 
putation , different instructions execute. Decis ion m akin g is comm only rep 
resented in p rogramming langu ages usin g the if statement , so metim es
combin ed with go to statem ents and labels. MIPS assembly langu age includes
two decisio n -m aking instru cti ons, similar to an ifstatement with a go to. The
fir st in struction is

beq regi s t e r l , r egi s t e r 2 , L1

This instruction mea ns go to the statement labeled Ll jfthe va lue in regi s t e r l
equals the value in r eg i s t e r 2. The mnemonic beq stands for branch if equal.
The second instruction is

bne registe r l , r egis t e r 2 , Ll

It mea ns go to the statement labeled L1 if the value in reg i s t e r 1 does flot equal
the value in r egi s t er2. The mnemonic bne stands for branch if flot equal.
These two instructions are traditionally called conditional branches.

Compiling if·the~lse into Conditional Branches

In the following code segment , f , g, h, i , and j are va riables. If the fi ve va ri
ables f through j correspond to the five registers $sO through $s 4 , what is
the compiled MIPS code for this C if statement?

i f (i == j) f = 9 + h ; else f = 9 - h ;

Figure 2.11 is a flowchart of what the MIPS code should do. The first expres
sion compares for equality, so it would seem that we would want beq . In gen 
eral, the code will be more effi cient if we test for the opposite condition to
branch over the code that performs the subsequent then part of the if (the la
bel E1s e is defined below):.

bne $s3 ,$ s 4,E lse # go t o Else if 1 ~ J
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The next assignment statement performs a single operation , and if all the op 
erands are allocated to registers, it is just one instruction:

We now need to go to the end of the if statement. This exa mple introduces
another kind of branch , oft en called an unconditional branch . This instruc
tion says that the processo r always follows the branch. To distinguish between
conditional and unconditional branches, the M IPS name for this type of in 
struction is jump, abbreviated as j (the label Ex i t is defined below) .

add $sO , $sl , $s2 It f = g + h (skipped i f i ""j)

conditional branch An
instruction that requires the
comparison of two values and
that allows for a subsequent
transfer of control to a new
address in the p rogram based on
the outcome of the com parison .

j Exit It go t o Exit

The assignment statement in the else portion of the if statement ca n aga in be
compiled into a single instruction. We just need to append the label Else to
this instruction. We also show the label Exit that is after this instruction ,
showing the end of the if-then-else compiled code:

Else : sub $sO , $sl,$s2
Exit :

# f = g - h (skipped i f 1 j )

Notice that the assembler relieves the compiler and the assembly language p ro
grammer from the tedium of ca lculating addresses for branches, just as it does for
calculating data addresses fo r loads and stores (see Section 2.1 0) .

F J
i == j?

i i j

~

E1s e :

f =g+h f =g - h

Ex i t :

FIGURE 2.11 illustration of the options In the If statement above. The left box corresponds
to the then part of the if statement , and the right box corresponds to the else part.
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Hardware
Software
Interface

EXAMPLE

ANSWER
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Compilers frequently create branches and labels where they do not appear in the
programming language. Avoiding the burden of writing explicit labels and
branches is one benefit of writing in high -level programming languages and is a
reason coding is faster at th at level.

Loops

Decisions are important both for choosing between two alternatives-found in if
statements- and for itera ting a computation- found in loops. The same assem 
bly in structions are the building blocks for both cases.

Compiling a while Loop in C

Here is a traditional loop in C:

while (save[ i] == k)
i += 1 ;

Assume that i and k correspond to registers $s 3 and $s 5 and the base of the
array save is in $56. What is the MIPS assembly code corresponding to this
C segment?

The first step is to load s a ve [i] into a temporary register. Before we ca n
load sa ve [i] into a temporary register, we need to have its address. Before
we can add i to the base of array 5a ve to form the address, we must multi
ply the index i by 4 due to the byte addressing problem. Fortunately, we can
use shift left logica l since shifting left by 2 bits multiplies by 4 (see page 69 in
Section 2.5). We need to add the label Loop to it so that we can branch back
to that instruction at the end of the loop:

Loop : sll $t1,$s3,2 # Temp reg $tl = 4 * i

To get the address of save [i ], we need to add $t 1 and the base of save in $ 56:

add $t1,$t1,$s6 # $tl = address of save[i]

Now we can use that address to load save [i ] into a temporary register:

1w ItO , O(It!) # Temp reg $tO = save[i]
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The next instruction perfo rm s the loop test, exiting if sa ve [i ] l' k:

bne $tO ,$ s5 , Exit It go t o Exit if s a ve[iJ l' k

The next instruction adds 1 to i :
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add $s3 , $s3 , 1 Iti = i + l

The end of the loop branches back to the while test at the top of the loop. We
just add the Ex it label aft er it , and we're done:

J
Exit :

Loop It go to Loop

(See Exercise 2.33 for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compil
ing that they are given their own buzzword: a basic block is a sequence of instruc
tions with out branches, except possibly at the end , and without branch targets or
branch labels, except possibly at the beginning. One of the first ea rly ph ases of
compilation is breaking the program into basic blocks

The test for equality or inequality is p robably the most popular test, but some
times it is useful to see if a va riable is less than another variable. For example, a for
loop may wa nt to test to see if the index va riable is less than O. Such comparisons are
accomplished in MIPS assembly language with an instruction that compares two
registers and sets a third register to I if the first is less than the second; otherwise, it
is set to O. The MIPS instruction is called set on less than, or s 1t. For example,

slt $tO , $s3 , $54

mea ns that register $t 0 is set to I if the va lue in register $s 3 is less than the value
in register $s 4; otherwise, register $tO is set to O.

Constant operands are popular in com pa risons. Since register $ze r o always
has 0, we ca n already com pa re to O. To compa re to other va lues, there is an imme
diate version of the set on less th an instruction. To test if register $s 2 is less th an
the constant 10, we ca n just write

Hardware
Software
Interface

basic block A sequence of
instructions without branches
(except possibly at the end) and
without branch targets or
branch labels (except possibly at
the beginning).

slti $t0 , $s2 , lO # $t O = 1 if $s2 < 10

Heeding von Neumann's wa rning about the simplicity of the "equipment," the
MIPS architecture doesn't include branch on less than because it is too compli
cated; either it would stretch the clock cycle time or it would take extra clock
cycles per instruction. Two faster instructions are more useful.
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jump add ress table Also
called jump table. A table of
addresses of alternative instruc
tion sequences.
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MIPS compilers use the s 1t , s1t i, beq , bne, and the fi xed va lue of 0 (always
ava ilable by reading register $zero) to create all relative conditions: equal, not
equal, less than , less than or equal, greater than, greater than or equal. (As you
might expect, register $ze ro maps to register 0. )

Case/Switch Statement

Most programming languages have a case or switch statement that allows the pro
gra mmer to select one of many alternatives depending on a single value. The sim
plest way to implement switch is via a sequence of conditional tests, turning the
switch statement into a chain of i[-then-else statements.

Sometimes the alternatives may be more efficiently encoded as a table of
addresses of alternative instruction sequences, called a j ump address table, and
the program needs only to index into the table and then jump to the appropriate
sequence. The jump table is then just an array of words containing addresses that
correspond to labels in the code. See the In More Depth exercises in Section 2.20
for more details on jump address tables.

To support such situations, computers like M IPS include a jump register
instruction (j r ), mea ning an unconditional jump to the address specified in a
register. The program loads the appropriate entry from the jump table into a reg
ister, and then it jumps to the proper address using a jump register. This in struc
tion is described in Section 2.7.

Although there are many statements for decisions and loops in programming lan 
guages like C and Java, the bedrock statement that implements them at the next
lower level is the conditional branch.

Figure 2. 12 summarizes the portions of MIPS assembly language described in
this section, and Figure 2. 13 summarizes the corresponding MIPS machine lan 
guage. This step along the evolution of the MIPS language has added branches
and jumps to our symbolic representation, and fixes the useful value 0 penna
nently in a register.

Elaboration: If you have heard about delayed branches, covered in Chapter 6,
don't worry: Th e MIPS assemb ler makes them invis ible to the assembly language
programmer.
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MIPS operands
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Name Example Comments

32 registers $sO. $sl, ... , $s7 Fast locations for data. In MIPS, data must be in registers to perform arithmetic. Registers $sO-

stO.$tl , ... ,st7 , $s7 map to 16-23 and stO-st7 map to 8-15. MIPS register $zero always equals O.

$zero

230 memory Memory[O), Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so sequential
words Memory[4), ... , word addresses differ by 4 . Memory holds data structures, arrays, and spilled registers .

Memory[4294967292]

MIPS assembly language

Category Instruction Example Meaning Comments

odd ,dd $s 1. $s2.$s3 $sl _ $s2 + $s3 Three operands; data in registers
Arithmetic

subtract ,ob $s 1. $s2.$s3 $sl _ $s2- $s3 Three operands; data in registers

load word " $s l .100($s2 ) $s 1 _ Memory[$ s2 + 100] Data from memory to register
Data transfer

store word " $sl.100($s2) Memory($ s2 + 1(0) _ $s 1 Data from register to memory

ood ,od $s1.$s2.$s3 $sl - $s2 &. $s3 Three reg. operands; bit.tly-bit AND

0' " $s1.$s2.$s3 $sl - $s2 1 $s3 Three reg. operands; bit.tly-bit OR

00' 0" $s1.$s2.$s3 $sl - ($ s21$s3) Three reg. operands; bit.tly-bit NOR

Logical and immediate andi $s l .$s2. 100 $sl - $s2 &. 100 Bit.tly.tlit AND reg with constant

or immediate ", $s l .$s2. 100 $sl - $s2 1 100 Bit.tly.tlit OR reg with constant

shift left logical ,11 $s 1. $s2. 10 $sl - $s2 « 10 Shift left by constant

shift right logical ;,1 $$s1.$s2.10 $sl - $s2» 10 Shift right by constant

branch on equal b" $sl. $s2.L if ($sl """ $s2) goto L Equal test and branch

branch on not bo, $sl. $s2.L if ($sl!= $s2)gotoL Not equal test and branch

equal
Conditional

set on less than ,1t $s1. $s2. $s3 if ( $s2 < $s3) $sl = 1 ; Compare less than; used with beq , bne
branch

else $sl = 0

set on less than ,1t $sl. $s2.1 00 if ( $s2 < 100)$sl_1; Compare less than immediate; used with

immediate else $sl = 0 beQ , bne

Unconditional jump j L go to L Jump to target address
jump

FIGURE 2.12 MIPS architecture revealed through Section 2.6. Highlighted portions show MIPS structures introouced in Section 2.6.

C has many statements for decisions and loops while MIPS has few. Which of the
following do or do not explain this imbalance? \-Vhy?

I. More decision statements make code easier to read and understand.

2. Fewer decision statements simplify the task of the underlying layer that is
responsible for execution.

Check
Yourself
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MIPS machine language

Name Format Example Comments

,dd R 0 18 19 17 0 32 ,dd $51.$s2.$s3

"" R 0 18 19 17 0 34 'ob $51.$s2.$s3

" I 35 18 17 100
"

$51.100($52)

.- I 43 18 17 100 .- $51.100($52)

'"' R 0 18 19 17 0 36 '"' $5 1. $52.$53

" R 0 18 19 17 0 37 " $5 1. $52.$53

'" R 0 18 19 17 0 39 "" $5 1. $52.$53

and1 I 12 18 17 100 dnd i $5 1 ,$52.100

ori I 13 18 17 100 ", $5 1 ,$52.100

," R 0 0 18 17 10 0 ," $51.$52.10

,,' R 0 0 18 17 10 2 ,,' $51.$52.10

b" I 4 17 18 25 b" S51.Ss2.100

b", I 5 17 18 25 b", $51.$s2.100
,it R 0 18 19 17 I 0 I 42 ,it $51.$s2.$s3

j J 2 2500 j 10000 (see Se<:tion 2.9)

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

R·fonnat R 0' ffi " '" shamt iuocl Arithmetic instruction format

Hannat I 0' ffi " address Data transfer , branch fannat

FIGURE 2.13 MIPS machine language revealed through Section 2.6. Hig.hlighted portions show MIPS structures introduced in Section 2.6.
The ,·format, used for jwnp inst ructions, is explained in Section 2.9. Section 2.9 also explains the proper values in address fields of branch instructions.

3. More decision statements mea n fewer lines of code, which generally
reduces coding time.

4. More decision statements mea n fewer lines of code, which generally results
in the execution of fewer operations.

Why does C provide two sets of operators for AND (& and &&) and two sets of
operators for OR (I and II) while MIPS doesn't?

1. Logical operations AND and OR implement & and I while conditional
branches implement && and II.

2. The previous statement has it backwa rds: && and II correspond to logica l
operations while & and I map to conditional branches.

3. They are redundant and mea n the sa me thing: && and II are simply inher
ited from the programming language B, the predecesso r of C.
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Supporting Procedures in Computer
Hardware

A procedure o r function is one tool C or Java programmers use to structure pro
gra ms, both to make them easier to understand and to allow code to be reused.
Procedures allow the programmer to concentrate on just one portion of the task
at a time, with parameters acting as a barrier between the procedure and the rest
of the program and data , allowing it to be passed values and return results. We
describe the equivalent in Java at the end of this section, but Java needs everything
from a computer that C needs.

You ca n think of a procedure like a spy who leaves with a secret plan, acquires
resources, performs the task, covers his tracks, and then renlfns to the point of
origin with the desired result. Nothing else should be perturbed once the mission
is complete. Moreover, a spy operates on only a "need to know" basis, so the spy
ca n't make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six
steps:

I. Place parameters in a place where the procedure ca n access them.

2. Transfer control to the procedure.

3. Acquire the storage resources needed for the procedure.

4. Perform the desired task.

5. Place the result value in a place where the ca lling program ca n access it.

6. Return control to the point of origin , since a procedure ca n be called from
severa l points in a program.

As mentioned above, registers are the fastest place to hold data in a computer,
so we wa nt to use them as much as possible. MIPS software follows the following
convention in allocating its 32 registers for procedure calling:

• $aO-$a3 : four argument registers in which to pass parameters

• $vO-$vI : two value registers in which to return values

• $ ra : one return address register to return to the point of origin

In addition to alloca ting these registers, MIPS assembly language includes an
instruction just for the procedures: it jumps to an address and simultaneously
saves the address of the following instruction in register $ r a. The jump-and-Iink
instruction (j a 1) is simply written

procedure A stored subroutine
that performs a specific task
based on the parameters with
which it is provided.

jump-and-link
instruction An instruction
that jumps to an address and
simultaneously saves the address
of the following instruction in a
register ($ ra in MIPS).
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return address A link to the
calling site that allows a proce
dure to return to the proper
address; in MIPS it is stored in
register $ra .

program counter (PC) The
register containing the address
of the instruction in the pro
gram being executed

caller The program that insti
gates a procedure and provides
the necessary parameter values.

callee A procedure that executes
a series of stored instructions
based on parameters provided by
the caller and then returns con 
trol to the caller.

stack A data structure for spill
ing registers organized as a Jast 
in-first-out queue.

stack pointer Avalue denoting
the most recently allocated
address in a stack that shows
where registers should be spilled
or where old register values can
be found.
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j a l Pr ocedureAdd r ess

The link portion of the name means that an address o r link is formed that points to
the ca lling site to allow the procedure to return to the proper address. This "link,"
stored in register $r a, is called the return address. The renlfll address is needed
because the same procedure could be called from several parts of the program.

Implicit in the stored -program idea is the need to have a register to hold the
address of the current instruction being executed. For histo rical reasons, this reg
ister is alm ost always called the program counter, abbreviated PC in the MIPS
architecture, although a more sensible name would have been instrtlction address
register. The j a1 instruction saves PC + 4 in register $r a to link to the following
instruction to set up the procedure return.

To suppo rt such situations, computers like MIPS use a jump register instruction
(j r ), meaning an un conditional jump to the address specified in a register:

J r $r a

The jump register instruction jumps to the address stored in register $ra-which
is just what we want. Thus, the calling program, or caller, puts the parameter val
ues in $aO-$ a3 and uses j al Xto jump to procedure X (sometimes named the
callee). The callee then performs the calculations, places the results in $vO-$vl,
and renlfns control to the caller using j r $ra.

Using More Registers

Suppose a compiler needs mo re registers for a procedure than the four argument
and two return value registers. Since we must cover our tracks after our mission is
complete, any registers needed by the caller must be restored to the values that
they contained before the procedure was invoked. This situation is an example in
which we need to spill registers to memory, as mentioned in the Hardwa re Soft 
wa re Interface section on page 58.

The ideal data structure for spilling registers is a stack- a la st-in -first -out
queue. A sta ck needs a pointer to the most recently allocated address in the stack
to show where the next procedure should place the registers to be spilled or where
old register values are found. The stack pointer is adjusted by one word for each
register that is saved or restored. Stacks are so popular that they have their own
buzzwords for transferring data to and from the stack: placing data onto the sta ck
is called a push , and removing data from the stack is called a pop.

MIPS softwa re allocates another register just for the stack: the sta ck pointer
($s p), used to save the registers needed by the callee. By historical precedent,
stacks "grow" from higher addresses to lower addresses. This convention means
that you push values onto the stack by subtracting from the stack pointer. Adding
to the stack pointer shrinks the stack, thereby popping values off the sta ck.
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Compiling a C Procedure That Doesn't Call Another Procedure

Let's turn the exa mple on page 51 into a C procedure:

int leaCexample (int g , int h , int i, int j)
I

int f ;

f = (g + h) - (i + j) ;
return f ;

J

\Vhat is the compiled MIPS assembly code?

The parameter va riables g, h, i, and j correspond to the argument registers
$aO, $a1, $a2, and $a3, and f corresponds to $sO. The compiled program
starts with the label of the procedure:

leaf_example :

The next step is to save the registers used by the procedure. The C assignment
statement in the procedure body is identical to the exa mple on page 51,
which uses two temporary registers. Thus, we need to save three registers:
$sO, HO, and $tl. We "push" the old values onto the stack by creating space
for three words on the stack and then store them:

EXAMPLE

ANSWER
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addi $sp ,$ sp , - 12
sw $tI, 8($sp)
sw $tO, 4($sp)
sw $sO , O($sp)

# adjust stack to make room for 3 items
# save register $tl for use afterwards
# save register $tO for use afterwards
# save register $sO for use afterwards

Figure 2. 14 shows the sta ck before, during, and after the procedure call. The
next three statements correspond to the body of the procedure, which follows
the example on page 5 1:

add $t0 ,$ aO ,$ a1 # register $tO contains g + h
add $tI,$a2 ,$ a3 # register $t1 contains i + j
sub $sO ,$t O,$ t1 # f = $tO - HI, which is (g + h) - (i + j)

To return the va lue of f , we copy it into a renlfll value register:

add $vO ,$ sO ,$z ero # returns f ($vO = $sO + 0)
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Before returning, we resto re the three old values of the registers we saved by
"popping" them from the stack:

lw $50 , O(lsp) II restore register $50 for caller
lw ItO . 4(lsp) II restore register ItO for caller
lw It I, 8(lsp) II restore regi ster $t1 for caller
addi $sp , $sp , 12 II adjust stack to delete 3 items

The procedure ends with a jump register using the return address:

Jr $ra # jump back to calling routine

In the exa mple above we used temporary registers and assumed their old values
must be saved and restored. To avoid saving and restoring a register whose va lue is
never used, which might happen with a temporary register, M IPS software sepa
rates 18 of the registers into two groups:

• $tO-$t9 : 10 tempora ry registers that are not preserved by the ca llee
(called procedure) on a procedure call

• $sO-$ s 7 :8 saved registers that must be preserved on a procedure ca ll
(if used, the callee saves and restores them)

This simple convention reduces register spilling. In the exa mple above, since the
caller (procedure doing the ca lling) does not expect registers $tO and $tl to be
preserved across a procedure call , we ca n drop two stores and two loads from the
code. 'lVe still must save and restore $sO, since the callee must assume that the
caller needs its va lue.

High address

$Sp- I- ...,
f:::====~ $;P- f----...,
Contents of register $ t l

Contents of register $ t o

$ sp_ Contents of register $ sO

Low address ,. b. o.

FIGURE 2.14 The values of the stack pointer and the stack (a) before, (b) during, and (c)
after the procedure call. The stack pointer always points to the U top" of the stack, or the last m>rd in
the stack in this drawing.
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Nested Procedures

Procedures th at do not ca ll others are ca lled leaf p rocedures. Life wo uld be
simple if all p rocedures were lea f p rocedures, but they aren't. Ju st as a spy
might employ other spies as part of a mission , who in turn might use even
mo re spies, so do procedures invoke other p rocedures. Mo reover, recursive
p rocedures even invo ke "clo nes" of th emselves. Just as we need to be ca reful
when usin g registers in procedures, m ore ca re must also be taken when invok
ing nonlea f procedures.

Fo r exa mple, suppose th at th e m ain p rogram ca lls procedure A with an
argum ent of 3, by placing the va lue 3 into register $a 0 and then usin g j alA.
Then suppose th at p rocedure A calls p rocedure B via j alB with an argument
o f 7, also placed in $aO. Sin ce A hasn't fini shed its task yet , th ere is a conflict
over the use of register $aO. Simil arly, there is a co nflict ove r th e return
address in register $ ra, sin ce it now has the return address for B. Unless we
take steps to prevent the problem , this co nflict will eliminate procedure A's
ability to return to it s caller.

One solution is to push all the other registers that must be preserved onto the
stack, just as we did with the saved registers. The caller pushes any argument regis
ters ($aO-$a3) o r tempo rary registers ($ t O-$ t 9) that are needed after the ca ll.
The callee pushes the return address register $ra and any saved registers ($sO
$s 7) used by the ca llee. The stack pointer $sp is adjusted to account fo r the num 
ber of registers placed on the stack. Upon the return, the registers are restored
from memory and the stack pointer is readjusted.

Compiling a Recursive C Procedure, Showing Nested Procedure
Unking

Let's tackle a recursive procedure that ca lculates factorial:

in t f ac t (in t n)

I
i f (n < 1) re t u r n (1) ;

else re t urn (n * f ac t (n - l)) ;
J

\Vhat is the MIPS assembly code?

EXAMPLE
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The parameter variable n corresponds to the argument register $aO. The
compiled program starts with the label of the procedure and then saves two
registers on the stack, the return address and $a 0:

fact :
addi
sw
sw

$sp , $sp , - 8
$ra , 4($sp)
$aO , O($sp)

# adjust stack for 2 items
# save the return address
# save the argument n

The first time fact is called, sw saves an address in the program that called
f act. The next two instructions test if n is less than 1, going to Ll if n ;::.: 1.

slti

beq

HO,$aO,1

HO,$zero,Ll

It test for n < 1

It if n ) = 1 , go to Ll

If n is less than 1, fact returns 1 by putting 1 into a value register: it adds 1
to 0 and places that sum in $vO. It then pops the two saved values off the
stack and jumps to the return address:

addi
addi

Jr

hO , $zero , 1
$sp , $sp , 8
Ira

It return 1
It pop 2 items off stack
It return to after jal

Before popping two items off the stack, we could have loaded $a°and $ra. Since
$a°and $r a don't change when n is less than 1, we skip those instructions.

If n is not less than 1, the argument n is decremented and then fact is
called again with the decremented value:

Ll : addi$aO , $aO , - 1 It n ) = 1 : argument gets (n - 1)

jalfact It call fact with (n - 1)

The next instruction is where fact returns. Now the old return address and
old argument are restored, along with the stack pointer:

1w
1w
addi

$aO, O($sp)
$ra, 4($sp)
$sp, $sp , 8

It return from jal : restore argument n
It restore the return address
It adjust stack pointer to pop 2 items
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Next, the va lue register $vO gets the product of old argument $aO and the
current value of the va lue register. We assume a multiply instruction is avail
able, even though it is not covered until Chapter 3:

mul $vO , $aO , hO It return n * fact (n - 1)

Finally, f act jumps again to the return address:
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Ira # return to the caller

A C variable is a location in storage, and its interpretation depends both on its type
and storage class. Types are discussed in detail in Chapter 3, but examples include
integers and characters. C has two storage classes: automatic and static. Automatic
variables are loca l to a procedure and are discarded when the procedure exits. Static
va riables exist across exits from and entries to procedures. C va riables declared out
side all procedures are considered static, as are any variables declared using the key
word static. The rest are automatic. To simplify access to static data, MIPS
software reserves another register, called the global pointer, or $9p.

Figure 2.1 5 summarizes what is preserved across a procedure call. Note that sev
eral schemes preserve the stack. The stack above $s p is preserved simply by making
sure the callee does not write above $s p; $s P is itself preserved by the callee adding
exactly the same amount that was subtracted from it, and the other registers are pre
served by saving them on the stack (if they are used) and restoring them from there.
These actions also guarantee that the caller will get the same data back on a load
from the stack as it put into the stack on a store because the callee promises to pre
serve $s p and because the callee also promises not to modify the caller's portion of
the stack, that is, the area above the $spat the time of the call.

Preserved Not preserved

Saved registers : $sO-$ s7 Temporal}' registers : HO-$t9

Stack pointer register : $sp Argument registers : $aO-$ a3

Return address register: $r d Return value registers : SVO-SV 1

Stack above the stack pointer Stack below the stack pointer

FIGURE 2.15 What Is and what Is not preserved across a procedure call. If the software
relies on the frame pointer register or on the global pointer register, discussed in the following sections,
they are also preserved.

Hardware
Software
Interface

global pointer The register
that is reserved to point to static
data.
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Allocating Space for New Data on the Stack

procedu re fram e Also called
<l1:tivation record. The segment
of the stack containing a proce
dure's saved registers and local
variables.

frame pointer A value denot
ing the location of the saved reg
isters and local variables for a
given procedure.

The final complexity is that the stack is also used to store variables that are loca l to
the procedure that do not fit in registers, such as local arrays or structures. The
segment of the stack containing a procedure's saved registers and local variables is
called a procedure frame or activation record . Figure 2. 16 shows the state of the
stack before, during, and after the procedure call.

Some M IPS software uses a frame pointer ($fp) to point to the first word of
the frame of a procedure. A stack pointer might change during the procedure, and
so references to a local variable in memory might have different offsets depending
on where they are in the procedure, making the procedure harder to understand.
Alternatively, a frame pointer offers a stable base register within a procedure for
local memory references. Note that an activation record appears on the stack
whether or not an explicit frame pointer is used. We've been avoiding $fp by
avoiding changes to $s p within a procedure: in our examples, the stack is adjusted
only on entry and exit of the procedure.

High address

lfP_ r-------1 SfP_ !--------1

$s p- f---------1
Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)$sp-

$sp_ '---------1,-- Sfp-

Low address a . b. o.

FIGURE 2.16 illustration of the stack allocation (a) before, (b) during, and (c) after the
procedure call. The frame pointer ( $ f p) points to the first word of the frame, often a saved argument
register, and the stack pointer ( $ s p) points to the top of the stack. The stack is adjusted to make room for all
the saved registers and any memory-resident local variables. Since the stack pointer may change during pro
gram execution, it's easier for programmers to reference variables via the stable frame pointer, although it
could be done just with the stack poimer and a little address arithmetic. If there are no local variables on the
stack within a procedure, the compiler will &we time by /lot setting and restoring the frame pointer. When a
frame poimer is used, it is initialized using the address in $s p on a call, and $s p is restored U'iing $f p.
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Allocating Space for New Data on the Heap

In addition to autom atic va riables that are loca l to procedures, e programmers
need space in mem ory for static va riables and for dynamic data structures. Fig
ure 2.1 7 shows the MIPS convention for alloca tion of mem ory. The stack starts
in the high end of memory and grows down. The fir st part of the low end of
memory is reserved, followed by the home of the M IPS machine code, tradi 
tionally ca lled the text segm ent. Above the code is the static data segment, which
is the place fo r constants and other static va riables. Although arrays tend to be
to a fixed length and thus are a good match to the static data segment, data
structures like linked lists tend to grow and shrink during their lifetimes. The
segment for such data structures is traditionally called the heap, and it is placed
next in memory. Note th at this alloca tion allows the stack and heap to grow
towa rd each other, thereby allowing the effi cient use of m emory as th e two seg
ments wax and wa ne.

e allocates and frees space on the heap with explicit functions. rn a11 oc ( ) allo
cates space on the heap and returns a pointer to it, and f r ee ( ) releases space on the
stack to which the pointer points. Memory allocation is controlled by programs in
e, and it is the source of many common and difficult bugs. Forgetting to free space
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t ext segment The segment ofa
Unix object file that contains the
m achine language code for rou
tines in the source file.

Sgp - lOOO BOOOhe
1000 OOOOhe

pc - 0040 OOOOhe

o

, Stack

I

t
Dynamic data

, Static data

,
Text

,
Reserved

FIGURE 2.17 The MiPS memory allocation for program and data. These addresses are only a
software convention, and not part of the MIPS architectu re. Starting top down, the stack pointer is initial
ized to 7fff fff chex and grows down toward the data segment. At the other end, the program cooe
("text") starts at 0040 OOOOhex. The static data starts at 1000 OOOOhex. Dynamic data , allocated by ma1 
1oc in C and via new in Java, is next and grows up toward the stack in an area called the heap. The global
pointer, $gp, is set to an address to make it easy to access data. It is initialized to 1000 BOOOhex so that it
can access from 1000 OOOOhex to 1000 ffff hex using the positive and nega tive 16-bit offsets from Sgp
(see two's complement addressing in Chapter 3).
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leads to a "memory leak" which eventually uses up so much memory that the oper
ating system may crash. Freeing space too early leads to a "dangling pointers," which
can cause pointers to point to things that the program never intended.

Figure 2.18 summarizes the register conventions for the MIPS assembly
language. Figures 2.19 and 2.20 summarize the parts of the MIPS assembly instruc
tions described so far and the corresponding MIPS machine instmctions.

Elaboration: What if there are more than four parameters? The MIPS convention is
to place the extra parameters on the stack just above the frame pointer. The procedure
then expects the first four parameters to be in registers $aO through $il3 and the rest
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.16, the frame pointer is convenient because
all references to variables in the stack within a procedure will have the same offset.
The frame pointer is not necessary, however. The GNU MIPS C compiler uses a frame
pointer, but the C compiler from MIPS/Silicon Graphics does not; it uses register 30 as
another save register ( $s8).

j a1 actually saves the address of the instruction that follows j ill into register $ ra,
thereby allowing a procedure return to be simply j r $ ril .

Which of the following statements about C and Java are generally true?

I. Procedure calls in C are faster than method invocation in Java.

2. C programmers manage data explicitly while it's automatic in Java.

3. C leads to more pointer bugs and memory leak bugs than does Java.

4. C passes parameters in registers while Java passes them on the stack.

• Register number
Preserved on

call?

$zero 0 the constant value 0 n .a .

hO-h I 2-3 values for results and expression evaluation 0"

$ilO-$a3 4- 7 arguments 00

$tO-$t7 8-15 temporaries 00

$sO-$s7 16-23 saved y"

$tB--$t9 24- 25 more temporaries 00

$gp 28 global pointer ""$'p 29 stack pointer ""Ifp 30 frame pointer y"
$co 31 return address y"

FIGURE 2.18 MIPS register conventions. Register I, called $dt, is reserved for the assembler (see
Section 2.10), and registers 26--27, called $kO- $k 1, are reserved for the operating system.
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Name Example Comments

$sO-$s7, $tO $19, Fast locations for data . In MIPS, data must be in registers to perfonn arithmetic. MIPS
32 registers $zero. $aO - $a3. $vO - $vl. register $ze ro always equals O. $gp (28) is the global pointer, $s p (29) is the stack

$gp. Up. $sp. $ra pointer, $fp (30) is the frame pointer, and $ra (31) is the retum address .

Memory[O), Accessed only by data transfer instructions. MIPS uses byte addresses, so s equential
230 memory words Memory[4), ... , word addresses differ by 4 . Memory holds data structures, arrays, and spilled registers,

Memory[4294967292] such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments

odd add $s1.$s2.$s3 $" - $s2 + $,3 three register operands
Arithmetic

subtract sub$s1.$s2.$s3 $, 1 $,1 $,3 three register operands

load word lw $s1.100($s2) $,1 Memory[$s2 + 100] Data from memory to register
Data transfer

store word sw $s1.100($s2) Memory[$s2 + 100] - $" Data from register to memory

00' "0' $s1.$s2.$s3 $s l - $s2 &. $s3 three reg. operands; bit·by-bit AND

0' oc $s1.$s2.$s3 $s l - $s2 I $s3 three reg. operands; bit·by-bit OR

00' ooc $s1.$s2.$s3 $s l - ($s21$s3) three reg. operands; bit·by-bit NOR

Logical and immediate a nd1 $s1.$s2.100 $sl - $s2 &. 100 Bit·by-bit AND reg with constant

or immediate ori $s1.$s2.100 $sl - $s2 1 100 Bit·by-bit OR reg with constant

shift left logical ," $s1.$s2.10 $sl - $s2 « 10 Shift left by constant

shift right logical ,,' $$sl.$s2.10 $s l - $s2» 10 Shift right by constant

branch on equal b.g $s1.$s2.L if($sl __ $s2)gotoL Equal test and branch

branch on not equal bo, $s1.$s2.L if($sl!- $s2)goto L Not equal test and branch

Conditional branch set on less than ,It $s1.$s2.$s3 if($s2 < $s3) $sl _1; Compare less than; used with beq,
else $sl " 0 be,

set on less than ,It $s1.$s2.100 if($s2 < 100) $sl _1; Compare less than immediate; used
immediate else $sl " 0 with beq, bne

jump j l go t o l Jump to target address

Unconditional jump Jump regi ster J' $" go to $ra For procedure return

jump and link j a 1 l $ra"PC + 4; gotoL For procedure call

FIGURE 2.19 MIPS architecture revealed through Section 2.7. Highlighted portions show MIPS assembly language structures intro
duced in Section 2.7. The I-format, used for jump and jWlIp-and-link instructions, is explained in Section 2.9.
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MIPS machine language...Name Example Comments

'dd R 0 18 19 17 0 32 'dd $51.$s2.$s3

"" R 0 18 19 17 0 34 'ob $51.$s2.$s3

" I 35 18 17 100
"

$51.100($s2)

" I 43 18 17 100 " $51.100($s2)

'"' R 0 18 19 17 0 36 '"' $s1.$s2,$s3

" R 0 18 19 17 0 37 " $s1.$s2,$s3

"" R 0 18 19 17 0 39 "" $s1.$s2,$s3

and1 I 12 18 17 100 dnd i $s l ,$s2.100

ori I 13 18 17 100 ", $s l ,$s2.100

;11 R 0 0 18 17 10 0 ,11 $s1.$s2.10

;,1 R 0 0 18 17 10 2 ;,1 $51.$s2.10

b', I 4 17 18 25 b', $51.$s2.100

b", I 5 17 18 25 b"' $51,$s2.100
;it R 0 18 19 17 I 0 I 42 ,it $51.$s2.$s3

j J 2 2500 10000 (see Section 2.9)

jc R 0 31 I 0 I 0 I 0 I 8 j, $rn

j" J 3 2500 j" 10000 (see Section 2 .9)

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

R·fonnat R op " " " shamt tuncl Arithmetic instruction format

Honnat I op " " address Data transfer, branch fonnat

FIGURE 2.20 MIPS machine language revealed through Section 2.7. Highlighted portions show MIPS assembly language structures
introduced in Section 2.7. The j·formm, used for jump and jump-and-link instructions, is explained in Section 2.9. This section also explains why
putting 25 in the address field of beQ and bne machine language instructions is equivalent to !OO in assembly language.

i( @I = >
(wow open tab at bar is
great)

Fourth line of the keyboard
poem "Hatless Atlas," 199 1
(some give names to ASCII
characters: "!" is "wow," "(" is
open,"I" is bar, and so on)

Communicating with People

Com puters were invented to crunch numbers, but as soon as they became com 
mercially viable they were used to process text. Most computers today use 8-bit
bytes to represent characters, with the America n Standard Code for Information
Interchange (ASCII ) being the representation that nea rly everyone follows. Figure
2.2 1 summarizes ASCII.

A series of instructions can extract a byte from a word, so load word and store
word are sufficient fo r transferring bytes as well as wo rds. Because of the popularity
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.ElI.ElI.ElI.ElI.ElI••
32 space 48 0 64 @ 80 P 96 - 112 P

33 ! 49 1 65 A 81 Q 97 • 113 q

34 • 50 2 66 8 82 R 98 b 114 ,
35 # 51 3 67 C 83 5 99 , 115 ,
36 $ 52 4 68 0 84 T 100 d 116 ,
37 • 53 5 69 E 85 U 10 1 • 117 "
38 & 54 6 70 F 86 V 102 f 118 ,
39 • 55 7 71 G 87 W 103 g 119 w

40 ( 56 8 72 H 88 X 104 h 120 ,
41 ) 57 9 73 I 89 Y 105 i 121 Y
42 , 58 74 J 90 Z 106 j 122 ,
43 + 59 • 75 K 91 ( 107 k 123 {

44 • 60 < 76 L 92 \ 108 I 124 I
45 - 61 - 77 M 93 { 109 m 125 {

46 62 + 78 N 94 , 110 " 126 -
47 / 63 ? 79 0 95 - 111 0 127 DEL

FIGURE 2.21 ASCII representation of characters. Note that upper- and lowercase letters differ byexactly 32; this observation can lead to short
cuts in checking or changing upper- and lowercase.Y.'I.lues not shown include formatt ing characters. For example, 8 represems backspace, 9 represents a
tab character, and 13 a c.1rriage return. Another useful value is 0 for null, the value the programming language C uses to mark the end of a string.

of text in some programs, however, MIPS provides instructions to move bytes. Load
byte (1b) loads a byte from memory, placing it in the rightmost 8 bits of a register.
Store byte (sb ) takes a byte from the rightmost 8 bits of a register and writes it to
memory. Thus, we copy a byte with the sequence

lb ItO , O(lsp )
sb ItO , O(lgp )

# Read by t e f rom source
# Wr i t e by t e t o de st ina t ion

Characters are normally combined into strings, which have a va riable number
of characters. There are three choices for representing a string: (I ) the first posi
tion of the string is reserved to give the length of a string, (2) an accompanying
variable has the length of the string (as in a structure) , or (3) the last position of a
string is indicated by a character used to mark the end of a string. C uses the third
choice, terminating a string with a byte whose value is 0 (named null in ASC II ).
Thus, the string "Ca l" is represented in C by the following 4 bytes, shown as deci
mal numbers: 67, 97, 108, O.
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Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure s tr cpy copies string y to string x uSlIlg the null byte
termination cOIlVention ofC:

void strcpy (cha r x[] , cha r y[J)
I

i nt 1 ;

i = 0 ;
while «x[i] = y[iJ) 1= ' \0 ' ) 1* copy & tes t by t e */
i += 1 ;

}

\-Vhat is the MIPS assembly code?

Below is the basic MIPS assembly code segment. Assume that base addresses
for arrays x and ya re found in $aQ and $a l, while i is in $50 . s trcpy ad 
justs the stack pointer and then saves the saved register $sOon the stack:

str cpy :
addi
sw

$sp , $sp ,-4
$50 , O( $ sp)

It adjus t st ac k fo r 1 more i t em
It save $50

To initialize i to 0, the next instruction sets $s 0 to 0 by adding 0 to 0 and plac
ing th at sum in $s 0:

add $sO , $zero , $z e r o It i = 0 + 0

This is the beginning of the loop. The address of y [ i ] is first formed by add 
ingi toy[] :

Ll : add $tl,$sO , $al It add r ess o f y[i] in $tl

Note that we don't have to multiply i by 4 since y is an array of bytes and not
of words, as in prior examples.

To load the character in y [i ], we use load byte, which puts the character into
HZ,

lb H2 . O( l tl) II HZ ~ y[i]
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A similar address ca lculation puts the address of x[ i ] in $t3, and then the
character in H2 is stored at that address.
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add
sb

$t3 , $sO , $aO
1<2 . 0(1<3)

# address o f x[iJ 1n $t 3
Ilx[i] ~ y[i]

Next we exit the loop if the character was 0; that is, if it is the last character of
the string:

beq H2 , $zero , L2It if y[iJ 0 , go t oL2

If not, we increment i and loop back:

addi

J

$sO , $sO , l
Ll

# i i + 1
It go t o L1

If we don't loop back, it was the last character of the string; we resto re $sO
and the stack pointer, and then return.

L2 : 1w

addi

Jr

$sO , O($sp)

$sp , $sp ,4
I ra

# y[iJ == 0 : end of s t ring ;
# res t o r e old $sO
# pop 1 word o f f s ta ck
It re t u r n

String copies usually use pointers instead of arrays in C to avoid the opera
tions on i in the code above. See Section 2.1 5 fo r an explanation of arrays
versus pointers.

Since the procedure s trcpy above is a lea f procedure, the compiler could allo
cate i to a temporary register and avoid saving and restoring $sO. Hence, instead of
thinking of the $t registers as being just for temporaries, we can think of them as
registers that the callee should use whenever convenient. \Vhen a compiler finds a
lea f p rocedure, it exhausts all temporary registers before using registers it must save.

Characters and Strings in Java

Un icode is a universal encoding of the alphabets of m ost human languages. Figure
2.22 is a list of Unicode alphabets; there are about as many alphabets in Unicode as
there are useful symbols in ASCII. To be mo re inclusive, lava uses Unicode for
characters. By default, it uses 16 bits to represent a character.
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Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian L" Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

5yriac Georgian Hiragana Number Fonns

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian Shavian Optical Character Recognition

Aboriginal Syllabic

Gujarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

FIGURE 2.22 Example alphabets In Unicode. Unicode version 4.0 has more than 160 "blocks," which is
their IMme for a collection of symbols. Each block is a multiple of 16. For example, Greek starts m 037000:' and
Cyrillic at 04<X\a. The first three colmnns show 48 blocks that correspond to human languages in roughly Uni
code nwnerical order. The last colwnn has 16 blocks thm are multilingual and are not in order. A 16-bit encod
ing, called UTF-16, is the default. A variable-length encoding, called lJfF-8, keeps the ASCII subset as 8 bits and
uses 16---32 bits for the other characters. UTF-32 uses 32 bits per character. Th learn more, see www.unicode.org.

The MIPS instruction set has explicit instructions to load and store SUdl 16-bit
quantities, called halfwords. Load half (1 h) loads a halfword from memory, placing it in
the rightmost 16 bits of a register. Store half (sh) takes a halhvord from the rightmost
16 bits of a register and writes it to memory. We copy a halhvord with the sequence

lh ItO , O(lsp)
sh ItO , O(lgp)

# Read halfword (16 bits) from source
# Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefined
methods for concatell3tion, comparison, and conversion. Unlike C, Java includes
a word that gives the length of the string, similar to Java arrays.

Elaboration: MIPS software tries to keep the stack aligned to word addresses, allow
ing the program to always use 1wand sw (which must be aligned) to access the stack.
This convention means that a char variable allocated on the stack occupies 4 bytes,
even though it needs less. However, a C string variable or an array of bytes will pack 4
bytes per word, and a Java string variable or array of shorts packs 2 halfwords per word .
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Which of the following statements about characters and strings in C and lava are
true?

1. A string in C takes about half the memory as the sa me string in lava.

2. Strings are just an informal name for single-dimension arrays of chara cters
in C and lava.

3. Strings in C and lava use null (0) to mark the end of a string.

4. Operations on strings, like length, are faster in C than in lava.

Check
Yourself
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MIPS Addressing for 32·Bit 1mmediates
and Addresses

Although keeping all MIPS instructions 32 bits long simplifies the hardware, there
are times where it would be convenient to have a 32-bit constant or 32-bit address.
This section starts with the general solution for large constants, and then shows
the optimizations for instruction addresses used in branches and jumps.

32·Bit Immediate Operands

Although constants are frequently short and fit into the 16-bit field , sometimes
they are bigger. The MIPS instruction set includes the instruction load IIpper
immediate (1 ui) specifically to set the upper 16 bits of a constant in a register,
allowing a subsequent instruction to specify the lower 16 bits of the constant. Fig
ure 2.23 shows the operation of 1u i .

The machine language version of

1 001 111 1 00000

lui StO. 255

1 01000

1/ StO is regi ster 8:
1 0000 0000 1111 1111

Contents of register ao after executing 1Lli StO. 255:'------------------"----CMi;;;CW""W"";;;;;CO----
1 00000000 111 1 1111 1 00_°_°_°_°_°_° _°_00_°_ °_°_°_° _

FIGURE 2.23 The effect of the 1ui Instruction. The instruction 1u i transfers the 16-bit immediate con
stant tield value into the leftmost 16 bits of the register, titling the lower 16 bits with Os.
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Either the compiler or the assembler must break large constants into pieces and then
reassemble them into a register. As you might expect, the immediate field's size restric
tion may be a problem for memory addresses in loads and stores as well as for constants
in immediate instmctions. If this job falls to the assembler, as it does fo r MIPS software,
then the assembler must have a temporary register available in which to create the long
values. l1lis is a reason for the register $a t, which is reserved for the assembler.

Hence, the symbolic representation of the MIPS machine language is no longer
limited by the hardware, but to whatever the creator of an assembler chooses to
include (see Section 2.10) . We stick close to the hardware to explain the a rchitec
ture of the computer, noting when we use the enhanced language of the assembler
that is not found in the processor.

Loading a 32-8it Constant

What is the MIPSassembly code to load this 32-bit constant into register $ sO?

0000 0000 0011 1101 0000 1001 0000 0000

First , we would load the upper 16 bits, which is 6 1 in decimal, using 1ui :

lui $sO , 61 # 61 decimal = 0000 0000 0011 1101 binary

The value of register $sO afterwa rd is

0000 0000 0011 1101 0000 0000 0000 0000

The next step is to add the lower 16 bits, whose decimal value is 2304:

ori $sO , $sO , 230 4 # 2304 decimal = 0000 1001 0000 0000

The fin al va lue in register $sO is the desired va lue:

0000 0000 0011 1101 0000 1001 0000 0000

Elaboration: Creating 32·bit constants needs care . The instruction addi copies the
leftmost bit of the 16-bit immediate fi e ld of the instruction into the upper 16 bits of a
word . Logical or immediate from Section 2.5 loads Os into the upper 16 bits and hence
is used by the assemble r in conjunction with 1u i to create 32·bit constants .
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Addressing in Branches and Jumps

The MIPS jump instructions have the simplest addressing. They use the final
MIPS instruction format, ca lled the I-type, which consists of 6 bits for the opera
tion field and the rest of the bits for the address field. Thus,

97

J 10000 # go t o loc at ion 10000

could be assembled into this format (it's actually a bit more complica ted, as we
will see on the next page) :

____,=-1 --=,=-°0,,0-'0 _
6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 10000.
Unlike the jump instruction , the conditional branch instruction must specify

two operands in addition to the branch address. Thus,

bne $sO , $sl ,Exi t # go t o Exit if $sO ~ $sl

is assembled into this instruction , leaving only 16 bits for the branch address:

5

6 bits

' 6

5 bits

17

5 bits

Exit

16 bits

If addresses of the program had to fit in this 16- bit field , it would mea n that no
program could be bigger than 216

, which is far too small to be a realistic option
today. An alternative would be to specify a register that would always be added to
the branch address, so that a branch instruction would calculate the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 232 and still be able to use condi
tional branches, solving the branch address size problem. The question is then ,
which register?

The answer comes from seeing how conditional branches are used. Conditional
branches are found in loops and in if statements, so they tend to branch to a
nea rby instruction. For exa mple, about half of all conditional branches in
SPEC2000 benchmarks go to loca tions less than 16 instructions away. Sin ce the
program counter (PC) contains the address of the current instruction , we can
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branch within ± 215 words of the current instruction if we use the PC as the regis
ter to be added to the address. Almost all loops and if statements are much smaller
than 216 words, so the PC is the ideal choice.

This form of branch addressing is called PC-relative addressing. As we shall see
in Chapter 5, it is convenient for the hardware to increment the PC early to point to
the next instruction. Hence, the MIPS address is actually relative to the address of
the following instruction (PC + 4) as opposed to the current instmction (PC).

Like most recent computers, MIPS uses PC-relative addressing fo r all condi
tional branches beca use the destin ation of these instructions is likely to be close to
the branch. On the other hand , jump-a nd -link instructions invoke procedures
that have no reason to be nea r the call, and so they normally use other forms of
addressing. Hence, the MIPS architecture offers long addresses for procedure calls
by using the I-type format for both jump and jump-a nd-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the
branch by having PC- relative addressing refer to the number of words to the next
instruction instead of the number of bytes. Thus, the 16-bit field can branch four
times as far by interpreting the field as a relative wo rd address rather th an as a rel
ative byte address. Similarly, the 26-bit fi eld in jump instructions is also a word
address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits , 4 bits must come from somewhere else . The
MIPS jump instruction replaces only the lower 28 bits of the PC, leaving the upper 4
bits of the PC unchanged. The loader and linker (Section 2.9) must be ca reful to avo id
placing a program across an address boundary of 256 MB (64 million instructions); oth
erwise a jump must be replaced by a jump register instruction preceded by other
instructions to load the full 32-bit address into a register.

Showing Branch Offset in Machine Language

The while loop on page 74 was compiled into this MIPS assembler code:

Loop : sll $tl , $s3 , 2
add $t1,$t1,$s6
1w ItO , O(It!)
bne $tO , $s5 , Exit
addi $s3 , $s3 , 1
j Loop

Exit :

# Temp r eg $t1 = 4 * i
# $t1 = address of save[i]
# Temp r eg $t O = save[i]
# go to Exi t i f save[i] * k
#i = i + l
It go to Loop

If we assume we place the loop starting at location 80000 in memory, what is
the MIPS machine code for this loop?
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The assembled instructions and their addresses would look like this:

80000 0 0 19 9 4 0

80004 0 9 22 9 0 32

80008 35 9 8 0

80012 5 8 21 2

80016 8 19 19 1

80020 2 20000

80024

Remember that MIPS instructions have byte addresses, so addresses of se
quential words differ by4, the number of bytes in a word. The bne instruction
on the fourth line adds 2 words or 8 bytes to the address of thefallowing instruc
tion (80016), specifying the branch destination relative to that following in
struction (8 + 80016) instead of relative to the branch instruction (12 + 80012) or
using the full destination address (80024). The jump instruction on the last line
does use the full address (20000 x 4 = 80000), corresponding to the label Loo p.

Nearly every conditional branch is to a nearby location, but occasionally it
branches far away, farther than can be represented in the 16 bits of the conditional
branch instruction. The assembler comes to the rescue just as it did with large
addresses or constants: it inserts an unconditional jump to the branch target, and
inverts the condition so that the branch decides whether to skip the jump.

Branching Far Away

Given a branch on register $sO being equal to register $s 1,

beq $sO , $sl, Ll

replace it by a pair of instmctions that offers a much greater branching distance.

These instructions replace the short-address conditional branch:

bne $sO , $sl , L2

J Ll

ANSWER
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MIPS Addressing Mode Summary

Multiple forms of addressing are generically called addressing mod es. The M IPS
addressing modes are the following:

I. Register addressing, where the operand is a register

2. Base or displacement addressing, where the operand is at the memory loca
tion whose address is the sum of a register and a constant in the instmction

3. Immediate addressing, where the operand is a constant within the instruc
tion itself

4. PC-relative addressing, where the address is the sum of the PC and a con
stant in the instruction

5. Pseudodirect addressing, where the jump address is the 26 bits of the
in struction concatenated with the upper bits of the PC

Although we show the MIPS architecture as having 32-bit addresses, nea rly all micro
processors (including MIPS) have 64-bit address extensions (see II Appendix D).
TIlese extensions were in response to the needs of softwa re for larger programs. The
process of instruction set extension allows architectures to expand in a way that lets
software move compatibly upward to the next generation of architecture.

Note th at a single operation can use more than one addressing mode. Add , for
exa mple, uses both immediate (addi) and register (add) addressing. Figure 2.24
shows how operands are id entified for each addressing mode. II In More Depth
shows other addressing modes found in the IBM PowerPC.

Decoding Machine Language

Sometimes you are forced to reverse-engineer machine language to create the origi
nal assembly language. One example is when looking at a core dump. Figure 2.25
shows the MIPS encoding of the fi elds for the MIPS machine language. This fi gure
helps when translating by hand between assembly language and machine language.
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1. Immediate addressing

~[ Immediate

2. Register addressing

~ Registers

-----·I R.~g~;,_.._, _

3. Base addressing
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I °P I rs I rt I Address I Memory

Register
'------~I

4. PC-relative addressing

op l rn l rt l Address Memory

PC Ie;> Worn

5. Pseudcx:lirect addressing

]6>----t~wo"'~•

Address

PC
---I

I Memory

FIGURE 2.24 illustration of the live MIPS addressing modes. The operands are shaded in
color. The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions
of lo.1d and store access bytes, halfwords, or words. For mode I, the operand is 16 bits of the instruction
itself. Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits
to the PC and mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the Pc.
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Decoding Machine Code

What is the assembly language statement co rresponding to this machine
instruction?

OOaf8020hex

The first step in converting hexadecimal to binary is to find the op fields:

(Bits: 31 28 26 5 2 0)

0000 0000 1010 1111 1000 0000 0010 0000

We look at the op field to determine the operation. Referring to Figure 2.25,
when bits 31-29 are 000 and bits 28-26 are 000, it is an R-format instruction.
Let's reformat the binary instruction into R-format fi elds, listed in Figu re 2.26:

op
000000 "00101

rt cd

01111 10000
shamt
00000

funct
100000

The bottom portion of Figure 2.25 determines the operation of an R-fo rmat
in struction. In this case, bits 5-3 are 100 and bits 2-0 are 000, which mea ns
this binary pattern represents an add instruction.

We decode the rest of the instruction by looking at the field values. The deci
mal values are 5 for the rs field , 15 for rt, 16 for rd (shamt is unused). Figu re
2.18 says these numbers represent registers $a1, $t 7, and $s O. Now we can
show the assembly instruction:

add $ sO , $al , $t 7

Figure 2.26 shows all the MIPS ins truction formats. Fig ure 2.27 shows the
MIPS assembly language revealed in Chapter 2; the remaining hidden portion
of MIPS instructions deals mainly w ith arithmetic covered in the next chapter.
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op(31:26)

28-26 0(000) 1{OO1) 2{O10) 3(011) 4(100) 5(101) 6(110) 7(111)

31-29

O{OOO) R-format Bl tz/gez j ump j um p & lin k branch eq br anch blez bgtz

"
1{OO1) odd addiu set less s lt i u andi o r i xori load uppe r i mm

i mmediate th a n i mm.

2{O10) TlB Fl Pt

3(011)

4{1(0) load byte load ha lf ," load word lb" ,"" ,,,
5(101) s t ore by t e s t ore ,,' s t o r e wo r d m

half

6(110) 1wcO lwcl

7(111) swcO swc l

op(31:26)=010000 (TlB), rs(25:21)

23--21 0(000) 1{OO1) 2{01O) 3(011) 4(100) 5(101) 6(110) 7(111)

25--24

O{OO) mfcO c f cO mtcO ctcO

1{O1)

2(10)

3(11)

op(31:26)=OOOOOO (R·format), funet(5:0)

2-<> 0(000) 1{OO1) 2{O10) 3(011) 4(100) 5(101) 6(110) 7(111)

5-3

O{OOO) shi ft 1e ft shi ft ri gh t m sl1v s r 1v srav
logical logic a l

1{OO1) jump reg. j a 1 r syscall break

2{01O) mfhi mthi mfl 0 mtl0

3(011) mult mult u div di vu

4{1(0) odd addu subt rac t subu ood " '" no t o r (no r )

5(101) set 1. t. sltu

6(110)

7(111)

FIGURE 2.25 MIPS Instruction encoding. This notation gives the value of a field by row and by column. For example, the top portion of the
figure shows load wo r d in row number 4 ( IOOtwo for bits 31- 29 of the instruction) and column number 3 (0111\<,.., for bits 28--26 of the instruction),
so the corresponding value of the op field (bits 31- 26) is IOOOlltwo. Underscore means the field is used elsewhere. For example, R- f ormat in row 0
and column 0 (op = OOOOOOtv>..,) is defined in the bottom part of the figure. Hence, s u bt rac t in row 4 and column 2 of the bottom section means
that the funct field (bits 5--0) of the instruction is 1000101\<,.., and the op field (bits 31- 26) is OOOOOOtv>..,. The Fl Pt value in row 2, column 1 is defined
in Figure 3.20 in Chapter 3. B1tzl gel is the opcode for four instructions found in II AppendixA: b1tz , bgez , b1tza 1 , and bgeza 1. Chapter
2 describes instructions given in full name using color, while Chapter 3 describes instructions given in mnemonics using color. Appendix A covers all
instructions.
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Name Fields Comments

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

R·format 0' " rt '" shamt furoct Arithmetic instruction format

I{ormat 0' " rt address/immediate Transfer. branch. imm. format

J.format 0' target address Jump instruction format

FIGURE 2.26 MIPS Instruction formats In Chapter 2. Highlighted portions show instruction formats introduced
in this section.

Check
Yourself

What is the range of addresses for conditional branches in M IPS (K = 1024)?

I. Addresses between 0 and 64K - I

2. Addresses between 0 and 256K - I

3. Addresses up to about 32K before the branch to about 32K after

4. Addresses up to about 128K before the branch to about 128K after

What is the range of addresses for jump and jump and link in M IPS (M = 1024K)?

1. Addresses between 0 and 64M - I

2. Addresses between 0 and 256M - I

3. Addresses up to about 32M before the branch to about 32M after

4. Addresses up to about 128M before the branch to about 128M after

5. Anywhere within a block of 64M addresses where the PC supplies the upper
6 bits

6. Anywhere within a block of 256M addresses where the PC supplies the
upper 4 bits

What is the M IPS assembly language instruction corresponding to the machine
instruction with the value 0000 OOOOhex?

I. J
2. R- format

3. addi

4. s 11

5. mfcO

6. Undefined opcode: there is no legal instruction that corresponds to O.
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MIPS operands
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Name Example Comments

SsO-Ss7. stO-st9. Szero. SaO- Fast locations for data . In MIPS, data must be in registers to perform arithmetic. MIPS
32 registers Sa3. SVO- SVl. Sgp. Hp. Ssp. register Sze ra always equals O. Register Sat is reserved for the assembler to handle

Sra. Sat large constants.

230 memory Memory[O], Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential

words Memory[4]. ... , word addresses differ by 4. Memory holds data structures, arrays, and spilled
Memory[4294967292] registers, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments

.dd 'dd Ss1.Ss2.Ss3 Ss l _ Ss2 + Ss3 Three register operands

Arithmetic subtract ;ch Ss1.Ss2.Ss3 Ss l _ Ss2 - Ss3 Three register operands

add immediate a ddi Ss1.Ss2.100 Ss l _ Ss2 + 100 Used to add constants

load word
"

Ss1.100(Ss2) Ss l _ Memory(Ss2 + 100) Word from memory to register

store word " Ssl.100(Ss2) Memory[ Ss2 + 100]- Ssl Word from register to memory

load half 1h Ssl.100( Ss2) Ss 1 = Memory(S s2 + 10O] Halfword memory to register

Data transfer store half ;h Ssl.100( Ss2) Memory[Ss2 + 100] = Ssl Halfword register to memory

load byte 1b Ssl.100( Ss2) Ss 1 _ Memory(S s2 + 10O] Byte from memory to register

store byte ;b Ssl.100( Ss2) Memory[Ss2 + 100]- Ssl Byte from register to memory

load upper immed. 1ui Ss1.100 Ssl = 100 . 216 Loads constant in upper 16 bits

." '"' Ss1.Ss2.Ss3 Ss l _ Ss2 & Ss3 Three reg. operands; bit·by-bit AND

" " Ss1.Ss2.Ss3 Ss l _ Ss21 Ss3 Three reg. operands; bit·by-bit OR

'"
,,, Ss1.Ss2.Ss3 Ss l _ - (Ss2ISs3) Three reg. operands; bit·by-bit NOR

Logical and immediate a ndi Ss1.Ss2.100 Ss l _ Ss2 & 100 Bit-by-bit AND reg with constant

or immediate ori Ss1.Ss2.100 Ss l _ Ss21100 Bit-by-bit OR reg with constant

shift left logical ;11 Ss1.Ss2.10 Ss l _ Ss2« 10 Shift left by constant

shift right logical ,,1 Ss1.Ss2.10 Ss l _ Ss2» 10 Shift right by constant

branch on equal h', Ss1.Ss2. 25 if(Ssl __ Ss2)goto Equal test ; PCrelative branch
PC + 4 +1OO

branch on not equal hoo Ss1.Ss2. 25 if(Ssl !_ Ss2)goto Not equal test; PCl"e la tive
Conditional PC + 4 +1OO
branch set on less than ;It Ss1.Ss2.Ss3 if(Ss2< Ss3) Ss l_1; Compare less than; for beq, bne

elseSs1 = 0

set less than s1ti Ss1.Ss2. 100 if( Ss2 < 100) Ss l = 1; Compare less than constant
immedi ate else Ss 1 = 0

jump j 2500 go to 10000 Jump to target address
Uncondi· jump register j, leo gotoSra For switch, procedure return
tional jump

jump and link jal 2500 Sra _PC+4;goto l0000 For procedure call

FIGURE 2.27 MIPS assembly language revealed In Chapter 2. Highlighted portions show portions from Sections 2.8 and 2.9.
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Translating and Starting a Program

This section describes the four steps in tran sforming a C program in :I fil e on disk
into a program running on a computer. Figure 2.28 shows the tran slation hierar
chy. Some systems combine these steps to reduce translation time, but these are
the logica l four phases that programs go through. This section follows this trans
lation hiera rchy.

I C program I

"( Compiler)

"-
Assembly language program

( Assembler

"IObject: Machine language mcx:lule I IObject: Library routine (machine language) I

/
( Linker )

"-
Exea.Jtable: Machine language program

"( Loader

"Memory

FIGURE 2.28 A trans lation hie rarchy f or C. A hlgh·level·language program IS first complIed mto
an assembly langu.1ge program and then assembled into an object mooule in machine language. The linker
combines multiple modules with library routines to resolve all references. The loader then places the
machine cooe into the proper memory locations for execution by the processor. To speed up the translation
process, some steps are skipped or combined together. Some compilers produce object mooules directly,
and some systems use linking loaders that perform the last two steps. To identify the type of file, UNIX fol
lows a suffix convention for files: C source files are named x. c, assembly files are x. 5, object files are
named x. 0, statically linked library routines are x. a , dynamically linked library routes are x. 50, and exe
cutable files by default are called d . OU t. MS-DOS uses the suffixes .C, .ASM, . OBJ, .l l B, . Dll, and. EXE
to the same effect.
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Compiler

The compiler transforms the C program into an assembly language program, a
symbolic form of what the machine understands. High -level-language programs
take many fewer lines of code than assembly language, so programmer productiv
ity is much higher.

In 1975, many operating systems and assemblers were written in assembly lan
guage because memories were small and compilers were inefficient. The 128,000
fold in crease in mem ory ca pacity per single DRAM chip has reduced program size
concerns, and optimizing compilers today ca n produce assembly language p ro
grams nearly as good as an assembly language expert, and sometimes even better
for la rge programs.

Assembler

As mentioned on page 96, since assembly language is the interface to higher-level soft 
ware, the assembler ca n also treat common va riations of maclline language instmc
tions as if they were instructions in their own right. The hardware need not implement
these instmctions; however, their appea rance in assembly language simplifies transla
tion and programming. Such instmctions are called pseudoinstructions.

As mentioned above, the MIPS hardwa re makes su re that register $ze r o
always has the value O. That is, whenever register $zero is used , it supplies a 0,
and the p rogrammer cannot change the va lue of register $ze r ooRegister $ze ro is
used to create the assembly language instruction move th at copies the contents of
one register to another. Thus the MIPS assembler accepts this in struction even
though it is not found in the MIPS architecture:
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assembly language A sym
bolic language that can be trans
lated into binary.

pseudoinstruction A com
mon variation of assembly lan
guage instructions often treated
as if it were an instruction in its
own right.

move $t O, $tl # r egis t er $t O ge t s regis t e r $t l

The assembler converts this assembly language in struction into the machine lan 
guage equivalent of the following instruction:

add $t O, $ze r o , $t l # r egis t er $t O ge t s 0 + r egis t er $t l

The MIPS assembler also converts b1 t (branch on less than) into the two
instructions s 1t and bne mentioned in the example on page 96. Other examples
include bgt, bge, and b1e. It also converts branches to faraway locations into a
branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants
to be loaded into a register despite the 16-bit limit of the immediate instmctions.

In summary, pseudoinstructions give MIPS a richer set of assembly language
instructions than those implemented by the hardwa re. The only cost is reserving
one register, $a t , for use by the assembler. If you are going to write assembly p ro
grams, use pseudoin structions to simplify your task. To understand the MIPS
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machine language Binary
representation lIsed for commu
nication within a computer
system.

symbol table A table that
matches names oflabels to the
addresses of the memory words
that instructions occupy.
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architecture and to be sure to get best perfo rmance, however, study the rea l MIPS
instructions found in Figures 2.25 and 2.27.

Assemblers will also accept numbers in a va riety of bases. In addition to binary
and decimal, they usually accept a base that is more succinct than binary yet con 
verts easily to a bit pattern. MIPS assemblers use hexadecimal,

Such features are convenient, but the primary task of an assembler is assembly
into m achine code. The assembler turns the assembly language program into an
object file, which is a combination of m achine language instructions, data, and
information needed to place instructions p roperly in mem ory.

To produce the binary version of each instruction in the assembly language pro
gram , the assembler must determine the addresses corresponding to all labels.
Assemblers keep track of labels used in branches and data transfer instructions in a
sym bol table. As you might expect, the table contains pairs of symbol and address.

The object file for UNIX system s typically contain s six distin ct pieces:

• The object file header describes the size and position of the other pieces of
the object file.

• The text segment contain s the machine language code.

• The static data segment contains data allocated for the life of the program.
(U NIX allows programs to use either static data, which is allocated th rough 
out the program , or dynamic data, which can grow or shrink as needed by
the progra m.)

• The relocation information identifies instructions and data wo rds that
depend on absolute addresses when the p rogram is loaded into memo ry.

• The symbol table contains the remaining labels that are not defined, such as
external references.

• The debugging information contains a concise description of how the mod
ules were compiled so that a debugger can associate machine instructions
with C source fil es and make data structures readable.

The next subsection shows how to attach such routines that have already been
assembled, such as library routines.

Linker

What we have presented so far suggests that a single change to one line of one proce
dure requires compiling and assembling the whole program. Complete retransla
tion is a terrible waste of computing resources. This repetition is part icularly
wasteful for standard library routines because programmers would be compiling
and assembling routines that by definition almost never change. An alternative is to
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compile and assemble each procedure independently, so that a change to one line
would require compiling and assembling only one procedure. This alternative
requires a new systems program, called a link editor or linker, whidl takes all the
independently assembled machine language programs and "stitdles" them together.

There are three steps for the linker:

I. Place code and data modules symbolically in memory.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object
module to resolve all undefined labels. Such references occur in branch instruc
tions, jump instructions, and data addresses, so the job of this program is much
like that of an editor: It finds the old addresses and replaces them with the new
addresses. Editing is the origin of the name "link ed ito r," or linker for short. The
reason a linker makes sense is that it is much faster to patch code than it is to
recompile and reassemble.

If all external references are resolved, the linker next determines the memory
locations each module will occupy. Reca ll that Figure 2. 17 on page 87 shows the
MIPS convention for allocation of program and data to memory. Since the fil es
were assembled in isolation, the assembler could not know where a mod ule's
instructions and data will be placed relative to other m odules. When the linker
places a module in memory, all absolute references, that is, memory addresses that
are not relative to a register, must be relocated to refl ect its true location.

The linker produces an executable file that ca n be run on a computer. Typi
cally, this fil e has the sa me format as an object fil e, except that it contains no unre
solved references. It is possible to have partially linked files, such as library
routines, which still have unresolved addresses and hence result in object fil es.

Unking Object Files

Link the two object files below. Show updated addresses of the first few in 
structions of the completed executable file. We show the instructions in as
sembly language just to make the example understandable; in reality, the
in structions would be numbers.

Note that in the object fil es we have highlighted the addresses and symbols
that must be updated in the link process: the instructions that refer to the
addresses of procedures A and B and the instructions that refer to the
addresses of data words Xand Y.
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linker Also called link editor.
A systems program that com
bines independently assembled
machine language programs and
resolves all undefined labels into
an executable file.

executable file A ti.mctional
program in the fonnat ofan
object fIle that contains no unre
solved references, relocation
information, symbol table, or
debugging information.

EXAMPLE
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Object file header

Name Procedure A

Text size lO°he<

Data size 20"",
Text segment Address Instruction

0 l w S~O. O($gp)

4 jal 0

- -
Data segment 0 (X)

... ...
Relocation information Address Instruction type Dependency

0
"

X

4 j .1 B

Symbol table Label Address

X

B

Object file header

Name Procedure B

Text size 20°he<

Data size 30"",
Text segment Address Instruction

0 sw S~l. O( Sgp )

4 jal 0

... -
Data segment 0 (Y)

... ...
Relocation information Address Instruction type Dependency

0 " y

4 j .1 A

Symbol table Label Address
y

A

Procedure A needs to find the address fo r the va riable labeled X to put in the
load instructio n and to find the address of procedure B to place in the j a 1 in 
struction. Procedure B needs the address of the va riable labeled Y for the
store instructio n and the address of procedure A for its j a 1 instructio n.

From Figure 2. 17 on page 87, we know that the text segment starts at address
40 OOOOhex and the data segment at 1000 OOOOhex' The te>..1 of procedure A is
placed at the first address and its data at the second. The object file header fo r pro
cedure Asays that its text is lOOttex bytes and its data is 20ttex bytes, so the starting ad
dress fo r procedure B te>..1 is 4 0 0100 hex, and its data starts at 1000 0020hex'
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Executable file header

Text size 300ne<

Data size 50..

Text segment Address Instruction

00400000""" lw SaO. 8000h•x(S gp)

00400004""" j" 40 OIOO h.x

... -
00400100""" sw Sal. 8020h•x(S gp)

00400104""" j" 40 OOOO h.x

...
Data segment Address

10000000""" m
...

10000020""" m
... ...

From Figure 2.1 7 on page 87, we kn ow that the text segment starts at address
40 OOOOhex and the data segment at 1000 OOOOhex' The text of procedure A
is placed at the first address and its data at the second. The object file header
for procedure A says that its text is l OOhex bytes and its data is 20hex bytes, so
the starting address for procedure B text is 40 0100 hex , and its data starts at
10000020hex'

Now the linker updates the address fi elds of the in struct ions. It uses the
in struction type fi eld to kn ow the format of the address to be edited. We have
two types here:

I. The j a 1s are easy beca use they use pseudodirect addressing. The j a 1 at
address 40 0004 hex gets 40 0100 hex (the address of procedure B) in its
address field, and the j a1 at 40 010 4hex gets 40 OOOOhex (the address
of procedure A) in its address fi eld.

2. The load and sto re addresses are harder because they are relative to a
base register. This example uses the global pointer as the base register.
Figure 2.1 7 shows that $gp is initialized to 1000 8000hex' To get the
address 1000 OOOO hex (the address of word X), we place 8000hex in the
address field of 1w at address 40 OOOOhex' Chapter 3 explains 16-bit
two's complement computer arithmetic, which is why 8000hex in the
address fi eld yield s 1000 OOOOhex as the address. Similarly, we pla ce
8020hex in the address field of swat address 40 0100 hex to get the
address 1000 0020 hex (the address of wo rd Y).

111
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loader A systems program that
places an object program in
main memory so that it is ready
to exeulte.
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Loader

Now that the executable file is on disk, the operating system reads it to memory
and starts it. It follows these steps in UNIX systems:

I. Reads the executable file header to determine size of the text and data segm ents.

2. Creates an address space large enough for the text and data.

3. Copies the instructions and data from the executable fil e into memory.

4. Copies the parameters (if any) to the main program onto the stack.

5. Initializes the machine registers and sets the stack pointer to the first free
loca tion.

6. Jumps to a start-up routine that copies the parameters into the argument reg
isters and calls the main routine of the program. When the main routine
returns, the start-up routine terminates the program with an e x i t system call.

Sections A.3 and AA in • Appendix A describe linkers and loaders in more
detail.

Dynamically Linked Libraries

The first part of this section describes the traditional approach to linking libraries
before the program is run. Although this static approach is the fastest way to call
library routines, it has a few disadva ntages:

• The library routines become part of the executable code. If a new version of
the library is released that fixes bugs or supports new hardwa re devices, the
statically linked program keeps using the old version.

• It loads the whole library even if all of the library is not used when the pro
gram is run. The library ca n be large relative to the program; for example,
the standard C library is 2.5 MS.

These disadva ntages lead to dynamically linked libraries (DLLs) , where the
library routines are not linked and loaded until the program is run. Both the pro
gram and library routines keep extra information on the location of nonloca l pro
cedures and their names. In the initial version of DLLs, the loader ran a dynamic
linker, using the extra information in the fil e to find the appropriate libraries and
to update all external references.

The downside of the initial version of DLLs was that it still linked all routines of
the library that might be called versus those that are called during the running of
the p rogram. This observation led to the lazy procedure linkage version of DLLs,
where each routine is linked only after it is ca lled.
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Text I

j" 1 Ltl- • ••

l lw
je ~
• ••

Data I

~

Text I
• ••
1i 1D
j .-• ••

Text I
Dynamic LinkerlLoader
Remap DLL Routine

J
~• ••

Datarrext

DLL Routine
• ••

~je

Text I

- j" 1 Itl• ••

l l w re=tje
• ••

Data I

--.

Text I
DLL Routine
• ••

je ~
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1'1 First ca ll to DLL routine (b) Subsequent calls to DLL routine

FtGURE 2.29 Dynamically linked library via lazy procedure linkage. (a) Steps for the first
t ime a caU is made to the DLL routine. (b ) The steps to find the routine, remap it, and link it are skipped on
subsequent calls. As we will see in Chapter 7, the operating system may avoid copying the desired routine by
remapping it using virtual memory management.

Like many instances in our field , this trick relies on a level of indirection. Figure
2.29 shows the technique. It starts with the nonloca l routines calling a set of
dummy routines at the end of the program, with one entry per nonlocal routine.
These dummy entries each contain an indirect jump.

The first time the library routine is called, the program calls the dummy entry
and follows the indirect jump. It points to code th at puts a number in a register to
identi fy the desired library routine and then jumps to the dynamic linker-loader.
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Java bytecode Instruction
from an instruction set designed
to interpret Java programs.
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The linker-loa der finds the desired routine, remaps it , and changes the address in
the indirect jump location to point to that routine. It then jum ps to it. When the
routine completes, it returns to the original ca lling site. Thereafter, it jumps indi 
rectly to the routine without the extra hops.

In summary, DL Ls require extra space for the information needed for dynamic
linking, but do not require th at whole libraries be copied or linked. They pay a
good deal of overhead the first time a routine is called , but only a single indirect
jump therea fter. Note that the return from the library pays no extra overhead.
Microsoft's Windows rel ies extensively on la zy dynamica lly linked libraries, and it
is also the no rmal way of executing programs on UNIX systems today.

Starting a Java Program

The discussion above captures the traditional model of executing a program ,
where the emphasis is on fast execution time fo r a p rogram targeted to a specific
instruction set architecture, or even a specific implementation of that architec
ture. Indeed , it is possible to execute Java p rograms just like C. Java was invented
with a different set of goa ls, however. One was to quickly run sa fely on any com 
puter, even if it might slow execution time.

Figure 2.30 sh ows the typical translation and execution steps fo r Java. Rather
than com pile to the assembly langu age of a target com puter, Java is com piled
first to instructions th at are easy to interpret: the Java bytecode instruction set.
This instruction set is designed to be close to the Java language so th at this com -

I Java program I

( Compiler)

"IClass files (Java bytecodes) I Java Library routines (machine language )

/
(. ....us! In Time ( Java Virtual Machine)

compiler

"-
Compiled Java methods (machine la ngua ge)

FIGURE 2.30 A translation hierarchy for Java. A Java program is first compiled into a binary version
of JaVll bytecodes, with aU addresses defined by the compiler. The Java program is now ready to rw} on the
imerpreter, called the Java Virtual Machine ( JVM). The JVM links to desired methods in the JaVll library while
the program is running. To achieve gre.1ter performance, the JVM can invoke the Just In Time orr) compiler,
which selectively compiles methods into the n.1tive machine language of the m.1chine on which it is rwming.
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pilation step is trivial. Virtually no optimiza tions are perfo rmed. Like the C
com piler, the Java compiler checks the types of data and produces the proper
operation for each type. Java programs are distributed in the binary version of
these bytecodes.

A software interpreter, ca lled a Java Virtual Machine (JVM ), ca n execute Java
bytecodes. An interpreter is a p rogram that simulates an instruction set architec
ture. For example, the MIPS simulator used with this book is an interpreter. There
is no need fo r a sepa rate assembly step since either the translation is so sim ple that
the compiler fill s in the addresses or JVM finds them at runtime.

The upside of interpretation is po rtability. The ava ilability of soft wa re Java vir
tual machines mea nt that most could write and run Java programs sho rtly after
Java was announ ced. Today Java virnlal machines are found in millions of devices,
in everything from cell phones to Internet b rowsers.

The downside of interpretation is low performance. The incredible adva nces in
performance of the 1980s and 1990s made interpretation viable for many impor
tant applications, but the factor of 10 slowdown when compa red to traditionally
compiled C progra ms made Java unattractive for some applications.

To preserve portability and imp rove execution speed, the next phase of Java
development was compilers that translated while the progra m was running. Such
Just In Time compilers (JIT) typically profil e the running program to find where
the "hot" meth ods are, and then compile them into the native instruction set on
which the virtual machine is running. The compiled portion is saved for the next
time the program is run , so that it can run faster each time it is run. This balance
of interpretation and compilation evolves over time, so that frequently run Java
programs suffer little of the overhead of interpretation.

As computers get faster so that compilers ca n do more, and as resea rchers
invent betters ways to compile Java on the fly, the performance gap between Java
and C o r c++ is closing. Section 2. 14 goes into much greater depth on the im ple
mentation of Java, Java bytecodes, JVM, and JIT compilers.

Which of the adva ntages of an interpreter over a translator do you think was most
impo rtant fo r the designers of Java?

I. Ease of writing an interpreter

2. Better error messages

3. Smaller object code

4. Machine independence
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Java Virt ual Machine
OVM) The program that
interprets Java bytecodes.

Just In Time Compiler
(JIT) The name commonly
given to a compiler that operates
at runtime, translating the inter
preted code segments into the
native code of the computer.

Check
Yourself
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How Compilers Optimize

Because the compiler will significantly affect the performance of a computer, under
standing compiler technology today is critical to understanding performance. The
purpose of this section is to give a brief overview of optimizations a compiler uses to
achieve performance. The following section introduces the internal anatomy of a
compiler. To start, Figure 2.31 shows the structure of recent compilers, and we
describe the optimizations in the order of the passes of that strucnlre.

High-Level Optimizations

High-level optimizations are transformations that are done at something close to
the source level.

The most common high-level transformation is probably procedure inlillillg,
whidl replaces a call to a function by the body of the function, substituting the
caller's arguments for the procedure's parameters. Other high-level optimizations

Dependencies
Language dependent;
machine Independent

Front end per
language

Functio n
Transform language to
common Intermediate form

Intermediate
representation

Somewhat language dependent;
largely machine Independent

Small language dependencies;
machine dependencies slight
(e.g., register countsltypes)

Highly machine dependent;
language Independent

High-level
optimizations

Global
optimizer

Gode generator

For example, loop
transformations and
procedure Inllnlng
(also called
procedure Integration)

Including global and local
optimizations + register
allocation

Detailed Instruction selection
and machine-dependent
optimizations; may Include
or be followed by assembler

FIGURE 2.31 11Ie structure of a modern optimizing compiler consists of a numbers of
passes or phases. Logically each pass can be thought of as nmning to completion before the
next occurs. In practice, some passes may handle a procedure at a time, essentially interleaving
with another pass.
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involve loop transformations that can reduce loop overhea d, improve memory
access, and exploit the hardware more effectively. For example, in loops that execute
many iterations, such as those traditioll3lly controlled by a for statement , the opti
mization of loop unrolling is often useful. Loop unrolling involves taking a loop
and replicating the body multiple times and executing the transformed loop fewer
times. Loop unrolling reduces the loop overhead and provides opportunities for
many other optimizations. Other types of high-level transfo rmations include
sophisticated loop transformations such as interd langing nested loops and blocking
loops to obtain better memory behavior; see Chapter 7 for examples.

Local and Global Optimizations

Within the pass dedica ted to loca l and global optimiza tion , three classes of opti
mizations are performed :

I. Local optim ization works within a single basic block. A local optimization
pass is often run as a precursor and successo r to global optimization to
"clea n up" the code before and after global optimization.

2. Global optimization wo rks across multiple basic blocks; we will see an
example of this sho rtly.

3. Global register allocation allocates va riables to registers fo r regions of the
code. Register alloca tion is crucial to getting good perfo rm ance in modern
processors.

Several optimizations are performed both locally as well as globally, including
common subexpression elimill3tion, constant p ropagation , copy propaga tion ,
dead sto re elimination , and strength reduction. Let's look at some simple exam 
ples of these optimiza tions.

Common subexpression elimination find s multiple instances of the sa me expres
sion and replaces the second one by a reference to the first. Consider, for example,
a code segment to add 4 to an array element:

x[i] = x[i] + 4

The address calculation for x[ i) occurs twice and is identical since neither the
starting address of x nor the value of i changes. Thus, the ca lculation ca n be reused.
Let's look at the intermediate code for this fragment, since it allows severJ l other
optimizations to be performed. Here is the unoptimized intermediate code on the
left , and on the right is the code with common subexpression elimill3tion replacing
the second address calculation with the first. Note that the register allocation has not
yet occurred, so the compiler is using virtual register numbers like R100 here.
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loop unrolling A technique to
get more performance from
loops that access arrays, in
which multiple copies of the
loop body are made and instruc
tions from different iterations
are scheduled together.
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It x[i] + 4

1i R100 , x

lwR10l , i

mul t R102 , R10l ,4

add R103 , R100 , R102

lw R104 , O(R103)

It value of x[i] lS 1n R104

add R105 , R104 ,4

II xli] ~

li R106 , x

lwR107 , i

mult R108 , R107 ,4

add R109 , R106 , R107

sw R105 , O(R109)

Itx[iJ + 4

li RIOO , x

lw RIOl , i

mul t RI02 , RIOl ,4

add RI03 , RIOO , RI02

l w RI0 4, O(RI03l

It va lue of x[iJ 15 1n RI04

add RI05 , RI04,4

Ilx[i] ~

sw RI05 , O(RI03l

If the sa me optimization was possible across two basic blocks, it would then be an
instance of global common slibexpression elimination.

Let's consider some of the other optimizations:

• Strength reduction replaces complex operations by simpler ones and can be
applied to this code segment, replacing the mu 1t by a shift left.

• Constant propagation and its sibling COllstllnt folding find constants in code
and propagates them , collapsing constant values whenever possible.

• Copy propagation propagates values th at are simple copies, eliminating the
need to reload values and possibly enabling other optimizations such as
common subexpression elimination.

• Dead store elimination finds stores to values that are not used again and
eliminates the store; its "cousin" is dead code elimination, which fin ds
unused code-code th at cannot affect the final result of the p rogram-and
eliminates it. With the heavy use of macros, templates, and the similar tech 
niques designed to reuse code in high -level languages, dead code occurs sur
prisinglyoften.
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Programmers concerned about performance of critical loops, especially in rea l
time or embedded applications, often find themselves staring at the assembly lan 
guage produced by a compiler and wondering why the compiler failed to perform
some global optimization or to allocate a va riable to a register th roughout a loop.
The answer often lies in the dictate that the compiler be conservative. The oppor
tunity for improving the code may seem obvious to the programmer, but then the
programmer often has knowledge th at the compiler does not have, such as the
absence of aliasing between two pointers or the absence of side effects by a func
tion call. The compiler m ay indeed be able to perform the transformation with a
little help, which could eliminate the worst-case behavior that it must assume.
This insight also illustrates an important observation: programmers who use
pointers to try to improve perfo rmance in accessing va riables, especia lly pointers
to values on the stack that also have names as va riables o r as elements of arrays,
are likely to disable many compiler optimizations. The end result is that the lower
level pointer code may run no better, or perhaps even worse, than the higher-level
code optimized by the compiler.

Compilers must be conservative. The first task of a compiler is to produce
co rrect code; its second task is usually to produce fast code alth ough other fac
to rs such as code size may sometimes be important as well. Code th at is fast but
in co rrect- fo r any possible combin ation of inputs-is simply wrong. Thus,
when we say a compiler is "conserva tive," we mean th at it performs an optimiza
tion only if it knows with 100% certainty that, no matter what the inputs, the
code will perform as the user wrote it. Sin ce most compilers translate and opti 
mize one funct ion o r procedure at a time, most co mpilers, especially at lower
optimization levels, assume the worst about function calls and about their own
parameters.

Global Code Optimizations

Many global code optimiza tions have the sa me aims as those used in the local
case, including comm on subexpression elimination, constant p ropagation , copy
propagation , and dead store and dead code elimination.

There are two other important global optimiza tions: code motion and induc
tion va riable elimination. Both are loop optimizations; that is, they are aimed at
code in loops. Code motion finds code that is loop inva riant: a particular piece of
code computes the sa me value on every loop iteration and , hence, may be com
puted once out side the loop. Induction variable elimination is a combination of

Understanding
Program
Performance
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t ra nsfo rmations that red uce overhead on index in g arrays, essentially replacing
array in dexing with pointer accesses. Rather than exa mine induction va riable
elimination in depth , we po int the reader to Section 2. 15, which co mpares th e
use of array indexing and po inters; for m ost loops, the t ra nsformation fro m th e
more obvious array code to the pointer code ca n be perfo rmed by a modern
optimizin g compiler.

Optimization Summary

Figure 2.32 gives exa mples of typica l optimizations, and the last column in di
ca tes where the optimiza tion is performed in the gee comp iler. It is sometimes
d ifficult to separa te some of the simpler optimiza tions- loca l and processor
dependent optimizations- fro m tra nsformations done in the code generator,
and some optimiza tions are do ne multiple times, especially loca l optimizations,
which may be performed before and after global optimiza tion as well as during
code generation.

Optimization name Explanation gee level

High level At or near the source level; processor independent

Procedure integration Replace procedure call by procedure body 03

L=I Within straighWne code

Common subexpression elimination Replace two instances of the same computation by single copy 01

Constant propagation Replace all instances of a variable that is assigned a constant with the 01
constant

Stack height reduction Rearrange expression tree to minimize resources needed for expression 01
evaluation

Global Across a branch

Global common subexpression elimination Same as local, but this version crosses branches 02

Copy propagation Replace all instances of a variable A that has been assigned X (I.e.,A '" Xl with X 02

Code motion Remove code from a loop that computes same value each iteration of the loop 02

Induction variable elimination Simplify/ eliminate array addressing calculations within loops 02

Processor dependent Depends on processor knewledge

Strength reduction Many examples ; replace multiply by a constant with shifts 01

Pipeline scheduling Reorder instructions to improve pipeline perlormance 01

Branch offset optimization Choose the shortest branch displacement that reaches target 01

FIGURE 2.32 Major types of optimizations and examples In eaeh elass. The third column shows when these occur at different
levels of optimization in gcc. The Gnu organization calls the three optimization levels medium (01 ), full (0 2), and full with integration of
small procedures (03).
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Today essentially all programming for desktop and server applications is done in
high-level languages, as is most programming for embedded applications. This
development means that since most instructions executed are the output of a
compiler, an instruction set architecture is essentially a compiler target. With
Moore's law comes the temptation of adding sophisticated operations in an
instruction set. The challenge is that they may not exactly match what the com
piler needs to produce or be so general that they aren't fast. For example, consider
special loop instructions found in some computers. Suppose that instead of decre
menting by one, the compiler wanted to in crement by four, or instead of branch
ing on not equal zero, the compiler wa nted to branch if the index was less than or
equal to the limit. The loop instruction may be a mismatch. \Vhen faced with such
objections, the instruction set designer might then generalize the operation, add
ing another opera nd to specify the increment and perhaps an option on which
branch condition to use. Then the danger is that a common case, say, increment 
ing by one, will be slower than a sequence of simple operations.

Hardware
Software
Interface
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How Compilers Work:
An Introduction

The purpose of this section is to give a brief overview of the compiler function ,
which will help the reader understand both how the compiler translates a high
level language program into machine instructions. Keep in mind that the subj ect
of compiler construction is usually taught in a one- or two-semester course; our
introduction will necessarily only touch on the basics. The rest of this section is on
the CD.

A C Sort Example to Put It All Together

One danger of showing assembly language code in snippets is that you will have
no idea what a full assembly language program looks like. In this section, we
derive the MIPS code from two procedures written in C: one to swap array ele
ments and one to sort them.
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The Procedure swa p

Let's start with the code for the procedure swap in Figure 2.33. This procedure
simply swaps two loca tions in memory. When translating from C to assembly lan 
guage by hand , we follow these general steps:

I. Alloca te registers to program va riables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

This section describes the swap procedure in these three pieces, concluding by
putting all the pieces together.

Register Allocation for swap
As mentioned on page 79, the MIPS convention on parameter passing is to use
registers $aO, $al, $a2, and $a3. Since swap has just two pa rameters, v and k,
they will be fo und in registers $aO and $al. The only other va riable is temp,
which we associa te with register $tO since swap is a leaf procedure (see page 83).
This register allocation corresponds to the va riable decla rations in the first part of
the swap procedu re in Figure 2.33.

Code for the Body of the Procedure swap

The remaining lines of C code in swa pa re

temp = v[k] ;
v[k] = v[k+l] ;
v[k+l] = temp ;

Recall that the memo ry address for MIPS refers to the byte address, and so
words are really 4 bytes apart. Hence we need to multiply the index k by 4 before

void swap ( i nt v[]. int k)
(
int t emp:
temp = v[ k]:
v[k] = v[ k+l]:
v[k+l] = t emp:

(

FIGURE 2.33 A C procedure that swaps two locations In memory. The next subsection uses
this procedure in a sorting example.
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adding it to the address. Forgetting that sequential word addresses differ by 4 instead
afby 1 is a common mistake in assembly language programming. Hence the first step
is to get the address of v[ k] by multiplying k by 4:

$tl, $a1,2
$tl, $aO,$t1

sl1
add

# reg $t1 = k * 4
# reg $t1 = v + (k * 4)
# reg $t1 has the address of v[k]

Now we load v[k] using $t 1, and then v[k+1] by adding 4 to $t1:

lw
lw

Ito. 0($t1)
1t2. 4($t1)

# reg $tO (temp) = v[k]
# reg $t2 = v[k + 1]
# refers to next element of v

Next we store $to and $t2 to the swapped addresses:

sw
sw

1t2. 0($t1)
ItO. 4($t1)

# v[k] = reg $t2
# v[k+1] = reg $tO (temp)

Now we have allocated registers and written the code to perform the operations
of the procedure. \-Vhat is missing is the code for preserving the saved registers
used within swap. Since we are not using saved registers in this leaf procedure,
there is nothing to preserve.

The Full swa p Procedure

We are now ready for the whole routine, which includes the procedure label and
the return jump. To make it easier to follow, we identify in Figure 2.34 each block
of code with its purpose in the procedure.

The Procedure sort
To ensure that you appreciate the rigor of programming in assembly language,
we' ll try a second, longer example. In this case, we' ll build a routine that calls the
swap procedure. This program sorts an array of integers, using bubble or
exchange sort, which is one of the simplest if not the fa stest sorts. Figure 2.35
shows the C version of the program. Once again, we present this procedure in sev
eral steps, concluding with the full procedure.

Register Allocation for so r t
The two parameters of the procedure so rt, v and n, are in the parameter registers
$aO and $a1, and we assign register $5 0 to i and register $5 1 to j.
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Procedure body

swap: ," H l. Sa 1. 2 $regStl - ~ * 4
.dd Hl. SaO. Stl reg Stl - v + (~ * 4)

If reg Stl nas the address of v[ n

"
HO.O(Hl) If reg HO (temp) - v[n

"
H2.4(Hl) If reg H2 - v[~ + 1]

If re f ers to next eleme nt of v

" H2.0(Hl) If v[n - reg St2

" HO.4($ t l) If v[~ +l ] - reg $tO ( t emp)

Procedure return

je 'co # returo to ca 11 i og routi ne

FIGURE 2.34 MIPS assembly code of the procedure s w~p In Figure 2.33.

void sor t (i ot v[]. in t 0 )

{
i nti.J:
f o r (i = 0: i < n: 1 += 1) {

f or (j = i - 1: J >= 0 && v[j] > v[j + 1]: J = 1 ) (
swap{v.j) :

{

FIGURE 2.SS A C procedure that performs a sort on the array v.

Code for the Body of the Procedure SO r t
The procedure body consists of two nested for loops and a ca ll to swap that
includes parameters. Let's unwrap the code from the outside to the middle.

The first translation step is the first for loop:

fo r (i = 0 ; i < n ; i += 1) (

Recall that the C for statement has three pa rts: initialization , loop test , and itera
tion increment. It takes just one instruction to initialize i to 0, the fi rst part of the
for statement:

move $50 . $zero

(Remember that move is a pseudoinstruction provided by the assembler fo r the
convenience of the assembly language programmer; see page 107.) It also takes
just one instruction to in crement i , the last pa rt of the for statement:

addi $50 . $50 . 1 Iti += l
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The loop should be exited if i < n is nottrue or, sa id another way, should be exited
if i:?: n. The set on less than instruction sets register $tO to 1 if $sO < $a1 and 0
otherwise. Since we want to test if $sO:?: $a 1, we branch if register $t0 is O. This
test takes two instructions:

f orlts t: slt $tO , $sO , $a1 It reg $tO = 0 if $sO:?: $a1 (i:?:n)
beq $tO , $zero , ex itl It go t o exi t 1 if $sO:?:$a1 (i:?:n)

The bottom of the loop just jumps back to the loop test:
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J forltst # jump to test of outer loop
exit1 :

The skeleton code of the first for loop is then

move
f orlts t: sl t

beq

$sO ,
ItO .
ItO .

$zero # i - 0
$sO, $a1 It reg $tO = 0 if $sO :?: $a1 (i:?:n)
$zero , exi t1 # go to exi t1 i f $sO:?:$a1 (i:?:n)

(body of fi rs t f or loop)

addi
J

exi t1:

$sO , $sO , 1
f orlts t

Iti -+= l
# Jump t o test of ou t er loop

Voila! Exercise 2.14 explores writing faster code for similar loops.
The second for loop looks like this in C:

for (j = i - 1; j >= 0 && v[j J > v[j + 1] ; J - 1) {

The initialization portion of th is loop is again one instruction:

addi $sl, $sO, - 1 It j = i - I

The decrement of j at the end of the loop is also one instruction:

addi $sl, $sl, - 1 # j -= 1

The loop test has two parts. We exit the loop if either condition fails, so the first
test must exit the loop if it fails (j < 0):

f or2ts t: sltHtO , $sl, 0 It reg $t O = 1 if $sl < 0 (j < 0)
bne $tO, $zero , exit2 It go t o exi t 2 if $sl<O (j < 0)

This branch will skip over the second condition test. If it doesn't skip, j :?: O.
The second test exits if v[jJ > v[j + 1J is not true, or exits if v[jJ -::;

v[j + 1J. First we crea te the address by multiplying j by 4 (since we need a byte
address) and add it to the base address of v:
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sl1 H1. $s1.2 # reg $t1 - J * 4
add H2 . $aO.$t1 # reg H2 - v + (j * 4)

Now we load v(j):

lw H3 . 0(H2) # reg $t3 = v(j)

Since we know that the second element is just the following word, we add 4 to the
address in register $t2 to get v[ j + 1J:

lw H4 , 4(H2) # reg H4 - v(j + 1]

Thetestofv[j] ~ v[j + 1] is thesa rneasv[j + 1J > v[jJ,so the two
instructions of the exit test are

slt
beq

Ito . 1t4. 1t3
HO , $zero,exit2

# reg $tO = 0 if $t4 ~ $t3
# go to exit2 if $t4 ~ $t3

The bottom of the loop jumps back to the inner loop test:

J for2t5t # jump to test of inner loop

Combining the pieces together, the skeleton of the second for loop looks like
this:

addi
f orZt5 t: 51 ti

bne
sl1
add
lw
lw
si t
beq

$51, $sO. -1
$tO. $51, 0
$tO. $zero . exi t 2
$tl, $s 1. 2
$t2 . $aO . $t1
It3 . 0(1'2)
It4 . 4(1'2)
ItO . I t4. 1'3
$tO . $zero . exit2

Ilj ~ i - l

# reg $tO = 1 i f $sl < 0 (j<O)
# go t o exi t 2 i f $sl<O (j<O)
# reg $t1 = j * 4
# reg $t2 = v + (j * 4)
# reg $t 3 - v(j)
# reg $t4 - v(j + 1]
# reg $t O = 0 i f $t4 ~ $t 3
# go t o exi t 2 i f $t4 ~ $t 3

(body of second for loop)

exi t 2:

addi $51, $s1. -1
J for2 t st

II J -~ 1
# Jump t o t est of lnner loop

The Procedure Call in so r t
The next step is the body of the second for loop:

swap(v , j) ;
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Ca lling swa p is easy enough:

jal swap

Passing Parameters in so r t
The problem comes when we wa nt to pass parameters because the sort proce
dure needs the values in registers $aO and $a1, yet the swap procedure needs to
have its parameters placed in those sa me registers. One solution is to copy the
parameters for sor t into other registers ea rlier in the procedure, making registers
$aO and $a1 available for the call of swap. (This copy is faster than saving and
restoring on the sta ck.) We first copy $a 0 and $a 1 into $s 2 and $s 3 during the
procedure:
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move
move

$s2, $aO
$s3, $a1

# copy parameter $aO into $s2
# copy parameter $a1 into $s3

Then we pass the parameters to swap with these two instructions:

move
move

$aO, $s2
$a1, $sl

# first swap parameter is v
# second swap parameter is j

Preserving Registers in so r t
The only remaining code is the saving and restoring of registers. Clearly we must
save the return address in register $ ra, since sor t is a procedure and is called
itself. The sort procedure also uses the saved registers $sO, $sl, $s2, and $s3,
so they must be saved. The prologue of the sort procedure is then

addi
sw
SW

SW

SW

sw

$sp,$sp, - 20
$ra, 16( $sp)
$s3, 12( $sp)
$s2, 8($sp)
$sl, 4($sp)
$sO, O($sp)

# make room on stack for 5 regs
# save $ra on stack
# save $s3 on stack
# save $s2 on stack
# save $sl on stack
# save $sO on stack

The tail of the procedure simply reverses all these instructions, then adds a j r to
return.

The Full Procedure sort

Now we put all the pieces together in Figure 2.36, being ca reful to replace refer
ences to registers $aO and $a1 in the for loops with references to registers $s 2 and
$s3. Once again to make the code easier to follow, we identify each block of code
with its purpose in the procedure. In this exa mple, 9 lines of the sort procedure
in C became 35 lines in the MIPS assembly language.
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Saving registers

sor t: addi

"
"
"
"
"

Ssp, Ssp. 20
Sra.16($sp )
Ss3.12(Ssp l
$52.80sp)
Ssl. 4 ($sp)
$50. D($sp)

Ii make room OJ) stad f or 5 reg1 sters
If save $fa on stac k
Ii save $53 on stack
Ii save $52 on stac k
If save $sl on stac k
It save $sO on stack

Procedure body

Move parameters
move $52. SaO Heopy parameter SaO i nt o $52 (save SaO)
move $53. Sal #copypara met er Sal into $53 (save Sal)

move $50. Szero It i - 0
Outer loop f or ltst: slt stD. $50. $53 # reg stO - Oif SsOe-: $s3 (1;:.,n)

be, stD. $zero. exitl #gotoexitl1f $sO<':Ss3 (1;:., n )

addi Ss1. $50. 1 II j - i 1
f or2tst:s l ti stD. $51. 0 If reg stO - l1f Ssl (0 (j (0)

boe stD. $zero. exit2 #gotoexit2 1f $sl (0 (j (0)
;11 stl. $s1. 2 Dreg stl - j *4

Inner loop .dd H2. $52. Stl Dreg st2 - v + (j * 4)

" St3.0($t2) It reg st3 - v[ j]

" st4.4 ( st2) If reg st4 - v [ j + 1]
;1t sto. st4. st3 If reg stO - O i f st4;:., st3
be, stO. Slero. exit2 If go to exit21f st4;:., st3

Pass parameters
move S~O. Ss2 If 1st para met er of swap is v (old S~O)

move Sal. Ssl If 2nd para met er of swap is j
and call

j" sw~p If swa p code shown in Figure 2.34

Inner loop ~ddi Ssl.Ssl. 1 If j - - 1
j for2tst If j ump to t es t of inner loop

Outer loop exi t 2: ~ddi SsO. SsO. 1 1f1+- 1
j f or1tst If j ump to test of out er loop

Restoring registers

exitl: l w

"
"""
~ddi

SsO.O($sp)
Ssl. 4 ($sp)
Ss2.8($sp)
Ss3.120sp )
Sr~ .16( Ssp )

Ssp. Ssp. 20

If restore SsO f rom st~cI<.

If restore Ssl f rom st~cI<.

If restore Ss2 f rom st~cI<.

If restore Ss3 f rom st~cI<.

If restore Sr~ f rom st~cI<.

If restore st~cI< po1nter

jc

Procedure return

If return t o c~111 ng rou t i ne

FIGURE 2.36 MIPS assembly version of procedure sort In Figure 2.35 on page 124.

Elaboration: One optimization that works with this example is procedure inlining,
mentioned in Section 2 .11. Instead of passing arguments in parameters and invoking
the code with a j a 1 instruction, the compiler would copy the code from the body of the

swap procedure where the call to swap appears in the code. Inlining would avoid four
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instructions in this example. The downside of the inlining optimization is that the com
piled code would be bigger if the in lined procedure is called from several locations.
Such a code expansion might turn into lower performance if it increased the cache miss
rate; see Chapter 7.

The MIPS compilers always save room on the stack for the arguments in case they
need to be stored, so in reality they always decrement $sp by 16 to make room for all
four argument registers (16 bytes) . One reason is that C provides a va r arg option that
allows a pointer to pick, say, the third argument to a procedure . When the compiler
encounters the rare va ra rg, it copies the four argument registers onto the stack into
the four reserved locations .

Figure 2.37 shows the impact of compiler optimization on sort program perfor
mance, compile time, clock cycles, instruction count, and CPI. Note that unopti
mized code has the best CPl and 01 optimization has the lowest instruction
count, but 03 is the fastest , reminding us that time is the only accurate measure of
program performance.

Figure 2.38 compares the impact of programming languages, compilation
versus interpretation , and algorithms on performance of sorts. The fourth col
umn shows that the unoptimized C program is 8.3 times faster than the inter
preted Java code for Bubble Sort. Using the Just In Time Java compiler makes
Java 2.1 times faster than the un optimized C and within a factor of 1.13 of the
highest optimized C code. (The next section gives more details on interpreta
tion versus compilation of Java and the Java and MIPS code for Bubble Sort.)
The ratios aren't as close for Quicksort in column 5, presumably because it is
harder to amortize the cost of runtime compilation over the shorter execution
time. The last column demonstrates the impact of a better algorithm, offering
three orders of magnitude performance increase when sorting 100,000 items.
Even comparing interpreted Java in column 5 to the C compiler at highest opti
mization in column 4, Quicksort beats Bubble Sort by a factor of 50 (0.05 X
2468 or 123 versus 2.41).

Understanding
Program
Performance

•
Relative Clock cycles Instruction count

gcc optimization performance (millions) (millions)

none 1.00 158,615 114,938 1.38

01 (medium) 2 .37 66,990 37,470 1.79

02 (full) 2 .38 66,521 39,993 1.66

03 (procedure integration) 2.41 65,747 44,993 1.46

FIGURE 2.37 Comparing performance, Instruction count, and CPI using compiler optimi
zation for Bubble Sort. The programs sorted 100,000 words with the array initialized to random values.
These programs were run on a Pemiwn 4 with a dock rate of 3.06 GHz and a 533 MHz system bus with 2
GB of PC2100 DDR SDRAM memory. It used Linux version 2.4.20.
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Bubble Sort relative Quicksort relative Speedup Quicksort
Language Execution method Optimization performance performance vs. Bubble Sort

C compiler none 1.00 1.00 2468

compiler 0 1 2 .37 1.50 1 562

compiler 02 2.38 1.50 1555

compiler 03 2 .41 1.91 1955

Java interpreter - 0 .12 0 .05 1050

Just In Time compiler 2 .13 0 .29 338

FIGURE 2.38 Performance of two sort algorithms In C and Java using Interpretation and optimizing compliers relative to
unoptlmlzed C version. The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and execution
option. These programs were run on the same system as Figure 2.37. The jVM is Sun version 1.3.1, and the lIT is Sun Hotspot version 1.3.1.

Implementing an Object-Griented
Language

obje(;t-oriented language A
programming language that is
oriented around objects rather
than actions, or data versus
logic.

This section is for rea ders interested in seeing how an objected-oriented language
like Java executes on a M IPS architecture. It shows the Java bytecodes used for
interpretation and the M IPS code for the Java version of some of the C segments
in prior sections, including Bubble So rt. The rest of this section is on the CD.

Arrays versus Pointers

A challenging topic for any new p rogrammer is understanding pointers. Compar
ing assembly code that uses arrays and array indices to the assembly code that uses
pointers offers insights about pointers. This section shows C and MIPS assembly
versions of two procedures to clea r a sequence of wo rds in memory: one using
array indices and one using pointers. Figure 2.39 shows the two C procedures.

The purpose of this section is to show how pointers map into MIPS instructions,
and not to endorse a dated programming style. We'll see the impact of modern com
piler optimization on these two procedures at the end of the section.

Array Version of Clear

Let's start with the array version, c1 earl, focusing on the body of the loop and
ign oring the procedure linkage code. We assume that the two parameters a rray and
size are found in the registers $a0 and $aI, and that i is allocated to register $to.
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clearl{i nt array[]. in t size )
{

i nt "f oe { i ~ 0, , < S1ze: , +~ 1)

array[i] ~ 0,
I

cl ear2{in t *ar ray. i nt size )
{

in t *p:
for ( p = &ar ray[O] : p < &array[size]: p = p + 1 )

*p = 0:
I

FIGURE 2.39 Two C procedures for setting an array to all zeros. C1ea rl uses indices, while
c 1 e a r2 uses pointers. The second procedure needs some explanation for those unfantiliar with C. The
address of a variable is indicated by &, and referring to the object pointed to by a pointer is indicated by *.
The declarations declare that ar ray and p are pointers to integers. The first p.ut of the for loop in c1ear2
assigns the address of the first elentent of a r ray to the pointer p. The second part of the for loop tests to
see if the pointer is pointing beyond the last element of a rray. Incrementing a pointer by one, in the last
part of the for loop, means moving the pointer to the next sequential object of its declared size. Since p is a
pointer to integers, the contpiler wiU generate MIPS instructions to increntent p by four, the number of
bytes in a MIPS integer. The assignntent in the loop places 0 in the object pointed to by p.

The initialization of i, the first part of the for loop, is straightforward:

move HO.$zero It i = 0 (register $tO = 0)

To set a rray[ i] to 0 we must first get its address. Start by multiplying i by 4 to
get the byte address:
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loopl : sl1 Itl,ltO,2 It $t1 = i * 4

Since the starting address of the array is in a register, we must add it to the index
to get the address of a rray[ i] using an add instruction:

add HZ.$aO.$t1 # $t2 = address of array[i]

(This example is an ideal situation for indexed addressing; see II In More Depth
in Section 2.20 on page 147.) Finally, we ca n store 0 in that address:

sw $zero. 0(H2) It array[i] = 0

This instmction is the end of the body of the loop, so the next step is to increment i:

addi ItO,ltO,l Iti = i + l
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The loop test checksifi is less th an s iz e:

slt
boe

H3 , HO , $al
$i3 , $ze r o , 1oopl

It $i3 = (i < si ze)
It if (i < si ze) go t o loopl

We have now seen all the pieces of the procedure. Here is the MIPS code for
clea ring an array using indices:

move $tO , $ze r o II 1 - 0
loopl : 511 It l , ltO , 2 II It l - 1 * 4

add H Z, $aQ , $t1 II 1t2 - address of a rray[i]
sw $ze r o . Ol lt 2) II a rray[iJ = 0
addi It O, ltO , 1 II 1 ~ 1 + I
slt H 3 , HO , $al II $t3 = (i < si ze)
boe $i3 , $ze r o , 1oopl II if I i < size) go t o loopl

(This code works as long as s i z e is greater than 0.)

Pointer Version of Clear

The second p rocedure that uses pointers allocates the two parameters a r ray and
si z e to the registers $aQand $a 1 and allocates p to register $t O. The code for the
second procedure starts with assigning the pointer p to the address of the first ele
ment of the array:

move $tO , $aO # p = address of a rray[O]

The next code is the body of the fo r loop, which simply stores 0 into p:

loop2 : s w $ze r o , O($tO) # Memo r y[p] = 0

This in struction implements the body of the loop, so the next code is the iteration
increment, which changes p to point to the next wo rd:

addi ItO , ltO , 4

Incrementing a pointer by 1 mea ns moving the pointer to the next sequential
object in C. Since p is a pointer to integers, each of which use 4 bytes, the compiler
increments p by 4.

The loop test is next. The first step is calculating the address of the last element
of a r ray . Start with multiplying s i z e by 4 to get its byte address:

add
add

$tl , $al , $al
1tl , Itl , lti

It $tl = size * 2
It $tl = size * 4

and then we add the p roduct to the starting address of the array to get the address
of the first wo rd after the array:
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add HZ,$aO,$t1 # $t2 = address of array[size)
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The loop test is simply to see if p is less than the last element of a r ray:

slt H3,HO,$t2
bne H3, $ze ro , 100p2

# $t3 = (p<&array[size)l
# if (p<&array[size)l go to loopZ

With all the pieces completed, we ca n show a pointer version of the code to
zero an array:

move $tO, $aO
loop2 : sw$zero ,O($tOl

addi $tO,HO,4
add $tl, $al,$al
add $tl,Hl,$t1
add $t2, $aO , $t1
slt $t3,HO,$t2
bne $t3, $zero ,1oopZ

# p = address of array[O)
It Memory[p) = 0
Ilp ~ p + 4

# $tl - size * 2
# $tl - size * 4
# $t2 - address of array[size)
# $t3 - (p<&array[size)l
# if (p<&array[size)l go to loopZ

As in the first exa mple, this code assumes size is greater than O.
Note that this program calculates the address of the end of the array in every

iteration of the loop, even though it does not change. A faster version of the code
moves this calculation outside the loop:

move HO,$aO II p ~ address of array[O)
s 11 Hl,$a1,2 II It! = size*4
add H2, $aO , HI II $t 2 = address of array[size )

100p2 : sw $zero ,O(HOl II Memory[p) = 0
addi ItO, ItO ,4 II p = p + 4
s 1t 1t3, ItO ,lt2 II $t 3 = (p<&array[size]l
bne H3,$zero,loop2 II if (p<&array[size]) go t o 10op2

Comparing the Two Versions of Clear

Comparing the two code sequences side by side illustrates the difference between
array indices and pointers (the changes introduced by the pointer version are
highlighted):

move StO.S zero II , ~ 0 move StO, SaO II p = '" array[O]

loopl:sll Stl.StO,2 II HI ~ , • 4 ," Stl, Sa 1. 2 II Stl = Slze • 4

,dd St2.SaO,S t1 II H2 ~ &array[i] ,dd St2.SaO. Stl II St2 = &array[ size ]

'" Szero. O(S t 2) II array[i] = 0 100p2 : sw Szero,O {HO ) II Memory[p] = 0

add i StO. StO, 1 II , ~ , + 1 addi StO, StO. 4 II p = p + 4
, It St3.StO,Sa l II St3 = ( i < size) ,It St3, StO, H2 II St3={p<&array[size)

be, St3,Szero,100p1# if (l go to loopl be, St3,Szero,100p2# i f () go to 100p2
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The version on the left must have the "multiply" and add inside the loop because i
is incremented and each address must be recalculated from the new index; the
memory pointer version on the right increments the pointer p directly. The
pointer version reduces the instructions executed per iteration from 7 to 4. This
manual optimization corresponds to the compiler optimization of strength reduc
tion (shift in stead of multiply) and induction variable elimination (eliminating
array address calculations within loops).

Elaboration: The C compiler would add a test to be sure that s i ze is greater than O.
One way wou ld be to add a jump just before the first instruction of the loop to the s1t
instruction .

People used to be taught to use pointers in C to get grea ter efficiency than avail
able with arrays: "Use pointers, even if you ca n't understand the code." Modern
optimizing compilers ca n produce just as good code for the array version. Most
programmers today prefer that the compiler do the heavy lifting.

Beallty is altogether ill the
eye of the beholder.

Margaret \Volfe Hungerford,
Molly Bawn, 1877

Real Stuff: IA·32 Instructions

Designers of instruction sets sometimes provide more powerful opera tions than
those found in MIPS. The goa l is genera lly to red uce the number of instructions
executed by a program. The danger is that this reduction ca n occur at the cost of
simplicity, increasing the time a program takes to execute because the instructions
are slower. This slowness may be the result of a slower clock cycle time or of
requiring more clock cycles than a simpler sequence (see Section 4.8).

The path towa rd operation complexity is thus fraught with peril. To avoid these
problems, designers have m oved toward simpler in structions. Section 2. 17 dem
onstrates the pitfalls of complexity.

The Intel IA·32
MIPS was the vision of a single small group in 1985; the pieces of this architecture
fit nicely together, and the whole architecture ca n be described succinctly. Such is
not the case for the IA-32; it is the product of several independent groups who
evolved the architecture over almost 20 yea rs, adding new features to the original
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instruction set as someone might add clothing to a packed bag. Here are impor
tant IA-32 milestones:

• 1978: The Intel 8086 architecnlre was announced as an assembly-language
compatible extension of the then -successful Intel 8080, an 8-bit microproces
sor. The 8086 is a 16-bit architecnlre, with all internal registers 16 bits wide.
Unlike MIPS, the registers have dedicated uses, and hence the 8086 is not con
sidered a general-purpose register architecture.

• 1980: The Intel 8087 floating- point coprocessor is announced. This archi
tecnlfe extends the 8086 with about 60 floating-point instructions. Instea d
of using registers, it relies on a stack (see Section 2.1 9 and Section 3.9) .

• 1982: The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elabora te memory- mapping and protection
m odel (see Chapter 7), and by adding a few instructions to round out the
instruction set and to manipulate the protection model.

• 1985: The 80386 extended the 80286 architectu re to 32 bits. In addition to a
32-bit architecture with 32-bit registers and a 32-bit address space, the
80386 added new addressing modes and additional operations. The added
instructions make the 80386 nea rly a general-purpose register machine. The
80386 also added paging support in addition to segmented addressing (see
Chapter 7) . Like the 80286, the 80386 has a mode to execute 8086 programs
without change.

• 1989- 95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium Pro
in 1995 were aimed at higher performance, with only four instructions
added to the user-visible instruction set: three to help with multiprocessing
(Chapter 9) and a conditional move instruction.

• 1997: After the Pentium and Pentium Pro were shipping, Intel ann ounced
that it would expand the Pentium and the Pentium Pro architectures with
MMX (Multi Media Extensions) . This new set of 57 instructions uses the
floa ting-point stack to accelerate multimedia and communication applica
tions. MM X instructions typically operate on multiple short data elements
at a time, in the tradition of single in struction, multiple data (SIMD) archi
tecnlfes (see Chapter 9). Pentium II did not int roduce any new instructions.

• 1999: Intel added another 70 instructions, labeled SSE (Strea ming SIMD
Extensions) as part of Pentium III. The primary changes were to add eight
separate registers, double their width to 128 bits, and add a single- precision
floa ting-point data type. Hence four 32-bit floating-point operations ca n be
performed in parallel. To improve memory performance, SSE included
cache prefetch instructions plus streaming store instructions that bypass the
caches and write directly to memory.
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general-purpose register
(GPR) A register that can be
used for addresses or for data
with virtually any instruction.
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• 2001 : Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double-precision arithmetic, which allows pairs of 64-bit
floating- point operations in parallel. Almost all of these 144 instructions are
versions of existing MMX and SS E instructions that operate on 64 bits of
data in parallel. Not only does this change enable more multimedia opera
tions, it gives the compiler a different target for floating-point operations
than the unique stack architecture. Compilers can choose to use the eight
SSE registers as floating-point registers like those found in other computers.
This change has boosted floating-point perfo rm ance on the Pentium 4, the
first microprocesso r to include SSE2 instructions.

• 2003: A company other than Intel enhanced the IA-32 architecnlre this time.
AMD announced a set of architectural extensions to increase the address space
from 32 to 64 bits. Simila r to the transition from a 16- to 32-bit address space
in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also increases
the number of registers to 16 and increases the number of 128-bit SS E regis
ters to 16. The primary ISA change com es from adding a new m ode called
IOflg mode that redefines the execution of all IA-32 instructions with 64-bit
addresses and data. To address the larger number of registers, it adds a new
prefi x to instmctions. Depending how you count , long m ode also adds 4 to 10
new instructions a nd drops 27 o ld ones. PC-relative data addressing is ano ther
extension. AMD64 still has a m ode that is identical to IA-32 (legacy mode) plus
a m ode that restricts user program s to IA-32 but allows o perating system s to
use AMD64 (compatability mode). These m odes allow a m ore graceful transi
tion to 64-bit addressing than the HP/lntel IA-64 a rcllitecture.

• 2004: Intel capinilates and embraces AMD64, relabeling it Extended Mem ory
64 Technology (EM64T). The m ajor difference is that Intel added a 128-bit
atomic compa re and swap instruction, which probably should have been
included in AM 0 64. At the sam e time, Intel announced another generation of
m edia extensions. SSE3 adds 13 instmctions to support complex arithmetic,
graphics operations on arrays of structures, video encod ing, fl oating point
conversion, and thread synchronization (see Chapter 9) . AMD will offer SSE3
in subsequent chips and it will almost certainly add the missing atomic swap
instmction to AMD64 to m a intain binary compatibility with Intel.

This histo ry illustrates the impact of the "golden handcuffs" of compatibility on
the IA-32, as the existing software base at each step was too important to jeopar
dize with significant a rchitectural changes.

Whatever the a rtistic failures of the IA-32, keep in mind that there are m ore
insta nces of this architectural family on deskto ps than of any other architecture,
increasing by 100 million per yea r. Nevertheless, this checkered ancestry has led to
an a rchitecture that is difficult to explain and impossible to love.

Brace yourself for what you are about to see! Do flOt try to read this section
with the ca re you would need to write IA-32 program s; the goa l instead is to give
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you familiarity with the strengths and wea knesses of the wo rld 's most popular
desktop architecture.

Rather than show the entire 16-bit and 32-bit instruction set , in this section we
concent ra te on the 32-bit subset that originated with the 80386, as this po rtion of
the architecture is what is used. We start our explanation with the registers and
addressing modes, move on to the integer operations, and conclude with an
exa mination of instruction encoding.

IA-32 Registers and Data Addressing Modes

The registers of the 80386 shows the evolution of the in struction set (Figu re 2.40).
The 80386 extended all 16-bit registers (except the segment registers) to 32 bits,

Name
31 o

u"

GPR O

GPR 6

GPR 7

GPR 3

GPR 1

Stack segment pointer (top of stack)

Code segment pointer

GPR4

GPR 2

GPR 5

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

CS

ss

OS

ES

FS

GS

ESP

ED'

EBX

ES'

EAX

EBP

ECX

EDX

Data segment pointer 3

E'P 1----------------1'"'''"''''' po'ole, (PC)
EFLAGS . Condnion codes

FIGURE 2.40 The 80386 register set. Starting with the 80386, the top eight registers wefe extended
to 32 bits and could also be used as general-pufpose fegisters .
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Source/ destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

FIGURE 2.41 Instruction types for the arithmetic, logical, and data transfer Instructions.
The IA-J2 allows the combinations shown. The only restriction is the absence of a memory-memory mode.
Immediates may be 8, 16, or 32 bits in length; a register is anyone of the 14 major registers in Figure 2.40
(not EIP or EFLAGS).

prefi xing an E to their name to indica te the 32-bit version. We'll refer to them
generica lly as GPRs (general-purpose registers). The 80386 contains only eight
GPRs. This mea ns MIPS programs ca n use four times as many.

The arithmetic, logical, and data transfer instructions are two-operand instruc
tions th at allow the combinations shown in Figure 2.41. There are two impo rtant
differences here. The IA-32 arithmetic and logical instructions must have one
operand act as both a source and a destin ation; M IPS allows separate registers for
source and destination. This restriction puts mo re pressure on the limited regis
ters, since one source register must be modified. The second important difference
is that one of the operands ca n be in memory. Thus virtually any instruction may
have one operand in memory, unlike M IPS and PowerPC.

The seven data memory-addressing modes, described in detail below, offer two
sizes of addresses within the instruction . These so-ca lled displacements ca n be 8
bits or 32 bits.

Although a memory operand ca n use any addressing mode, there are restric
tions on which registers ca n be used in a m ode. Figure 2.42 shows the IA-32
addressing modes and which GPRs ca nnot be used with that mode, plus how you
would get the sa me effect using M IPS instructions.

IA·32 Integer Operations

The 8086 provides support fo r both 8-bit (byte) and 16-bit (word) data types. The
80386 adds 32-bit addresses and data (dol/ble words) in the IA-32. The da ta type
distinctions apply to register operations as well as memo ry accesses. Almost every
operation works on both 8-bit data and on one longer data size. That size is deter
mined by the mode and is either 16 bits or 32 bits.

Clea rly some programs wa nt to operate on data of all three sizes, so the 80386
architects provide a convenient way to specify each version without expanding
code size significa ntly. They decided that either 16-bit or 32-bit data dominates



2.16 Real Stuff: 1A·32 Instructions 139

Register
Mode Description restrictions MIPS equivalent

Register indirect Address is in a register. not ESP or EBP lw $sO,O($s1)

Based mode with 8- or 32·bit Address is contents of base register plus not ESP or EBP lw SsO,100($sl)/f,.:;t6 - bit
displacement displacement. If di spl aceme nt

Base plus scaled index The address is Base: any GPR ,,' HO.$s2.4
Base + (2Sc01e x Index) Index: not ESP 'dd HO.HO.Sst

where Scale has the value 0 , 1, 2, or 3 .
"

$sO,O( aO)

Base plus scaled index with The address is Base: any GPR ,,' HO.$s2,4
8- or 32·bit displacement Base + (2ScOie x Index) + displacement Index: not ESP 'dd HO.HO.Sst

where Scale has the value 0 , 1, 2, or 3 .
"

$sO, 100( aO) If,.:; t6 - bit
Ifdisplacement

FtGURE 2.42 IA·32 32-blt addressing modes with register restrictions and the equivalent MIPS code. The Base plus Scaled Index
addressing mooe, not found in MIPS or the PowerPC, is included to avoid the multiplies by four (scale factor of 2) to turn an index in a register into a
byte address (see Figures 2.34 and 2.36). A scale factor of I is wed for 16-bit data, and a scale factor of 3 for 64-bit data. Scale factor of 0 means the
address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mooe would need tm> more
instructions: a 1u1 to load the upper 16 bits of the displacement and an add to sum the upper address with the base register Ss 1. (Intel gives two dif
ferent names to what is called Based addressing mode---Based and Indexed- but they are essentially identical and we combine them here. )

most programs, and so it made sense to be able to set a default large size. This
default data size is set by a bit in the code segment register. To override the default
data size, an 8-bit prefix is attached to the instruction to tell the ma chine to use the
other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes
to modify instruction behavior. The three original prefixes override the default seg
ment register, lock the bus to support a semaphore (see Chapter 9), or repeat the
following instruction until the register ECX counts down to O. This last prefi x was
intended to be paired with a byte move instruction to move a variable number of
bytes. The 80386 also added a prefix to override the default address size.

The IA-32 integer operations ca n be divided into four major classes:

1. Data movement instructions, including move, push , and pop

2. Arithmetic and logic instructions, including test, integer, and decimal
arithmetic operations

3. Control flow, including conditional branches, unconditional jumps, ca lls,
and returns

4. String instructions, including string move and string compare

The first two catego ries are unremarkable, except that the arithmetic and
logic instruction opera tions allow the destination to be either a register or a
memory location. Figure 2.43 shows some typica l IA-32 in struction s and their
fun ctions.
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Instruction Function

JE name if equ~1(cand i ti on code) lE I P- na me) :
El P- 128 < na me ( El P+128

JM P name El P- na me

CALL name 5P- SP- 4: M[ SP] - El P+5: El P- na me:

MOVW EBX.[EDI +45] EBX-M [E DI+45]

PUSH ESI 5P- SP 4 : M[SP] - E5 1

POP EDI ED I-M [ SP] : SP- SP+4

ADD EAX.#6765 EAX- EAX+6765

TE ST [ OX ./f42 Set condition code (flags) with EDX and 42

MOVSL M[ EDI]- M[ ES IJ:
ED I- EDI +4 : ESI- E5I +4

FIGURE 2.43 Some typical 1A·32 Instructions and their functions. A list of frequent operations
appears in Figure 2.44. The CALL s.wes the EIP oflhe next instruct ion on the stack. (EIP is the Intel PC.)

Co nditional branches on the IA-32 are based on condition codes o r j1ags.
Condition codes are set as:1 side effect of an operation ; m ost are used to com 
pare the va lue of a result to O. Branches then test th e co ndition codes. The
argument for condition codes is th at they occur as part of no rmal operations
and are faster to test than it is to co mpare registers, as M IPS does fo r beq and
bne. The argument against condition codes is that the com pa re to 0 extends
the time o f the operation , since it uses extra hardwa re after the operation , and
th at often the p rogrammer must use compare instructio ns to test a va lue that is
not the result of an operation. Moreover, PC- relative branch addresses must be
specifi ed in the number of bytes, since unlike M IPS, 80386 instructions are not
all 4 bytes in length.

String instructions are part of the 8080 ancestry of the IA-32 and are not com 
monly executed in most program s. They are often slower th an equiva lent soft wa re
routines (see the fallacy on page 143).

Figu re 2.44 lists some of the integer IA-32 instructions. Many of the in struc
tions are ava ilable in both byte and word formats.

IA-32 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 80836 is complex,
with many different in struction formats. Instructions for the 80386 may va ry
from 1 byte, when there are no operand s, up to 17 bytes.

Figure 2.45 shows the instmction format for several of the example instmctions
in Figure 2.43. The opcade byte usually contains a bit saying whether the operand is
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Instruction Meaning

Contro l Conditional and unconditional branches

JNZ, JZ Jump if condition to EIP + Shit offset ; J NE (for JNZ), JE (for JZ) are alternative

names

JMP Unconditional jump--Shit or 16-bit offset

CA LL Subroutine call-16.tlit offset; return address pushed onto stack

RET Pops return address f rom stack and jumps to it

LOOP Loop branch--<le<:rement ECX; jump to EIP + Shit displacement if ECX "" 0

Data transfer Move data between registers or between register and memory

MaV Move between two registers or between register and memory

PUSH. POP Push soun:e operand on stack; pop operand from stack top to a register

lES Load ES and one of the GPRs f rom memory

Arithmetic. logica l Arithmetic and logical operations using the data registers and memory

ADD. SUB Add source to destination ; subtract source f rom destination; register.memory

format

eMP Compare soun:e and destination; register-memory format

SHL, SHR. RCR Shift left; shift logical right ; rotate right with carry condition code as fill

CBW Convert byte in 8 rightmost bits of EAX to 16-bit word in right of EAX

TEST Logical AND of source and destination sets condition codes

IN C. DEC Increment destination, de<:rement destination

OR. XOR Logical OR; exclusive OR; register.memory format

String Move between string operands; leng th g iven by a repeat prefix

MOVS Copies f rom string source to destination by incrementing ESI and EDI ; may be

repeated

LODS Loads a byte, word , or double word of a string into the EAX register

FIGURE 2.44 Some typical operations on the IA·32. Many operations use register·memory for·
mat, where either the source or the destination may be memory and the other may be a register or immedi·
ate operand.

8 bits or 32 bits. For some instructions, the opcade may include the addressing
mode and the register; this is true in many instructions that have the form "register
= register op immediate." Other instructions use a "postbyte" or extra opcode byte,
labeled "mod, reg, rim ," which contains the addressing mode information. This
postbyte is used for many of the instmctions that address memory. The base plus
scaled index mode uses a second postbyte, labeled "sc, index, base."

Figure 2.46 shows the encoding of the two postbyte address specifiers for both
16-bit and 32-bit mode. Unfortunately, to fully understand which registers and
which addressing modes are ava ilable, you need to see the encoding of all address
ing modes and sometimes even the encod ing of the in structions.

141
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a. JE EIP + displacement
4 4 ,

I J E I~~~i- I Displacement I

b. CALL,
CALL

c. MOV

6

d. PUSH ESI
5 ,

I PUSH ~

32

Offset

Immediate

e. ADD EAX, #6765

4 " ,,32=-- _

IADD FR 'rn_rn_"'_'_"_, _

I. TEST EDX, #42

7 1 _----=,'--- ",,,, _
TE ST B Postbyte

FIGURE 2.45 TypIcal IA-32 Instruction formats. Figure 2.46 shows the encOOing of the postbyte.
Many instructions comain the I-bit field w, which says whether the operation is a byte or double word. The d
field in MOV is U'ied in instructions that fJl.1y move to or from memory and shows the direction of the move.
The ADD instruction requires 32 bits for the immediate field because in 32-bit mooe the imme&1tes are either
8 bits or 32 bils. The immediate field in the TEST is 32 bils long bec.1use there is no 8-bit immediate for test in
32-bit mooe. Overall, instructions may vary from I to 17 bytes in length. The long length comes from extra 1
byte prefixes, having both a 4-byte inlmediate and a 4-byte displacement address, U'iing an opcooe of 2 bytes,
and U'iing the Sl:aled index mode specifier, which adds another byte.

IA·32 Conclusion

Intel had a 16-bit m icroprocessor two yea rs before its competitors' more elegant
architectures, such as the Motorola 68000, and this headstart led to the selection
of the 8086 as the CPU for the IBM Pc. Intel engineers generally acknowledge
that the IA-32 is mo re difficult to build than machines like MIPS, but the much
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_. w =1 mod = 0 mod =1 mod =2 mod =3

16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr-BX+SI _EAX ,.~ ~me ~me ~~ ,.~

1 eL ex EOX 1 addr-BX+DI _ECX addras addras addras addras .,
2 OL ox EOX 2 addr-BP+SI _EDX mod- O moo- O modo() mod- O ,eg

3 BL BX EBX 3 addr-BP+SI _EBX + dispB + dispB + disp16 + disp32 field

4 AH SP ESP 4 addr-SI "'(sib) SI-t<lispB (sib)+dispB SI+dispB (sib)-t<lisp32 •

5 eH BP EBP 5 addr-DI _d isp32 DI+dispB EBP-t<lispB DI+disp16 EBP+disp32 •

6 OH 51 E5I 6 addr-disp16 _ESI BP-t<lispB ESI-t<lisp8 BP+disp16 ESI-t<lisp32 •

7 BH 01 EOI 7 addr-BX _EDI BX+dispB EDI-t<lispB BX-t<lisp16 EDI+disp32 •

FIGURE 2.46 The encoding of the first address specifier of the 1A·32, "mod, reg, r/ m. "The first four columns show the encoding of
the 3-bit reg field, which depends on the w bit from the opcooe and whether the machine is in 16-bit mode (8086) or 32-bit mooe (80386) . The
remaining columns explain the mod and rIm fields. The meaning of the 3-bit rIm field depends on the value in the 2-bit moo field and the address
size. Basically, the registers used in the address calculation are listed in the sixth and sevemh columns, under moo = 0, with mod = I adding an 8-bit
displacement and mod = 2 adding a 16-bit or 32-bit displacement, depending on the address mooe. The exceptions are rIm = 6 when mod = I or
mod = 2 in 16-bit mooe selects BP plus the displacement; rIm = 5 when mod = 1 or moo = 2 in 32-bit mooe selects EBP plus displacement; and rIm =

4 in 32-bit mode when moo 0#- 3, where (sib) means use the scaled index mooe shown in Figure 2.42. When moo = 3, the rIm field indicates a register,
using the same encoding as the reg field combined with the w bit.

larger market mea ns Intel ca n afford mo re resources to help overcome the added
complexity. What the IA-32 lacks in style is made up in quantity, making it beauti
ful from the right perspective.

The saving grace is that the most frequently used IA-32 architectural components
are not too difficult to implement, as Intel has demonstrated by rapidly improving
performance of integer programs since 1978. To get that performance, compilers
must avoid the portions of the architecnlre that are hard to implement fast.

Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance.

Part of the power of the Intel IA-32 is the prefixes that can modify the execu
tion of the following instruction. One prefix can repeat the following instruc
tion until a counter counts down to O. Thus, to move data in memory, it
would seem that the natural instruction sequence is to use move with the
repeat prefix to perform 32-bit memory-to-memory moves.

An alternative method, which uses the standard instructions found in all com
puters, is to load the data into the registers and then store the registers back to
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memory. This second version of this program, with the code replicated to reduce
loop overhead, copies at about 1.5 times faster. A third version, which used the
larger floating-point registers instea d of the integer registers of the IA- 32, copies at
about 2.0 times faster than the complex instruction.

Fallacy: Write in assembly language to obtain the highest performance.

At one time compilers for programming langua ges produced naive instruction
sequences; th e increasing sophistication of compilers m ea ns the gap between
compiled code and code produced by hand is closing fast. In fact, to compete
with current co mpilers, the assembly langua ge programmer needs to tho r
oughly understand the concepts in Chapters 6 and 7 (processor pipelining and
memory hiera rchy).

This battle between compilers and assembly language coders is one situation
in which humans are losing ground. For exa mple, C offers the programmer a
chance to give a hint to the compiler about which va riables to keep in registers
versus spilled to memo ry. When compilers were poor at register alloca tion , such
hints were vital to performance. In fact, some C textbooks spent a fair amount
of time giving exa mples that effectively use register hints. Today's C compilers
genera lly ignore such hints because the co mpiler does a better job at alloca tion
than the programmer.

Even ifwriting by hand resulted in faster code, the dangers of writing in assem 
bly language are longer time spent coding and debugging, the loss in portability,
and the difficulty of maintaining such code. One of the few widely accepted axi
oms of softwa re engineering is that coding takes longer if you write mo re lines,
and it clearly takes many m ore lines to write a program in assembly language than
in C. Moreover, once it is coded, the next danger is that it will become a popular
program. Such programs always live longer than expected, mea ning that someone
will have to update the code over several yea rs and make it work with new releases
of operating systems and new models of machines. Writing in higher-level lan 
guage instead of assembly language not only allows future compilers to tailor the
code to funlfe machines, it also makes the softwa re easier to maintain and allows
the program to run on m ore brands of computers.

Pitfall: Forgetting that sequential word addresses in machines with byte address
ing do not differ by one.

Many an assembly language programmer has toiled over errors made by assuming
that the address of the next wo rd ca n be found by incrementing the address in a
register by one instead of by the word size in bytes. Forewarned is forearmed!

Pitfall: Us ing a pointer to an automatic variable outside its defining procedure.

A common mistake in dealing with pointers is to pass a result from a procedure that
includes a pointer to an array that is local to that procedure. Following the stack dis
cipline in Figure 2.1 6, the memory that contains the local array will be reused as
soon as the procedure returns. Pointers to automatic va riables can lead to chaos.
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Concluding Remarks

Less is more.

Robert Browning, Andrea del
Sarto, 1855

The two principles of the stored-program computer are the use of instructions that
are indistinguishable from numbers and the use of alterable memo ry for pro
grams. These principles allow a single machine to aid environmental scientists,
financial advisers, and novelists in their specia lties. The selection of a set of
instructions that the machine ca n understand demands a delicate balance among
the number of instructions needed to execute a program, the number of clock
cycles needed by an instruction, and the speed of the clock. Four design principles
guide the authors of instruction sets in making that delicate balance:

I. Simplicity favors regl/larity. Regula rity motivates many features of the M IPS
instruction set: keeping all instructions a single size, always requiring three
register operands in arithmetic instructions, and keeping the register fields
in the same place in each instruction fo rmat.

2. Smaller is faster. The desire for speed is the reason that MIPS has 32 regis
ters rather than many more.

3. Milke the common case fast. Examples of making the common MIPS case
fast include PC-relative addressing for conditional branches and immed iate
addressing for constant opera nds.

4. Good design demands good compromises. One MIPS exa mple was the com 
promise between providing for larger addresses and constants in in struc
tions and keeping all instructions the sa me length.

Above this machine level is assembly language, a language that humans can
read. The assembler translates it into the binary numbers that machines can
understand , and it even "extends" the instruction set by creating symbolic instruc
tions that aren't in the hardwa re. For instance, constants or addresses that are too
big are broken into properly sized pieces, comm on va riations of instructions are
given their own name, and so on. Figure 2.47 lists the MIPS instructions we have
covered so far, both real and pseudoinstructions.

These instructions are not born equal; the popularity of the few dominates the
many. For exa mple, Figure 2.48 shows the popularity of each class of instructions
for SPEC2000. The varying popularity of instructions plays an important role in
the chapters on performance, datapath, control , and pipelining.

Each category of M IPS instructions is associated with constructs that appear in
programming languages:
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_ ...MIPS Instructions Name Pseudo MIPS

,dd ,dd R m"~ move R

subtract ,ob R multiply mult R

add immediate add1 , multiply immediate multi ,
load word

"
, load immediate 1; ,

store word "
, branch less than b1t ,

load half 1h , branch less than or equal Ol, ,
store half ,h , branch greater than bgt ,
load byte 1b , branch greater than or equal bg, ,
store byte ,b ,
load upper immediate 1u i ,
eo' eod R

"' "' R

0"' '" R

and immediate and1 ,
or immediate ori ,
shift left logical ,II R

shift right logical ,,' R

branch on equal be, ,
branch on not equal boe ,
set less than ,lt R

set less than slti ,
immediate

jump j J

jump register j, R

jump and link j,] J

FIGURE 2.47 The MIPS Instruction set covered so far, with the real MIPS Instructions on
the left and the pseudolnstruc:tlons on the right. • Appendix A (Section A. 10, on page A-45)
describes the full MIPS architecture. Figure 2.27 shows more details of the MIPS architecture revealed in
this chapter.

Frequency

Instruction class MIPS examples HLl correspondence

Arithmetic add. sub. addi operations in assignment statements 24% 48%

Data transfer lw. sw. lb. sb. lui references to data structures, such as arrays 36% 39%

Logical and. or. nor. andi. ori. operations in assignment statements 18% 4%

sl1. srl

Conditional branch beq.bne. s l t. s lti if statements and loops 18% 6%

Jump j.jr.jal procedure calls, returns, and case/switch statements 3% 0%

FIGURE 2.48 MIPS Instruction classes, examples, correspondence to high-level program language constructs, and percent
age of MIPS Instructions executed by category for average of five SPEC2000 Integer programs and five SPEC2000 floating
point programs. Figure 3.26 shows the percentage of the individual MIPS instructions executed.
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• The arithmetic instructions correspond to the operations found in assign
ment statements.

• Data transfer instructions are most likely to occur when dealing with data
structures like arrays o r structures.

• The conditional branches are used in if statements and in loops.

• The unconditional jumps are used in procedure calls and returns and for
case/switch statements.

After we explain computer arithmetic in Chapter 3, we reveal more of the MIPS
instruction set architecture.

147

Historical Perspective and
Further Reading

This section surveys the histo ry of instruction set architraves over time, and we
give a short history of programming languages and compilers. ISAs include accu
mulator architectures, general-purpose register architectures, stack architectures,
and a brief history of the IA-32. We also review the controversial subjects of high
level-language computer architectures and reduced instruction set computer
architectures. The histo ry of programming languages includes Fortran, Lisp,
Algol, C, Cobol, Pascal, Simula , Smalltalk, C++, and Java, and the history of com
pilers includes the key milestones and the pioneers who achieved them. The rest
of this section is on the CD.

Exercises

II Appendix A describes the MIPS simulator, which is helpful for these exercises.
Although the simulator accepts pseud oinstructions, try not to use pseudoinstruc
tions for any exercises that ask you to produce MIPS code. Your goa l should be to
lea rn the real MIPS instruction set , and if you are asked to count instructions,
your count should reflect the actual instructions that will be executed and not the
pseudoinstructions.
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There are some cases where pseudoinstructions must be used (for example, the
1a instruction when an aenlal value is not kn own at assembly time) , In many
cases, they are quite convenient and result in more readable code (forexa rnple, the
1 i and move instruct ions) , If you choose to use pseudoinstructions for these rea
sons, please add a sentence or two to your solution stating which pseudoinstruc
tions you have used and why.

2.1 [ ISJ <§2.4> II For More Practice: In struction Formats

2.2 [5J <§2.4> What bina ry number does this hexadecimal number represent:
7fff fffahe/ W hat decimal number does it represent?

2.3 [5J <§2.4> What hexadecimal number does this binary number represent:
11001010 11111110 11111010 1100 1110two?

2.4 [5J <§2 .4> Why doesn't MIPS have a subtract immediate instruction?

2.5 [ ISJ <§2.S> . For More Pract ice: MIPS Code and Logica l Operations

2.6 [ 15J <§2.S> Some computers have explicit in structions to extract an arbitrary
fi eld from a 32-bit register and to place it in the least significant bits of a register.
The figure below shows the desired operation:

31

31

0 ...

31 - j bits

j

32-U-i)bits

f ield

j-ibits

0000

i + 1 bits

field

j-ibits

o

o

Find the shortest sequence of MIPS instructions that extracts a fi eld fo r the con 
stant va lues i = 5 and j = 22 from register $t 3 and places it in register $t O. (Hint:
It ca n be done in two instructions.)

2.7 [IOJ <§2.S> " For More Pract ice: Logical Operations in MIPS

2.8 [20J <§2.S> " In More Depth : Bit Fields in C

2.9 [20J <§2.S> 1& In More Depth: Bit Fields in C

2.10 (20) <§2.5> III In More Depth: Jump Tables

2.11 (20) <§2.5> II In More Depth: Jump Tables

2.12 (20) <§2.5> II In More Depth: Jump Tables
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2.13 (10) <§2.6> Co nstruct a control flow graph (like the one shown in Fig. 2. 11 )
for the following section ofC or Java code:

f or (i =O; i<x ; i =i +ll

y = y + i ;

2.14 [ 10] <§2 .6> . Fo r More Practice: Writing Assembly Code

2.15 (25) <§2.7> Implement the following C code in MIPS, assuming that
se t _a r ray is the first function ca lled:

i nt i ;
void se t _array(in t num) {

int array[lO] ;
for (i =O; i<lO ; i ++ ) {

a rray[i] = compa re (num , i I ;

}

int comp are ( int a , int b) {
if (sub(a , bl ) = 0)

return 1 ;
else

return 0 ;
}

int sub ( int a , int b) {
return a - b ;

}

Be sure to handle the stack and frame pointers appropriately. The variable code
font is allocated on the stack, and i corresponds to $sO. Draw the status of the
stack before calling se t _a r ray and during each function call. Indicate the names
of registers and va riables stored on the stack and mark the location of $s p and
Hp.

2.16 (30) <§2.7> 'II In More Depth: Tail Recursion

2.17 (30) <§2.7> 'II In More Depth: Tail Recursion

2.18 (20) <§2.7> 'II In More Depth: Tail Recursion

2.19 [5] <§2.8> Iris and Julie are students in computer engineering who are
lea rning about ASCII and Unicode character sets. Help them by spelling their
names and your first name in both ASCII (using decimal notation) and Unicode
(using hex notation and the Basic Latin character set).

149



150 Chapter 2 Instructions: Language of the Computer

2.20 (10) <§2.8> Compute the decimal byte values that form the null-terminated
ASCII representation of the following string:

A byte is 8 bits

2.21 (30) <§§2.7, 2.8> . For More Pra ctice: MIPS Coding and ASCII Strings

2.22 (20) <§§2.7, 2.8> 'II For More Practice: MIPS Coding and ASCII Strings

2.23 (20) <§§2.7, 2.8> {Ex. 2.22} II For More Pra ctice: MIPS Coding and ASCII
Strings

2.24 (30) <§§2.7, 2.8> . For More Pra ctice: MIPS Coding and ASCII Strings

2.25 <§2.8> 'II For Mo re Practice: Comparing C!Java to MIPS

2.26 <§2.8> II For Mo re Practice: Translating MIPS to C

2.27 <§2.8> II For More Practice: Understanding MIPS Code

2.28 <§2.8> II For Mo re Pra ctice: Understanding MIPS Code

2.29 [5] <§§2.3, 2.6, 2.9> Add comments to the following MIPS code and de
scribe in one sentence what it computes. Assume that $aO and $al are used for
the input and both initially contain the integers a and b, respectively. Assume that
$ vO is used for the output.

loop :

finish:

add lt~ . $zero , $zero
beq $a 1, $zero , fi nish
add lt~ . lt~ . $a0
sub $a 1, $a1, 1

J loop
addi lt~ . lt~ . 100
add $v0, lt~ . $zero

2.30 (12) <§§2.3, 2.6, 2.9> The following code fragment processes two arrays and
produces an important value in register $vO. Assume that each array consists of
2500 words indexed 0 through 2499, that the base addresses ofthe arrays are stored
in $a 0 and $a 1 respectively, and their sizes (2500) are stored in $a 2 and $a 3, re
spectively. Add comments to the code and describe in one sentence what this code
does. Specifically, what will be returned in $vO?

s 11 $a2, $a2, 2
s 11 $a3, $a3, 2
add $v0 , $zero, $zero
add lt~ . $zero, $zero

outer : add lt4. $aO, lt~
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lnner :

ski p :

lw 1t4. o(1t4 )
add It I . $zero, $zero
add I t3 . $al, Itl
lw I t3 . 0($t3)
bne I t3 . 1t4. ski p
addi $vO , $vO , I
addi$ tl . Itl . 4
bne It I . $a3 , lnner
addi ItO. ItO . 4
bne ItO. $a2, outer

2.31 [10] <§§2.3, 2.6, 2.9> Assume that the code from Exercise 2.30 is run on a ma
chine with a 2 GHz clock that requires the following number ofcycles for eadl instruc
tion:

Instruction

Iadd.add1.s11
lw.l>ne

Cycles

1

2

In the worst case, how many seconds will it take to execute this code?

2.32 [5] <§2.9> Show the single MIPS instruction or minimal sequence of in 
structions for this C statement:

b ~ 25 I a ;

Assume that a corresponds to register $tO and b corresponds to register $t1.

2.33 (10 ) <§2.9> II For More Practice: Translating from C to MIPS

2.34 [10) <§§ 2.3, 2.6, 2.9> The following program tries to copy words from the
address in register $aO to the address in register $a1, counting the number of
wo rds copied in register $ vO. The program stops copying when it finds a word
equal to 0. You do not have to preserve the contents of registers $v 1, $a 0, and $a 1.
This terminating word should be copied but not counted.

addi $vO , $zero, 0 II Initialize count

loop : lw $vI, OllaOI II Read next word from source

sw $vI, 0lla1l II Write to destination

addi $aO, $aO, 4 II Advance pointer to next source
addi $al, $a1, 4 II Advance pointer to next destination
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beq $vl , $zero , loop It Loop if word copied != zero

TIlere are multiple bugs in this MIPS program; fi x them and turn in a bug-free ver
sion. Like many of the exercises in this chapter, the easiest way to write MIPS programs
is to use the simulator described in II Appendix A.

2.35 (10 ) <§§2.2, 2.3, 2.6, 2.9> II For More Practice: Reverse Translation from
MIPS to C

2.36 <§2.9> II Fo r More Practice: Translating from C to M IPS

2.37 [25J <§2.1O> As discussed on page 107 (Section 2.10, "Assembler"),
pseudoinstructions are not part of the MIPS in struction set but oft en appea r in
MIPS programs. For each pseudoinstruction in the following table, produce a
minimal sequence of actual M IPS instructions to accomplish the same thing.
You may need to use $a t fo r some of the sequences. In the followin g table, bi 9
refers to a specific number that requires 32 bits to represent and sma 11 to a
number that ca n fit in 16 bits.

Pseudolnstructlon What It accomplishes

move Hl. H2 Hl - St 2

c1 ear H50 Sto - 0

beQ St l. s mall. l if (Stl - sma ll) go t o l

beQ St 2, big, l if (H2 - bi g) go t o l

1i Hl. small Hl - smal1

11 H2, big H2 - big

b1 e St 3, H5, l if (H3 ( - H5l go t o l

bgt St4 . H5, l if (H4 ) H5) go to l

bge St 5. H3. l if (H5)- H3l got o l

addi Sto . H2. big Sto - St 2 + big

lw H5, big (H2) H5 - Memory[ H2 + bi g]

2.38 [5 J <§§2.9, 2.10> Given your understanding of PC- relative addressing, ex
plain why an assembler might have problems directly implementing the branch in 
struction in the following code sequence:

he r e :

there

beq

add

$sO , $s2 , t here

$sO , $sO , $sO

Show how the assembler might rewrite this code sequence to solve these problems.

2.39 <§2.1O> II For More Practice: MIPS Pseudoinstructions

2.40 <§2.10> II For More Practice: Linking MIPS Code
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2.41 <§2.1 0> II For More Practice: Linking MIPS Code

2.42 [20J <§2.11 > Find a la rge program written in C (for example, gee, which can
be obtained from http://gcc.gllu.org) and compile the program twice, once with op 
timizations (use - 03) and once without. Compare the compilation time and run
time of the program. Are the results what you expect?

2.43 (20) <§2.1 2> III For Mo re Practice: Enhancing M IPS Addressing Modes

2.44 (10) <§2.1 2> II For More Practice: Enhancing MIPS Addressing Modes

2.45 (10) <§2.1 2> II In Mo re Depth: The IBM/Motorola versus MIPS in C

2.46 [15) <§§2.6, 2.1 3> The MI PS translation of the C (or Java) segment

while (save[iJ k)
1 += 1 ;

on page 129 (Section 2.6, "Compiling a \-Vhile Loop in C") uses both a conditional
branch and an unconditional jump each time th rough the loop. Only poo r com 
pilers would produce code with this loop overhead. Assuming that this code is in
Java (not C), rewrite the assembly code so that it uses at most one branch or jump
each time th rough the loop. Additionally, add code to perfo rm the Java checking
for index out of bounds and ensure that this code uses at most one branch or
jump each time th rough the loop. How many instructions are executed before and
after the optimiza tion if the number of iterations of the loop is I0 and the value of
i is never out of bounds?

2.47 (30) <§§2.6, 2.1 3> Consider the following fragment of Java code:

f or (i =O; i< = lOO ; i = i +1)
a[iJ = b[iJ + c ;

Assume that a and b are arrays of words and the base address of a is in $aO and
the base address of b is in $a l. Register $tO is associated with va riable i and reg
ister $s 0 with the va lue of c. You may also assume that any address constants you
need are ava ilable to be loaded from mem ory. Write the code fo r MIPS. How
many instructions a re executed during the running of this code if there are no
array out -of-bound s exceptions thrown? How many memory data references will
be made during execution?

2.48 [5J <§2.1 3> Write the M IPS code fo r the Java method compa r eTo (found
in Figure 2.35 on page 124).

2.49 [15) <§2 .1 7> When designing memory systems, it becomes useful to know
the frequency of memory reads versus writes as well as the frequency of accesses for
instructions versus data. Using the average instruction mix information for M IPS
for the program SPEC2000int in Figure 2.48 (on page 141 ), find the following:
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a. The percentage of all memory accesses (both data and in struction) that are
for data.

b. The percentage of all memo ry accesses (both data and in struction) that are
for reads. Assume that two-thirds of data transfers are loads.

2.50 (10 ) <§2.1 7> Perform the sa me ca lculations as fo r Exercise 2.49, but repla ce
the program SPEC2000int with SPEC2000fp.

2.51 ( IS) <§2.1 7> Suppose we have made the following measurements of average
C PI for instmctions:

Instruction Average CPI

Arithmetic 1.0 clock cycles

Data transfer 1.4 clock cycles

Conditional branch 1.7 clock cycles

Jump 1.2 clock cycles

Compute the effective CPI for MIPS. Average the instruction frequencies for
SPEC2000int and SPEC2000fp in Figure 2.48 on page 146 to obtain the instruc
tion mix.

2.52 (20 ) <§2.1 8> II In More Depth: Instruction Set Styles

2.53 (20 ) <§2.1 8> " In More Depth: Instruction Set Styles

2.54 (10 ) <§2.1 8> II In More Depth: The Single Instruction Computer

2.55 (20 ) <§2.1 8> II In More Depth: The Single Instruction Computer

2.56 (5] <§2.1 9>The stored-program concept, introduced in the late I940s, brought
about a significa nt change in how computers were designed and operated. \-¥hat is a
possible example of a nonstored-program machine, and what are the problems with
such a machine? Howcan these problems be overcome bya stored-program machine?

2.57 (5] <§2.1 9> III In More Depth: The IBM/Motorola versus MIPS in C

2.58 ( IS) <§2.1 9> II In More Depth: The IBM/Motorola versus MIPS in C

2.59 ( IS) <§2.1 9> II In More Depth: Logical Instructions





Helping Save Our
Environment with Data

A pop-up archival satellite tag and Internal

electronics.

other measurements. Data are saved in 1 MB of

flash memory. The onboard 8-bit microproces

sor estimates depth from the water pressme. It

finds longitude using light intensity data and

time of day. It determines sunrise, sunset, and

therefore high noon, and calculates the time shift

between local noon and Greenwich Mean Time
noon, like a navigator using a sextant and chro

nometer. The water temperature is later matched

to satellite records to determine latitude. Block

does not rely on fishermen to catch the tuna and

retmn PSATs. A PSAT is attached to a fish with a

pin that dissolves via electrolysis after the com

puter tmns on a battery. The tag then floats to

the surface and begins transmitting data to satel

lites. The floating tag can transmit for up to two

weeks, sending the data directly to Block's lab.

Computers
in the

Real World

Solution: Develop rugged, battery-operated,

embedded computers with sensors, wireless

communication, and appropriate software.

Stanford biologist Barbara Block studies

bluefin tuna. One policy question was whether

the tuna on one side of the Atlantic are differ

ent from those on the other side. If so, then

each region could set its own quotas. If not,

then we need oceanwide quotas.

To answer this question, she started implant

ing tuna with devices that could monitor their

journeys. Every two minutes a pop-up satellite

arch ival tag (PSAT) records water pressme,

ambient light, temperatme, time of day, and

Block and students tag a bluefln tuna, which can

grow to 2000 pounds and 10 feet In length.

Problem to solve: Monitor plants and ani

mals of our environment to collect information

that may influence environmental polices.



Block discovered that bluefin tuna travel more

than 10,000 miles per year; tuna tagged near the

East Coast of the United States will cross the

Atlantic and spawn in both the Gulf of Mexico

and the Eastern Mediterranean. Her discovery

changed regulations so that tuna are no longer

managed separately in the Eastern and Western

Atlantic. She is now developing a census of

Pacific marine life using smaller tags for smaller

animals and tags that transmit each time a fish

surfaces. She speculates that tagged tuna could

be ideal "vehicles" to monitor ocean change.

Berkeley biologist Todd Dawson studies the

ecology of the coasta l redwood, Sequoia sem

pervirens, particularly the interaction of sea

fog with trees. For years his research involved

installing 50 kilograms of gear and kilometers

of wire strung to sensors. This work is often

done more than 80 meters above the ground.

Data could only be retrieved by climbing up to

a printer-sized data logger.

Berkeley computer scientist David Culler

proposed a new approach. Dawson is now plac

ing miniature wireless sensors the size of film

Professor Dawson and student climbing a sequoia

to Install fog monitors.

canisters in these trees. Each micromote is less

than 3 cubic inches, can transmit up to 40 KBf

sec, and can run for months on a C battery.

Since micromotes are small and cheap, many

can be placed in a tree. Data is collected with a

compatible laptop by simply walking to the

base of the tree.

Dawson found that summertime fog

accounts for 25% to 40% of the water that the

redwoods receive for the whole year. The trees

may even be drinking water directly from fog

via a symbiotic relationship with fungi living

on their leaves.

Dawson predicts wireless sensor networks

will change the way people do ecological

research.

To learn more see these references on

the Ii library

Block et aI., "Migratory movements, depth preferences,
and thermal biology of atlantic bluefin tuna :' Scie/lce
293: 1310-14,2001

"Redwoods:' Prof. Dawson's laboratory site

"Redwood's drinking water from fog," Tile Forestry
SOI/rce, Nov. 2002

" Tagging of the Pacific Pelagics," www.toppcensus.org

The Mica mlcromote with C battery. It Is about the

size of a film canister.
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160 Chapter 3 Arithmetic: for Computers

Introduction

Computer words are composed of bits; thus wo rds ca n be represented as binary
numbers. Although the natural numbers 0, 1, 2, and so on ca n be represented
either in decimal or binary form, what about the other numbers that commonly
occur? For example:

• How are negative numbers represented?

• What is the largest number that ca n be represented in a computer wo rd?

• What happens if an operation creates a number bigger than can be repre
sented?

• What about fractions and real numbers?

And underlying all these questions is a mystery: How does hardwa re really multi
ply or divide numbers?

The goal of this chapter is to unravel this mystery, including representation of
numbers, arithmetic algorithms, hardwa re that follows these algorithms, and the
implications of all this for instruction sets. These insights may even explain quirks
that you have already encountered with computers. (I f you are familiar with
signed binary numbers, you may wish to skip the next section and go to Section
3.3 on page 170.)

Signed and Unsigned Numbers

Numbers ca n be represented in any base; humans prefer base 10 and, as we exam
ined in Chapter 2, base 2 is best for computers. To avoid confusion we subscript
decimal numbers with ten and binary numbers with two.

In any number base, the value of ith digit d is

d x Base;

where i starts at 0 and increases from right to left. This leads to an obvious way to
number the bits in the word: Simply use the power of the base for that bit. For
exa mple,



3.2 Signed and Unsigned Numbers

represents

11 X 23) + (0 X 2') + 11 X 21) + 11 x 20)ten
- 11 x 8) + (0 x 4 ) + 11 x 2 ) + 11 xl) ten
- 8 + 0 + 2 + 1ten
- 11 t en

Hence the bits are numbered 0, I , 2, 3, ... from right to left in a wo rd. The
drawing below shows the numbering of bits within a MIPS word and the place
ment of the number 10 I I two:

313029282726252423222120 1918 1716 1514 13 1211 109876543210

10 0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 001000011 01 1 1

(32 bits wide)

Since wo rds are drawn vertica lly as well as ho rizontally, leftmost and rightmost
may be unclea r. Hence, the phrase least significa nt bit is used to refer to the right 
most bit (bit 0 above) and most significa nt bit to the leftmost bit (bit 31).

The MIPS word is 32 bits long, so we ca n represent 232 different 32-bit patterns.
It is natural to let these combinations represent the numbers from 0 to 232 - I
(4,294,967,295ten) :

0000 0000 0000 0000 0000 0000 0000 OOOOtwo - °ten
0000 0000 0000 0000 0000 0000 0000 0OOl two - 1ten
0000 0000 0000 0000 0000 0000 0000 0010 two - 2t en

1111 1111 1111 1111 1111 1111 1111 1101 two - 4 , 294 , 967 , 293 ten
1111 1111 1111 1111 1111 1111 1111 1110two - 4,294,967 , 294 ten
1111 1111 1111 1111 1111 1111 1111 1111 two - 4,294,967,295 ten

That is, 32-bit binary numbers ca n be rep resented in terms of the bit va lue times a
power of 2 (here xi mea ns the i th bit of x):

(x3 1 x 231 ) + (x30 X 230) + (x29 X 229) + ... + (xl X 21) + (xO X2°)

Base 2 is not natural to human beings; we have 10 fingers and so find base 10 nat 
ural. Why didn't computers use decimal? In fact, the first commercial computer
did offer decimal arithmetic. The problem was that the computer still used on and
off signals, so a decimal digit was simply represented by severa l binary digits. Dec
imal proved so inefficient that subsequent computers reverted to all binary, con 
verting to base 10 only for the relatively infrequent input/output events.

161

least significant b it The right
most bit in a MIPS word.

most sig nificant bit The left
most bit in a MIPS word.
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ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers
(see Figure 2.21 on page 91). How much does storage in crease jfthe number
1 billion is represented in ASCII versus a 32-bit integer?

One billion is 1 000 000 000, so it would take 10 ASC II digits, each 8 bits
long. Thus the storage expansion would be ( 10 x 8)/32 or 2.5. In addition to
the expansion in storage, the hardwa re to add , subtract, multiply, and divide
such numbers is difficult. Such difficulties explain why co mputing profes
sionals are raised to believe that binary is natural and that the occasional dec
imal computer is biza rre.

Keep in mind that the binary bit patterns above are simply representatives of
numbers. Numbers really have an infinite number of digits, with almost all being
oexcept for a few of the rightmost digits. We just don't normally show leading Os.

Hardwa re ca n be designed to add, subtract, multiply, and divide these binary
bit patterns. If the number that is the proper result of such operations ca nnot be
represented by these rightmost hardwa re bits, overflow is sa id to have occurred. It's
up to the operating system and program to determine what to do if overflow
occurs.

Computer program s calculate both positive and nega tive numbers, so we need
a representation that distinguishes the positive from the negative. The most obvi
ous solution is to add a separate sign , which conveniently ca n be represented in a
single bit; the name for this representation is sign and m agnitude.

Alas, sign and magnitude representation has several sho rtcomings. First, it 's
not obvious where to put the sign bit. To the right? To the left? Early computers
tried both. Second, adders for sign and magnitud e may need an extra step to set
the sign because we ca n't know in adva nce what the proper sign will be. Finally, a
separate sign bit mea ns that sign and magnitude has both a positive and nega tive
zero, which ca n lea d to problems for inattentive programmers. As a result of these
shortcomings, sign and magnitude was soon abandoned.

In the sea rch for a mo re attractive alternative, the question arose as to what
would be the result for unsigned numbers if we tried to subtract a large number
from a sm all one. The answer is that it would try to borrow from a string of lead 
ing Os, so the result would have a string of leading Is.



3.2 Signed and Unsigned Numbers

Given that there was no obvious better alternative, the final solution was to
pick the representation that made the hardware simple: leading as mean positive,
and leading Is mea n negative. This convention for representing signed binary
numbers is ca lled two's complement representation:

163

0000 0000 0000 0000 0000 0000 0000 OOOOtwo
0000 0000 0000 0000 0000 0000 0000 0001 two
0000 0000 0000 0000 0000 0000 0000 0010 two

- ° t en
- 1ten
- 2ten

- - 3ten
- - 2ten
- - l t en

0111 111111111111 11111111 1111 1101 two - 2 , 147 ,4 83 , 645 ten
0111 111111111111 11111111 11111110two - 2 , 147 ,4 83 , 646 ten
0111 111111111111 11111111 11l1l1l1two - 2 , 147 ,4 83 , 647 ten
1000 0000 0000 0000 0000 0000 0000 OOOOtwo - - 2 , 14 7 ,4 83 , 648 ten
1000 0000 0000 0000 0000 0000 0000 0001 two - - 2 , 147 ,4 83 , 647 ten
1000 0000 0000 0000 0000 0000 0000 0010 two - - 2 , 147 ,483 , 646 ten

1111 111111111111 11111111 11111101 two
1111 111111111111 11111111 11111110two
1111 111111111111 11111111 1111 11 11 two

The positive half of the numbers, from a to 2, 147,483,647ten (231 - I), use the
same representation as before. The following bit pattern (1000 ... ooOOt\o,"o) rep
resents the most negative number -2, 147,483,648ten (_231 ). It is followed by a
declining set of nega tive numbers: -2, I47,483,647ten (1000 ... 000 Itwo) down to
- Iten(i lll ... llil two)·

Two's complement does have one negative number, -2, 147,483,648ten, that has
no corresponding positive number. Such imbalance was a worry to the inattentive
programmer, but sign and magnitude had problems for both the programmer and
the hardware designer. Consequently, every computer today uses two's comple
ment binary representations for signed numbers.

Two's complement representation has the adva ntage that all negative numbers
have a I in the most significa nt bit. Consequently, hardware needs to test only this
bit to see if a number is positive or nega tive (with a considered positive). This bit
is often called the sign bit. By recognizing the role of the sign bit, we ca n represent
positive and negative 32-bit numbers in term s of the bit va lue times a power of 2:

(x3 1 X_231 ) + (x30 X230) + (x29 X229) + ... + (x l X21) + (xOX20)

The sign bit is multiplied by _231 , and the rest of the bits are then multiplied by
positive versions of their respective base values.
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Binary to Decimal Conversion

What is the decimal va lue of this 32-bit two's complement number?

1111 1111 1111 1111 1111 1111 1111 11 OO t wo

Substituting the number's bit values into the fo rmula above:

(I X_231 ) + (i X 230) + (i X 229) + + (i X 22) + (0 X2') + (0 X 2°)
= _231 + 230 + 229 + + 22 + 0 + 0
= -2, 147,483,648ten + 2, 147,483,644,<,n

= - 4,en

We' ll see a sho rtcut to simplify conversion soon.

Just as an operation on unsigned numbers ca n overflow the capacity of hard 
wa re to represent the result, so ca n an operation on two's complement numbers.
Overflow occurs when the leftmost retained bit of the binary bit pattern is not the
sa me as the infinite number of digits to the left (the sign bit is in co rrect): a 0 on
the left of the bit pattern when the number is negative or a 1 when the number is
positive.

Signed versus unsigned applies to loads as well as to arithmetic. The function of a
signed load is to copy the sign repeatedly to fill the rest of the register-called sign
extension-but its purpose is to place a correct representation of the number
within that register. Unsigned loads simply fill with Os to the left of the data, since
the number represented by the bit pattern is un signed.

\-¥hen loading a 32-bit wo rd into a 32-bit register, the point is moot; signed and
unsigned loads are identica l. M IPS does offer two flavors of byte loads: load byte
(l b) treats the byte as a signed number and thus sign -extends to fill the 24 left 
most bits of the register, while load byte unsigned (l bu) works with un signed inte
gers. Since C programs alm ost always use bytes to represent characters rather than
consider bytes as very short signed integers, 1bu is used practically exclusively for
byte loads. For similar reasons, load half(l h) treats the halfword as a signed num 
ber and thus sign-extends to fill the 16 leftmost bits of the register, while load half
word l/nsigned (1 hu) wo rks with unsigned integers.
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Unlike the numbers discussed above, memory addresses naturally start at 0 and
continue to the largest address. Put another way, negative addresses make no
sense. Thus, programs wa nt to deal sometimes with numbers that ca n be positive
or negative and sometimes with numbers that can be only positive. Some pro 
gramming languages refl ect this distinction. C, for exa mple, names the former
integers (decla red as i nt in the program) and the latter l/nsigned integers
(un signed i nt). Some C style guides even recommend decla ring the former as
si gned i nt to keep the distinction clear.

Comparison instructions must deal with this dichotomy. Sometimes a bit pat
tern with a 1 in the most significa nt bit represents a negative number and, of
course, is less than any positive number, which must have a 0 in the most signifi 
ca nt bit. With unsigned integers, on the other hand, a 1 in the most significant bit
represents a number that is larger than any that begins with a o. (We'll take advan
tage of this dual mea ning of the most significa nt bit to reduce the cost of the array
bounds checking in a few pages.)

MIPS offers two versions of the set on less th an comparison to handle these
alternatives. Set on less than (s 1t) and set on less than immediate (sl t i ) wo rk
with signed integers. Unsigned integers are compared using set on less than
unsigned (s 1t u) and set on less than immediate unsigned (s 1t i u).

Signed versus Unsigned Comparison

Suppose register $sO has the binary number

1111 1111 1111 1111 1111 1111 1111 11l1 tW (}

and that register $s 1 has the binary number

0000 0000 0000 0000 0000 0000 0000 0001 tW(}

What are the va lues of registers $tO and $t1 after these two instructions?

slt $tO, $sO , $sl It signed comparison
sltu $tl, $sO , $sl It unsigned comparison

Hardware
Software
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The va lue in register $sO represents - 1 if it is an integer and 4,294,967,295ten
if it is an unsigned integer. The value in register $sl represents 1 in either
case. Then register $t O has the value 1, sin ce - l Ien < l Ien' and register HI
has the va lue 0, since 4,294,967,295ten > Iten'

Before going on to addition and subtraction , let's examine a few useful sho rt 
cuts when working with two's complement numbers.

The first shortcut is a quick way to nega te a two's complement binary number.
Simply invert every 0 to 1 and every 1 to 0, then add one to the result. This sho rt 
cut is based on the observation that the sum of a number and its inverted repre
sentatio n must be 111 ... 111 ,wo> wh ich represents - I. Since x + x - -1 , therefo re
x + x + 1 = 0 o r x + 1 = -x.

Negation Shortcut

Negate 2ten , and then check the result b y negating -2Ien"

2ten = 0000 0000 0000 0000 0000 0000 0000 00 10two
Negating this number by inverting the bits and adding o ne,

+
111111111111 111111111111 11111101 two

1two

111111111111 111111111111 11111110 two
- 2ten

Going the other directio n ,

111111111111 111111111111 11111110 two

is first inverted and then increm ented:

+
00000000000000000000000000000001 two

1two

00000000000000000000000000000010 two
2ten
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The second shortcut tells us how to convert a binary number represented in n
bits to a number represented with more than n bits. For example, the immediate
field in the load, store, branch, add, and set on less than instructions contain s a
two's complement 16-bit number, representing -32,768,en (_2 15) to 32,767,en
(2 15 - I). To add the immediate field to a 32-bit register, the computer must con
vert that 16-bit number to its 32-bit equivalent. The shortcut is to take the most
significant bit from the smaller quantity- the sign bit-and replicate it to fill the
new bits of the larger quantity. The old bits are simply copied into the right por
tion of the new word. This shortcut is commonly ca lled sign extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2ten and -2ten to 32-bit binary numbers.

The 16-bit binary version of the number 2 is

0000000000000010 two = 2ten

It is converted to a 32-bit number by making 16 copies of the value in the
most significant bit (0) and placing that in the left -hand half of the word. The
right half gets the old value:

00000000000000000000000000000010 t wo = Zten

Let's negate the 16-bit version of 2 using the ea rlier shortcut. Thus,

0000000000000010 two

becomes

1111111111111101 two
+ 1two

111111111111 111 0two

Creating a 32-bit version of the negative number mea ns copying the sign
bit 16 times and placing it on the left:

11111111111111111111111111111110two = - Zten

This trick works because positive two's complement numbers really have an
infinite number of Os on the left and th ose that are negative two's complement
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numbers have all infinite number of Is. The binary bit pattern representing a
number hides leading bits to fit the width of the hardwa re; sign extension simply
restores some of them.

The third shortcut reduces the cost of checking if 0 $; x < y, which matches the
index out-of-bounds check for arrays. The key is that negative integers in two's
complement notation look like large numbers in unsigned notation; that is, the
most significant bit is a sign bit in the former notation but a large part of the num 
ber in the latter. Thus, an unsigned comparison of x < y also checks if x is nega
tive.

Bounds Check Shortcut

Use this shortcut to reduce an index-out-of-bounds check: jump to Index 
OutOfBound s if $a 1 '2': $t2 or if $a 1 is negative.

The checking code just uses s 1tu to do both checks:
ANSWER

s ltu
beq

Summary

$tO ,$ al , $t2 # Temp reg $tO=O if k) = length or k<O
$tO ,$zero , IndexOutOfBounds #if bad , goto Error

Check
Yourself

The main point of this section is that we need to represent both positive and neg
ative integers within a computer word, and although there are pros and cons to
any option , the overwhelming choice since 1965 has been two's complement.
Figure 3. 1 shows the additions to the M IPS assembly language revealed in this sec
tion. (The MIPS ma chine language is also illustrated on the back endpapers of
this book.)

Which type of variable that ca n contain I,OOO,OOO,OOOten takes the most memory
space?

1. i nt in C

2. string in C

3. stri ng in Java (which uses Unicode)
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MIPS operands

16.

Name Example Comments

32
$sO- $s7. StO- St9 , $gp, Fast locations for data . In MIPS, data must be in registers to perform arithmetic. MIPS

registers Sfp, $zero. $s p. $ra, $, t register $ze ro always equals O. Register $a t is reserved for the assembler to handle
large constants.

2~ Memory[O] , Accessed only by data transfer instructions. MIPS uses byte addresses , so sequential word
memory Memory[4]. ... , addresses differ by 4. Memory holds data structures, such as arrays, and spilled registers,
words Memory[4294967292] such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments

odd 'dd $sl,$52.$s3 $;1 - $,' + $,3 Three operands

Arithmetic subtract "b $sl.$52.$s3 $;1 $" $,3 Three operands

add immediate addi $sl.$52.100 $;1 $" + 100 + constant

load word 1w $sl, 100{$s2) $;1 - Memory[ $s2 + 100] Wo rd from memory to register

store word ,w $sl, 100{$s2) Memory[ $s2 + 100] $,1 Word from register to memory

load half unsigned 1h' $sl,lOO{$s2) $;1 Memory[ $s2 + 100] Halfword memory to register
Do'" store half 'h $51.100{ $s2) Memory($ 52 + 100] _ $;1 Halfword register to memorytransfer

load byte unsigned lb' $sl,100{$s2) $;1 Memory[ $s2 + 100] Byte from memory to register

store byte 'b $sl,100{$s2) Memory($ 52 + 100) _ $ 51 Byte from register to memory

load upper immediate 1 u i $sl,100 $;1 - 100 • ,'" Loads constant in upper 16 bits

ooif "d $sl. $s2.$s3 $;1 $, , , $,3 Three reg. operands; bit.tly-bit AND

0' " $sl, $s2.$s3 $;1 $, , I $,3 Three reg. operands; bit.tly-bit OR

00' 0" $s l. $s2.$s3 $;1 ($s2 I$s 3 ) Three reg. operands; bit.t>y.tlit NOR

Logical and immediate andi $sl, $s2.100 $;1 $, , , 100 Bit.tly-bit AND with constant

or immediate on $sl, $s2.100 $;1 - $, , I 100 Bit.tly-bit OR with constant

shift left logical ,11 $s l, $s2.10 $;1 $" « 10 Shift left by constant

shift right logical ;,1 $sl, $s2.10 $s1 _ $s2» 10 Shift right by constant

branch on equal beq $sl, $s2.25 if {$sl __ $s2}gotoPC+4 + 100 Equal test ; pc.,elative branch

branch on not equal boe $s l, $s2.25 if( $s l !_ $s2}gotoPC + 4 + 100 Not equal test ; PC-relative

set on less than 'It $sl, $s2.$s3 if( $s2<$53) $sl_1; Compare less than;
else $s l", O two's complement

Conditional set less than immediate slti $sl, $s2.100 if( $s2 < 100) $;1 ,. Compare < constant;•
branch else $s l ~ 0 two's complement

set less than unsigned sltu $sl. $s2.$s3 if {$s2 < $s 3} $;1 ,. Compare less than; unsigned•
else $sl ~ 0 numbers

set less than immediate slt i u $sl, $s2.100 if ( $52 < 100) $;1 1 , Compare < constant;
unsigned else $,1 ~ 0 unsigned numbers

jump J 2500 go to 10000 Jump to target address
Uncondi· jump register $ ra go to $ra For switch , procedure returntionaljump JC

jump and link j a 1 2500 $ra _ PC + 4; go to 10000 For procedure call

FIGURE 3.1 MIPS architecture revealed thus far. Color indicates portions from this section added to the MIPS architecture revealed in
Chapter 2 (Figure 3.26 on p.1ge 228). MIPS machine language is listed in the MIPS summary reference card in the front of this book.
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biased notation A notation
that represents the most
negative value by 00 ... OOOrwo
and the most positive value by
11 ... I1 two, with 0 typically
having the value 10 ... 001"'0'

thereby biasing the number
such that the number plus the
bias has a nonnegative
representation.

Chapter 3 Arithmetic: for Computers

Elaboration: Two's complement gets its name from the rule that the unsigned sum
of an n-bit number and its negative is 2n; hence, the complement or negation of a two's
complement number x is 2n - x.

A third alternative representation is called ones complement. The negative of a
one's complement is found by inverting each bit, from 0 to 1 and from 1 to 0, which
helps explain its name since the complement of x is 2n - x - 1 . It was also an attempt
to be a better solution than sign and magnitude, and several scientific computers did
use the notation . This representation is similar to two's complement except that it also
has two Os: 00 OOtwo is positive 0 and 11 ... lltwo is negative O. The most nega-
tive number 10 00Otwo represents -2,147,483,647ten, and so the positives and
negatives are balanced. One's complement adders did need an extra step to subtract a
number, and hence two's complement dominates today.

A final notation, which we will look at when we discuss floating point, is to represent
the most negative value by 00 ... ooo.wo and the most positive value represented by
11. .. lltwo' with 0 typically having the value 10 ... OOtwo' This is called a biased
notation, since it biases the number such that the number plus the bias has a nonneg
ative representation .

Elaboration: For signed decimal numbers we used "-" to represent negative
because there are no limits to the size of a decimal number. Given a fixed word size,
binary and hexadecimal bit strings can encode the sign, and hence we do not normally
use "+" or "-" with binary or hexadecimal notation .

Subtraction: Addition's
Tricky Pal

No. 10, Top Ten Courses for
Athletes at a Football Factory,
David Letterman et aL, Book of
Top Tell Lists, 1990

Addition and Subtraction

EXAMPLE

Addition is just what you would expect in computers. Digits are added bit by bit
from right to left, with carries passed to the next digit to the left, just as you would
do by hand. Subtraction uses addition: The appropriate operand is simply negated
before being added.

Binary Addition and Subtraction

Let's try adding 6ten to 7ten in binary and then subtracting 6ten from 7ten in
binary.
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+
0000 0000 0000 0000 0000 0000 0000 a111 two
0000 0000 0000 0000 0000 0000 0000 all 0two

0000 0000 0000 0000 0000 0000 0000 1101 two

ANSWER

The 4 bits to the right have all the action; Figure 3.2 shows the sums and ca r
ries. The ca rries are shown in parentheses, with the arrows showing how they
are passed.

(0)

o
o

(0) 0

(0)

o
o

(0) 0

(1)

o
o

(0) 1

(1)

1

1

(1) 1

(0)

1

1

(1) 0

(Carries)

1

o
(0) 1

FIGURE 3.2 Binary addition, showing earrles from right to left. The rightmost bit adds 1
to 0, resulting in the sum ofthis bit being 1 and the carry out from this bit being O. Hence, the operation
for the second digit to the right is °+ 1 + 1. This generates a°for this swn bit and a carry out of 1. The
third digit is the sum of 1+ 1+ 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bit is 1+ a
+ 0, yielding a I swn and no carry.

Subtra cting 6ten from 7ten ca n be done directly:

0000 0000 0000 0000 0000 0000 0000 0111 two 7ten
0000 0000 0000 0000 0000 0000 0000 0110 two 6ten

0000 0000 0000 0000 0000 0000 0000 0001 two 1ten

or via addition using the two's complement representation of -6:

+
0000 0000 0000 0000 0000 0000 0000 a111 two
11111111111111111111111111111010two
0000 0000 0000 0000 0000 0000 0000 0001 two

We said ea rlier that overflow occurs when the result from an operation cannot
be represented with the ava ilable hardware, in this case a 32-bit word. \-Vhen can
overflow occur in addition? When adding operands with different signs, overflow
ca nnot occur. The reason is the sum must be no larger than one of the operands.
For exa mple, -10 + 4 = -6. Since the operands fit in 32 bits and the sum is no
larger than an operand, the sum must fit in 32 bits as well. Therefo re no overflow
ca n occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract, but
it's just the opposite principle: When the signs of the operands are the mme, over
flow cannot occur. To see this, remember that x - y = x + (-y) because we subtract
by negating the second operand and then add. So, when we subtract operands of
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the same sign we end up by adding operands of different signs. From the prior
paragraph , we know that overflow cann ot occur in this case either.

Having examined when overflow ca nnot occur in addition and subtraction, we
still haven't an swered how to detect when it does occur. Overflow occurs when
adding two positive numbers and the sum is negative, or vice versa. Clea rly, add 
ing or subtracting two 32-bit numbers can yield a result that needs 33 bits to be
fully expressed. The la ck of a 33rd bit means that when overflow occurs the sign
bit is being set with the vallie of the result instead of the proper sign of the result.
Since we need just one extra bit, only the sign bit can be wrong. This means a
ca rry out occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from a
positive number and get a negative result, or when we subtract a positive number
from a negative number and get a positive result. This means a borrow occurred
from the sign bit. Figure 3.3 shows the combination of operations, operands, and
results that indicate an overflow.

VVe have just seen how to detect overflow for two's complement numbers in a
computer. What about un signed integers? Un signed integers are commonly used
for memory addresses where overflows are ignored.

The computer designer must therefore provide a way to igno re overflow in
some cases and to recognize it in others. The MIPS solution is to have two kinds of
arithmetic instructions to recognize the two choices:

• Add (add), add immediate (add i ), and subtract (sub) cause exceptions on
overflow.

• Add unsigned (addu), add immediate unsigned (addiu) , and subtract
unsigned (s u bu) do not ca use exceptions on overflow.

Because C ignores overflows, the M IPS C compilers will always generate the
unsigned versions of the arithmetic instructions addu, addi u, and subu no mat 
ter what the type of the va riables. The MIPS Fortran compilers, however, pick the
appropriate arithmetic in structions, depending on the type of the operands.

Result
Operation Operand A Operand B Indlc:atlng overflow

A+ B >0 >0 +0

A+ B +0 +0 >0

A-B >0 +0 +0

A-B +0 >0 >0

FIGURE 3.3 Overflow c:ondltlons for addition and subtrac:tlon.



3.3 Addition and Subtraction 173

The computer designer must decide how to handle arithmetic overflows.
Although some languages like C ignore integer overflow, languages like Ada and
Fortran require that the program be notified. The programmer or the program
ming environment must then decide what to do when overflow occurs.

MIPS detects overflow with an exception, also called an interrupt on many
computers. An exception or interrupt is essentially an unscheduled procedure ca ll.
The address of the instruction that overflowed is saved in a register, and the com 
puter jumps to a predefined address to invoke the appropriate routine for that
exception. The interrupted address is saved so that in some situations the program
ca n continue after corrective code is executed. (Section 5.6 covers exceptions in
more detail; Chapters 7 and 8 describe other situations where exceptions and
interrupts occur.)
MIPS includes a register called the exception program counter (EPC) to contain the
address of the instruction that ca used the exception. The instruction move from
system control (mfcO) is used to copy EPC into a general-purpose register so that
MIPS software has the option of returning to the offending instruction via a jump
register instruction.

Hardware
Software
Interface

exception Also called inter
rupt. An unscheduled event that
disrupts program execution;
lIsed to detect overflow.

inter rupt An exception that
comes from outside of the pro
cessor. (Some architectures use
the term interrupt for all excep
tions.)

Elaboration: MIPS can trap on overflow, but unlike many other computers there is no
conditional branch to test overflow. A sequence of MIPS instructions can discover over·
flow. For s igned addition, the sequence is the following (see the In More Depth segment
on logica l instruction in Chapter 2 for the definition of the xo r instructions):

signs =; sign of sum match too?
$t3 negative if sum sign different

It! II
II

$t3 , $zero # $t3 = 1 if sum sign different
$zero , Overflow # All three signs * ; go to

slt $t3,
bne $t3,
overfl ow

addu $tO, $tl , $t2 # $tO = sum , but don 't trap
xor $t3, $ti, $t2 It Check if signs differ
slt $t3, $t3 , $zero # $t3 1 if signs differ
bne $t3, $zero , No_overflow # $tl , $t2 signs *,
so no overflow
xor $t3, $tO ,
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Check
Yourself
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For unsigned addition ($tO = $tl + HZ), the test is

addu $tO, $t1, $t2 # $tO = sum
nor $t3, $t1, $zero # $t3 = NOT $t1

It (2 ' scamp - 1 : 232 - $t 1 - 1)

sHu $t3, $t3, HZ It (232 - $t1 - 1) < $tZ
It ==> 232 - 1 < $t1 + HZ

bne $t3,$zero,Overflow # if(232 _1 < $t1 + $t2 ) go to
ove rfl ow

Summary

The main point of this section is that, independent of the representation , the finite
word size of computers means that arithmetic operations can create results that
are too large to fit in this fixed word size. It 's easy to detect overflow in unsigned
numbers, although these are almost always ignored because programs don't want
to detect overflow for address arithmetic, the most common use of natural num
bers. Two's complement presents a greater challenge, yet some software systems
require detection of overflow, so today all computers have a way to detect it.
Figure 3.4 shows the additions to the MIPS architecture from this section.

Some programming languages allow two's complement integer arithmetic on
variables declared byte and half. What MIPS instructions would be used?

I. Load with 1bu, 1hu; arithmetic with add, sub, mul t, di v; then store using
s b, s h.

2. Load with 1b, 1h; arithmetic with add, sub, mult, di v; then store using
s b, s h.

3. Loads with 1b, 1h; arithmetic with add, sub, mul t, di v, using and to
mask result to 8 or 16 bits after each operation; then store using sb, sh.

Elaboration: In the preceding text, we said that you copy EPC into a register via
mf cO and then return to the interrupted code via jump register. This leads to an inter
esting question : Since you must first transfer EPC to a register to use with jump regis
ter, how can jump register return to the interrupted code and restore the original values
of all registers? You either restore the old registers first, thereby destroying your return
address from EPC that you placed in a register for use in jump register, or you restore
all registers but the one with the return address so that you can jump-meaning an
exception would result in changing that one register at any time during program execu
tion! Neither option is satisfactory.

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve
registers $kO and $k1 for the operating system; these registers are not restored on
exceptions. Just as the MIPS compilers avoid using register $a t so that the assembler
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MIPS assembly language
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Category Instruction Example Meaning Comments

odd ,dd $s1. $s2. $s3 , ,1 ,,, + , ,3 Three operands; overflow detected

subtract ;ob $s1. $s2. $s3 , ,1 ,,, , ,3 Three operands; overflow detected

add immediate add i $sl. $s2.100 , ,1 ,,, + 100 + constant; overflow detected

add unsigned addu $s1.$s2. $s3 ' ;1 ,,' + , ,3 Three operands; overflow undetected
Arithmetic subtract unsigned subu $s1.$s2. $s3 ' ;1 - ,,' , ,3 Three operands; overflow undetected

add immediate addiu $sl.$s2.100 ' ;1 ,,' + 100 + constant; overflow undetected
unsigned

move from mfcO $sl.$epc ' ;1 $epc Used to copy Exception PC plus other
coprocessor register special registers

load word lw $ s1.100 {$ s2 ) , ,1 Memoryl $ s 2 + 100J Word from memory to register

store word ,w $ s 1 .100 {$ s2 ) Memory L$ s2 + 100J ' ;1 Word from register to memory

load half unsigned 1he $sl.100{ $s2) $sl _ Memory[ $s2 + 10O] Halfword memory to register
Data store half ,h $sl. 100{ $s2) Memory($ s 2 + 100] _ ' ;1 Halfword register to memorytransfer

load byte unsigned 1be $sl.100{ $s2) $sl _ Memory[ $s2 + 1001 Byte from memory to register

store byte ,b $sl.100{ $s2) Memory($ s 2 +100] - $sl Byte from register to memory

load upper immediate 1 u i $s1. 100 $sl _100 . 216 Loads constant in upper 16 bits

00' "d $s1. $s2. $s3 , ,1 ,,' & , ,3 Three reg. operands; bit.tly-bit AND

0' " $s1. $s2. $s3 ' ;1 - ", I , ,3 Three reg. operands; bit.tly-bit OR

00' 0" $sl. $s2. $s3 ' ;1 ($ s2 I$s 3 ) Three reg. operands; bit.tly-bit NOR

Logical and immediate and i $sl. $s2. 100 ' ;1 ", & 100 Bit.tly-bit AND with constant

or immediate on $sl. $s2.100 ' ;1 - ", I 100 Bit.tly-bit OR with constant

shift left logical ,11 $sl. $s2. 10 ' ;1 ,,' « 10 Shift left by constant

shift right logical HI $s1. $s2. 10 ' ;1 ,,' » 10 Shift right by constant

branch on equal b,q $s1. $s2.25 if {$sl __ $s2)goto Equal test; pc.,elative branch
PC +4+100

branch on not equal bo, $s1. $s2.25 if {$sl !- $ s2)goto Not equal test; PC- relative
PC +4+100

set on less than ,It $s1. $s2. $s3 if {$s2 < $ s3) $s1 _1; Compare less than; two's complement

Conditional else $sl " O
branch set less than slti $sl. $s2. 100 if {$s2 < 100) $sl _1; Compare < constant; two's

immediate else $sl " O complement

set less than unsign s ltu $s1. $s2. $s3 if {$s2< $ s3) $s 1_1; Compare less than; unsigned
else $s l" O

set less than s It i u $sl. $s2. 100 if {$s2 < 100) $s1" 1; Compare < constant; unsigned
immediate unsigned else $s l" O

jump J 2500 go to 10CX>O Jump to target address
Uncondi· jump register 'n go to $ r a For switch , procedure return
tionaljump F

jump and link j a 1 2500 'n _ PC + 4; go to 10000 For procedure call

FIGURE 3.4 MIPS architecture revealed thus far. To save space in the table, it does not include the registers and memory found in Figure
3.1 on page 169. Color indic.1tes the portions revealed since Figure 3.1. MIPS machine language is also on the MIPS reference summary card.
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can use it as a temporary register (see the Hardware Software Interface section on
page 96 in Chapter 2), compilers also abstain from using registers $kO and $k1 to
make them available for the operating system. Exception routines place the return
address in one of these registers and then use jump register to restore the instruction
address.

Multiplication

1000t en
1001 t en

1000
0000

0000
1000

x

Now that we have completed the explanation of addition and subtraction, we are
ready to build the more vexing operation of multiply.

But first let's review the multiplication of decimal numbers in longhand to
remind ourselves of the steps and the names of the opera nds. For reasons that will
become clear shortly, we limit this decimal exa mple to using only the digits 0 and
1. Multiplying WOOten by WOllen:

Multiplicand
Multiplier

Multiplication is vexation,
Division is as bad;
The rule of three doth puzzle
me,
And practice drives me mad.

Anonymous, Elizabethan
manuscript, 1570

Product 1001000t en

The first opera nd is called the multiplicand and the second the multiplier. The
final result is called the product. As you may recall, the algorithm lea rned in gram
mar school is to take the digits of the multiplier one at a time from right to left,
multiplying the multiplica nd by the single digit of the multiplier and shifting the
intermediate product one digit to the left of the ea rlier intermediate products.

The first observation is that the number of digits in the product is considerably
larger than the number in either the multiplica nd or the multiplier. In fact , if we
ignore the sign bits, the length of the multiplication of an n-bit multiplicand and
an m-bit multiplier is a product that is n + m bits long. That is, n + m bits are
required to represent all possible products. Hence, like add, multiply must cope
with overflow because we frequently wa nt a 32-bit product as the result of multi 
plying two 32-bit numbers.

In this exa mple we restricted the decimal digits to 0 and 1. With only two
choices, each step of the multiplication is simple:

I. Just place a copy of the multiplicand ( I X multiplica nd) in the proper place
ifthe multiplierdigitisa I, or

2. Place 0 (0 Xmultiplicand) in the proper place if the digit is O.
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Although the decimal exa mple above happened to use only 0 and 1, multiplica
tion of binary numbers must always use 0 and 1, and thus always offers only these
two choices.

Now that we have reviewed the basics of multiplication , the traditional next
step is to provide the highly optimized multiply hardware. We break with tradi
tion in the belief that you will ga in a better understanding by seeing the evolution
of the multiply hardware and algorithm through multiple generations. For now,
let's assume that we are multiplying only positive numbers.

Sequential Version of the Multiplication Algorithm
and Hardware

This design mimics the algorithm we lea rned in gra mmar school; the hardwa re is
shown in Figure 3.5. We have drawn the hardware so that data flows from top to
bottom to more closely resemble the paper-and-pencil method.

Let's assume that the multiplier is in the 32-bit Multiplier register and that the
64-bit Product register is initialized to o. From the paper-and-pencil exa mple
above, it 's clear that we will need to move the multiplica nd left one digit each step
as it may be added to the intermediate products. Over 32 steps a 32-bit multipli 
ca nd would move 32 bits to the left. Hence we need a 64-bit Multiplicand register,
initialized with the 32-bit multiplica nd in the right half and 0 in the left half. This
register is then shifted left 1 bit each step to align the multiplicand with the sum
being accumulated in the 64-bit Product register.

•
Multiplicand

Shift left

64 bits

"" 64.0;' ALU~
•

Multiplier
Shift right

32 bits

Product ( Control test
Write

64 bits

FIGURE 3.5 First version of the multiplication hardware. The MulllplJcand regiSter, ALU, and
Product register are allM bits wide, with only the Multiplier register containing 32 bits. The 32·bit multi·
plicand starts in the right half of the Multiplicand register and is shifted left I bit on each step. The multi·
plier is shifted in the opposite direction at each step. The algorithm starts with the proouct initialized to o.
Control decides when to shift the Multiplicand and Multiplier registers and when to write new values into
the Product register.

177
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Figure 3.6 shows the three basic steps needed for each bit. The least significa nt
bit of the multiplier (MultiplierO) determines whether the multiplica nd is added
to the Product register. The left shift in step 2 has the effect of moving the inter
mediate operands to the left, just as when multiplying by hand. The shift right in
step 3 gives us the next bit of the multiplier to examine in the following iteration.
These three steps are repea ted 32 times to obtain the p roduct. If each step took a

( Start )

MultiplierO '" 1 1. Test MultiplierO '" 0

MultiplierO

~

1a. Add multiplicand to pnxluct and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

No : < 32 repetitions
32nd repetition?

Yes: 32 repetitions

( Dooe )

FIGURE 3.6 The first multiplication algorithm, using the hardware shown In Figure 3.5. If
the least significam bit of the multiplier is I, add the multiplicand to the product. Ifnot, go to the next step.
Shift the multiplicand left and the multiplier right in the next two steps. These three steps are repeated 32
times.
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clock cycle, this algorithm would require almost 100 clock cycles to multiply two
32-bit numbers. The relative importance of arithmetic operations like multiply
varies with the program , but addition and subtraction may be anywhere from 5 to
100 times more popular than multiply. Acco rdingly, in many applica tions, multi
ply ca n take multiple clock cycles without significantly affecting performance. Yet
Amd ahl's law (see Chapter 4, page 267) reminds us that even a moderate fre
quency for a slow operation ca n limit perfo rmance.

This algo rithm and hardwa re are easily refined to take 1 clock cycle per step.
The speedup comes from perfo rming the operations in parallel: the multiplier
and multiplica nd are shifted while the multiplica nd is added to the product if the
multiplier bit is a one. The hardwa re just has to ensure that it tests the right bit of
the multiplier and gets the preshifted version of the multiplicand. The hardware is
usually further optimized to halve the width of the adder and registers by noticing
where there are unused po rtions of registers and adders. Figure 3.7 shows the
revised hardwa reo

Replacing arithmetic by shifts ca n also occur when multiplying by constants.
Some compilers replace multiplies by sho rt constants with a series of shifts and
adds. Because one bit to the left represents a number twice as large in base 2, shift 
ing the bits left has the sa me effect as multiplying by a power of 2. As mentioned
in Chapter 2, almost every com piler will perfo rm the strength reduction optimi 
zation of substituting a left shift for a multiply by a power of 2.

Multiplicand

32 bits

""" 32-bit ALU
/'

•
PreJUcl Shift right Control'

Write test

64 bits

FIGURE 3.7 Relined version of the multiplication hardware. Compare WIth the first versIon m
Figure 3.5. The Multiplicand register, ALU, and Multiplier register are aU 32 bits wide, with only the Prod·
uct register left at 64 bits. Now the product is shifted right. The separate Multiplier register also dis.1ppeared.
The multiplier is placed instead in the right half of the Product register. These changes are highlighted in
color.

Hardware
Software
Interface
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EXAMPLE

ANSWER
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A Multiply Algorithm

Using 4-bit numbers to save space, multiply 2ten X 3ten> o r OO lOt\o,"OX00 11 two'

Figure 3.8 shows the va lue of each register for each of the steps labeled ac
co rding to Figu re 3.6, with the final value of 0000 011Otwo or 6ten. Color is
used to indicate the register values that change on that step, and the bit cir
cled is the one examined to determine the operation of the next step.

Signed Multiplication

So far we have dealt with positive numbers. The easiest way to understand how to
deal with signed numbers is to first convert the multiplier and multiplica nd to
positive numbers and then remember the original signs. The algo rithms should
then be run for 31 iterations, leaving the signs out of the calculation. As we
lea rned in grammar school, we need negate the product only if the origin al signs
disagree.

It turn s out that the last algo rithm will wo rk for signed numbers provided that
we remember that the numbers we are dealing with have infinite digits, and that
we are only representing them with 32 bits. Hence, the shifting steps would need
to extend the sign of the p roduct fo r signed numbers. \Vhen the algorithm com 
pletes, the lower word would have the 32-bit product.

IteratIon

o
1

2

3

4

Step

Initial values

la : 1 ~ Prod _ Prod + Mcand

2: Shift left Multiplicand

3: Shift right Multiplier

la : 1 ~ Prod _ Prod + Mcand

2: Shift left Multiplicand

3: Shift right Multiplier

1 : 0 ~ no operation

2: Shift left Multiplicand

3: Shift right Multiplier

1 : 0 ~ no operation

2: Shift left Multiplicand

3: Shift right Multiplier

MultIplier

001

0011

0011

oo<\!)
0001

0001

000
0000

0000

oo<@
0000

0000

0000

MultIplicand

00000010

00000010

00000100

00000100

00000100

()()()() 1000

()()()() 1()()()

()()()() 1()()()

()()()1 ()()()()

()()()1 ()()()()

()()()1 ()()()()

00100000

00100000

Product

0000 0000

00000010

00000010

0000 0010

00000110

00000110

0000 0110

0000 0110

00000110

0000 0110

0000 0110

00000110

0000 0110

FIGURE 3.8 MultIply example usIng algorithm In FIgure 3.6. The bit examined to determine
the next step is circled in color.
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Faster Multiplication

Moore's Law has provided so much more in resources th at hardwa re designers can
now build a much faster multiplication hardwa re. \Vhether the multiplicand is to
be added or not is known at the beginning of the multiplica tion by looking at each
of the 32 multiplier bits. Faster multiplications are possible by essentially p rovid 
ing one 32-bit adder for each bit of the multiplier: one input is the multiplica nd
ANDed with a multiplier bit and the other is the output of a prior adder. Figure
3.9 shows how they would be connected.

\Vhy is this much hardwa re faster? The sequential multiplier pays the overhea d
of a clock for each bit of the product. This multiplier array of adders does not. A
second reason is this large collection of adders lends itself to many optimizations
to gain further improvements. One example is using carry save adders to add such
a large column of numbers; see Exercises 3.24 and 3.49. A third reason is that it is
easy to pipeline such a design to be able to support many multiplies simulta
neously (see Chapter 6).

Multiply in MIPS

MIPS p rovides a separate pair of 32-bit registers to contain the 64-bit product,
called Hi and Lo. To produce a properly signed or unsigned product, M IPS has
two instructions: multiply (mul t ) and multiply unsigned (mul t u) . To fetch the
integer 32-bit product, the p rogrammer uses move from 10 (mflo). The M IPS
assembler generates a pseudoinstruction for multiply th at specifies three general
purpose registers, generating mfl 0 and mfhi in struct ions to place the product
into registers.

Summary

Multiplication is accomplished by simple shift and add hardwa re, derived from
the paper-a nd-pencil method lea rned in grammar school. Compilers even use
shift instructions fo r multiplications by powers of two.

Both MIPS multiply instructions ignore overflow, so it is up to the softwa re to
check to see if the product is too big to fit in 32 bits. There is no overflow if Hi is 0
for mu 1t u o r the replicated sign of Lo fo r mu 1t. The instruction move from hi
(m f hi) can be used to transfer Hi to a general-purpose register to test for over
flow.

Hardware
Software
Interface
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MplierO . Mcand

32 bits

1 bit
Me"'" rMoo"'32 bit.

~--'-7

Me"'"rM~"' '2 bit.

~-

1 bit

1 bit

Mplier3 . Mcand

~ 32 bits

32 bits 1 bit

Product63..32 Product 31 ••• Product2 Product1 ProductO

FIGURE 3.9 Fast multiplication hardware. R.1lher than use a single 32·bit adder 32 times, this
hardware "unrolls the loop" to use 32 adders. Each adder produces a 32·bit sum and a carry out. The least
significant bit is a bit of the proouct, and the carry out and the upper 31 bits of the sum are passed along to
the next adder.
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Division

Divide et impera.

Latin for "Divide and mle,"
ancient political maxim cited
by Machiavelli, 1532

The reciprocal operation of multiply is divide, an operation that is even less fre
quent and even more quirky. It even offers the opportunity to perform a mathe
matically invalid operation: dividing by O.

Let's start with an example of long division using decimal numbers to recall the
names of the opera nds and the grammar school division algorithm. For reasons
similar to those in the previous section , we limit the decimal digits to just 0 or 1.
The exa mple is dividing 1,00 1,0 I0ten by l ooOten:

Quotient

Dividend

100 Iten

Divisor 1000ten 110010 IOten
- 1000

10

10 1

1010

- 1000

IOten Remainder

The two opera nds (dividend and divisor) and the result (quotient) of divide
are accompanied by a second result ca lled the remainder. Here is another way to
express the relationship between the components:

Dividend = Quotient X Divisor + Remainder

where the remainder is smaller than the divisor. Infrequently, programs use the
divide in struction just to get the remainder, ignoring the quotient.

The basic grammar school division algorithm tries to see how big a number
ca n be subtra cted, creating a digit of the quotient on each attempt. Our ca refully
selected decimal exa mple uses only the numbers 0 and I , so it's easy to fi gure out
how many times the divisor goes into the portion of the dividend: it 's either 0
times or I time. Binary numbers contain only 0 or I , so binary division is
restricted to these two choices, thereby simplifying binary division.

Let's assume that both the dividend and divisor are positive and hence the quo
tient and the remainder are nonnega tive. The division opera nds and both results
are 32-bit values, and we will ignore the sign for now.

dividend A number being
divided.

divisor A number that the
dividend is divided by.

quotient The primary result of
a division; a number that when
multiplied by the divisor and
added to the remainder pro
duces the dividend.

remainder The secondary
result of a division; a number
that when added to the product
of the quotient and the divisor
produces the dividend.
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A Division Algorithm and Hardware

Figure 3. 10 shows hardwa re to mimic our grammar school algorithm. We start
with the 32-bit Quotient register set to O. Each iteration of the algorithm needs to
move the divisor to the right one digit, so we start with the divisor placed in the
left half of the 64-bit Divisor register and shift it right 1 bit each step to align it
with the dividend. The Remainder register is initialized with the dividend.

Figure 3. 11 shows three steps of the first division algorithm. Unlike a human ,
the computer isn't smart enough to kn ow in adva nce whether the divisor is
smaller than the dividend. It must first subtract the divisor in step 1; remember
that this is how we performed the comparison in the set on less than instruction.
If the result is positive, the divisor was smaller o r equal to the dividend, so we gen 
erate a 1 in the quotient (step 2a). If the result is negative, the next step is to
restore the original value by adding the divisor back to the remainder and gener
ate a 0 in the quotient (step 2b). The divisor is shifted right and then we iterate
again. The remainder and quotient will be found in their namesake registers after
the iterations are complete.

•
Divisor

Shift right

54 bits

•
""" 54-bit ALU r Quotient

Shift left

32 bits

Remainder ( Control
Write test

54 bits

..
FIGURE 3.10 First version of the division hardware. The DJV1SOr regIster, ALU, and fu.>mamder
register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor starts in the left
half of the Divisor register and is shifted right 1 bit on each iteration. The remainder is initialized with the
dividend. Control decides when to shiflthe Divisor and Quotient registers and when to write the new value
into the fu.>mainder register.
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( Start )

1. Subtract the Divisor register from the

Remainder register and place the

result in the Remainder register

Remainder ~ 0 Remainder < 0
Test Remainder

2a. Shift the Quotient register to the left, 2b. Restore the original value by adding

setting the new rightmost bit to 1 the Divisor register to the Remainder

register and place the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

I

3. Shift the Divisor register right 1 bit

No: < 33 repetitions
33rd repetition?

Yes: 33 repetitions

FtGURE 3.11 A division algorithm, using the hardware In Figure 3.10. If the Remainder is pos
itive, the divisor did go into the dividend, so step 2a generates a I in the quotient. A neg.1live Remainder after
step I means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and adds
the divisor to the remainder, thereby reversing the subtraction of step I. The final shift, in step 3, aligns the
divisor properly, relative to the dividend for the next iteration. These steps are repeated 33 times.
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EXAMPLE

ANSWER

Chapter 3 Arithmetic: for Computers

A Divide Algorithm

Using a 4-bit version of the algorithm to save pages, let's t ry dividing 7,en by
21en, or 0000 0 111 two by 00 10I\\oU'

Figure 3.1 2 shows the value of each register for each of the steps, with the
quotient being 3ten and the remainder l Ien' Notice that the test in step 2 of
whether the remainder is positive o r negative simply tests whether the sign
bit of the Remainder register is a 0 or 1. The surprising requirement of this
algorithm is that it takes 11 + 1 steps to get the proper quotient and
remainder.

This algorithm and hardwa re ca n be refined to be faster and cheaper. The
speedup comes from shifting the operands and quotient at the sa me time as the
subtract. This refinem ent halves the width of the adder and registers by noticing
where there a re unused portions of registers and adders. Figure 3.1 3 shows the
revised ha rdwa re.

Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0000 0111

1 : Rem _ Rem - Diy 0000 0010 0000 @1100111

1 2b: Rem < a ~ +Diy. sll Q. QO '" a 0000 0010 0000 0000 0111

3: Shift Diy right 0000 0001 0000 0000 0111

1 : Rem _ Rem - Diy 0000 0001 0000 ~11 0111

2 2b: Rem < a ~ +Diy. sll Q. QO _ a 0000 0001 0000 0000 0111

3: Shift Diy right 0000 0000 1000 0000 0111

1 : Rem _ Rem - Diy 0000 0000 1000 ~111111

3 2b: Rem < a ~ +Diy. sll Q. QO _ a 0000 0000 1000 0000 0111

3: Shift Diy right 0000 0000 0100 0000 0111

1 : Rem _ Rem - Diy 0000 0000 0100 (9:>00 0011

4 2a: Rem;:>:O ~ sIlQ . QO _l 0001 0000 0100 0000 0011

3: Shift Diy right 0001 0000 0010 0000 0011

1 : Rem _ Rem - Diy 0001 0000 0010 @::loa 0001

5 2a: Rem;:>:O ~ sIlQ . QO _l 0011 0000 0010 0000 0001

3: Shift Diy right 0011 0000 0001 0000 0001

FIGURE 3.12 DIvision example using the algorithm In Figure 3.11. The bit examined to deter-
mine the next step is circled in color.
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Divisor

32 bits

"" 32-b;' ALU-:;z-
• •

Rom inder
Shift right Controi........

Shift left
Write test /

64 bits

..
FIGURE 3.13 An Improved version of the division hardware. The DJVlsor re81ster, ALU, and
Quotient register are all 32 bits wide, with only the R£mainder register left at 64 bits. Compared to
Figure 3.10, the ALU and Divisor registers are halved and the remainder is shifted left. This version also
combines the Quotient register with the right half of the R£mainder register.

Signed Division

So far we have ignored signed numbers in division. The simplest solution is to
remember the signs of the divisor and dividend and then negate the quotient if the
signs disagree.

Elaboration: The one complication of signed division is that we must also set the
sign of the remainder. Remember that the following equation must always hold:

Dividend = Quotient x Divisor + Remainder

To understand how to set the sign of the remainder, lers look at the example of
dividing all the combinations of ±7ten by ±2teo. The first case is easy:

+7 ~ +2: Quotient = +3, Remainder = +1

Checking the results:

7=3x2+(+1)=6+1

If we change the sign of the dividend, the quotient must change as well :

-7 ~ +2: Quotient =-3

Rewriting our basic formula to calculate the remainder :

Remainder = (Dividend - Quotient x Divisor) = - 7 - (- 3 x +2) = - 7- (- 6) = - 1

So,

-7 ~ +2: Quotient = -3, Remainder =-1

Checking the results again :

-7 = -3 x 2 + (-1) = -6 - 1
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The reason the answer isn 't a quotient of - 4 and a remainder of +1 , wh ich would
also fit this formula, is t hat the absolute va lue of the quotient would then change
depending on the sign of the dividend and the divisorl Clearly if

--(x ~ y);;t (-x) ~ y

programming would be an even greater challenge . Thi s anomalous behavior is avoided
by following the rule that the dividend and rema inder must have the same signs, no
matter what the signs of the divisor and quotient .

We ca lculate t he other combinations by following the same rule:

+ 7 ~ -2: Quotient = -3, Remainder = +1
-7 ~ -2 : Quotient = +3, Remainder =-1

Thus the correctly signed division algorithm negates the quotient if the signs of the
operands are opposite and makes the sign of the nonzero remainder match the dividend.

Faster Division

We used 32 adders to speed up multiply, but we cannot do the sa me trick for
divide. The reason is that we need to know the sign of the difference befo re we ca n
perform the next step of the algorithm, whereas with multiply we could calculate
the 32 partial products immediately.

There are techniques to produce mo re than one bit of the quotient per bit. The
SRT divis ion technique tries to guess several quotient bits per step, using a table
lookup based on the upper bits of the dividend and remainder. It relies on subse
quent steps to correct wrong guesses. A typica l va lue today is 4 bits. The key is
guessing the value to subtract. With binary division there is only a single choice.
These algorithms use 6 bits from the remainder and 4 bits from diviso r to index a
table that determines the guess fo r each step.

The accuracy of this fast method depends on having proper values in the
lookup table. The fa llacy on page 222 in Section 3.8 shows what ca n happen if the
table is incorrect.

Divide in MIPS

You may have already observed that the same sequential hardwa re ca n be used for
both multiply and divide in Figures 3.7 and 3. 13. The only requirement is a 64-bit
register that ca n shift left or right and a 32-bit ALU that add s or subtracts. Hence,
MIPS uses the 32-bit Hi and 32-bit 1..0 registers for both multiply and divide. As
we might expect from the algorithm above, Hi contains the remainder, and Lo
contains the quotient after the divide instruction completes.

To handle both signed integers and unsigned integers, MIPS has two
instructions: divide (di v) and divide l/nsigned (di vu ). The MIPS assembler
allows divide instructions to specify three registers, generating the mfl 0 o r mfh i
instructions to place the desired result into a general-purpose register.
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Summary

The common hardware support for multiply and divide allows MIPS to provide a
single pair of 32-bit registers that a re used both for multiply and divide. Figure 3. 14
summarizes the additions to the MIPS architecture for the last two sections.

MIPS divide instructions ignore overflow, so software must determine if the quo
tient is too large. In addition to overflow, division ca n also result in an improper
calculation: division by o. Some computers distinguish these two anomalous
events. MIPS software must check the diviso r to discover division by 0 as well as
overflow.

Elaboration: An even faster algorithm does not immediately add the divisor back if
the remainder is negative . It simply adds the dividend to the shifted remainder in the
following step since (r + d) x 2 - d = r x 2 + d x 2 - d = r x 2 + d. This nonres toring divi
s ion algorithm, which takes 1 clock per step, is explored further in Exercise 3 .29; the
algorithm here is called res toring division.
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Hardware
Software
Interface

Roating Point

Speed gets you nowhere if
yo u're headed the wrong
way.

American proverb

Going beyond signed and unsigned integers, programming languages support
numbers with fractions, which are ca lled reals in mathematics. Here are some
examples of reaIs:

3.141 59265 ...It'n (rr)

2.7 1828...ten (e)

O.OOOOOOOO l ten o r 1.0ten X 10-9 (seconds in a nanosecond)

3, I55,760,OOOten or 3.1 5576ten X 109 (seconds in a typical century)

Notice that in the last case, the number didn't represent a small fraction, but it
was bigger than we could represent with a 32-bit signed integer. The alternative
notation fo r the last two numbers is called scientific nota tion , which has a single
digit to the left of the decimal point. A number in scientific notation that ha s no
leading Os is called a normalized number, which is the usual way to write it. For
example, 1.0ten X 10-9 is in normalized scientific notation, but O.l ten X 10--8 and
1O.0ten X 10-10 are not.

scientific notation Anotation
that renders numbers with a sin·
gle digit to the left of the deci
mal point.

normalized A number in
floating-point notation that has
no leading Os.



MIPS assembly language

Category Instruction Example Meaning Comments

.dd ,dd $sl, $s2. $s3 $ 51 _ $ s2 + $ 53 Three operands; overflow detected

subtract ,ob $sl, $s2. $s3 $sl_ $ s2_ $ s3 Three operands; overflow detected

add immediate addi $sl, $s2.100 $sl_ $ s2 + 100 + constant; overflow detected

add unsigned addu $sl. $s2. $s3 $51_ $ sl + $SJ Three operands; overflow undetected

subtract unsigned subu $sl. $s2. $s3 $sl_ $ sl_ $ sJ Three operands; overflow undetected

add immediate unsigned addiu $sl, $s2.100 $sl_ $ s2 + 100 + constant; overflow undetected

move from coprocessor mf cO $sl. $epc $sl ,- $epc Copy Exception PC + special regs

Arithmetic
register
multiply mult $s2. $s3 Hi, La" $sl x ' 53 64-bit signed product in Hi, La

multiply unsigned multu $s2. $s3 Hi, La" $ 52 x $ 53 64-bit unsigned product in Hi, Lo

divide di v $s2. $s3 La" $Sl / ) 53, La _ quotient, Hi _ remainder
Hi" $ 52 mod $ s3

divide unsigned di vu $s2. $s3 La,, $ s~ n s::. Unsigned quotient and remainder
Hi" $ 52 mod $ s3

move from Hi mfhi Sd $sl"Hi Used to get copy of Hi

move from Lo mfl 0 Sd ' sl"Lo Used to get copy of Lo

load word ,. $ sl.100{ $s2 ) Sd Memory l$ s2 + 100J Word from memory to register

store word '" $ sl.100{ $s2 ) Memory( $s2 + 100) Sd Word from register to memory

load half unsigned 1ho $ sl.100{ $s2 ) $ 51 _ Memory($ 5 2 + 1001 Halfword memory to register0<>,.
store half ,h $ sl.100{ $s2 ) Memory( $ 52 + 100) _ $ 51 Halfword register to memory

transfer
load byte unsigned 1bo $ sl.100{ $s2 ) $ 51 _ Memory($ 5 2 + 1001 Byte from memory to register

store byte ,b $ sl.100{ $s2 ) Memory( $ 5 2 + 100) _ $ 51 Byte from register to memory

load upper immediate 1 u i $ sl.100 Sd 100 • 216 Loads constant in upper 16 bits

'0' ,od $s1. $s2. $s3 Sd S,' , S,3 Three reg. operands; bit-by-bit AND

" " $s1. $s2. $s3 Sd S,' I S,3 Three reg. operands; bit-by-bit OR

0" 0" $ sl, $s2. $s3 Sd - ( $ 5 2 1$ 53 ) Three reg. opera nds; bit-by-bit NOR

Logical and immediate andi $sl. $s2.100 Sd S,' , 100 Bit-by-bit AND with constant

or immediate on $sl. $s2.100 Sd S,' I 100 Bit-by-bit OR with constant

shift left logical ," $s1. $s2.10 Sd - S,' « 10 Shift left by constant

shift right logical ,,1 $sl. $s2.10 Sd S,' » 10 Shift right by constant

branch on equal beq $sl, $s2.25 if( $ S~ __ $ ~l)goto Equal test ; PC-relative branch
PC + 4 + 100

branch on not equal boe $sl, $s2.25 if( $sl !_ $s2)goto Not equal test ; PC-relative
PC + 4 + 100

set on less than ,It $sl. $s2. $s3 if( $ s.2 < $ s_J ) $ 51 '- 1 ; Compare less than;
Condi- else $ 51 ,, 0 two's complement
tional

set less than immediate slti $sl, $s2.100 if( $ s." <100) $ sl_1; Compare < constant;
branch else $ 51=0 two's complement

set less than unsigned 5ltu $sl. $s2. $s3 if( $s2 < $ s3) $51_1; Compare less than; natural numbers
else $ 51=0

set less than immediate 5It i u $sl, $s2.100 if( $ \Z<1OO) $ sl_1; Compare < constant; natural numbers
unsigned else $ 51 ,, 0

Uncondi- jump J 2500 go to 1()(X)Q Jump to target address

tional jump register F Sco go to $ ra For switch, procedure return
Ijump jump and link j a 1 2500 $ r a_PC + 4; goto10000 For procedure call

FIGURE 3.14 MIPS architecture revealed thus far. The memory and registers of the MIPS architecture are not included for space reasons,
but this section added the hi and 10 registers to support multiply and divide. Color indicates the portions revealed since Figure 3.4 on page 175. MIPS
machine language is listed in the MIPS summary reference card at the front of this book.

(page 190)
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Just as we ca n show decimal numbers in scientific notation , we ca n also show
binary numbers in scientific notation:

I.Otwoxr1

To keep a binary number in norm alized form, we need a base that we ca n in crease
or decrease by exactly the number of bits the number must be shifted to have one
nonzero digit to the left of the decimal point. Only a base of 2 fulfill s our need.
Since the base is not 10, we also need a new name for decimal point; binary point
will do fine.

Computer arithmetic th at supports such numbers is called floating point
because it represents numbers in which the binary point is not fi xed, as it is for
integers. The programming language C uses the name float for such numbers. Just
as in scientific notation , numbers are represented as a single nonzero digit to the
left of the binary point. In binary, the form is

l .xxxxxxxxx\WOX 2YYYY

(Although the computer represents the exponent in base 2 as well as the rest of the
number, to simplify the notation we show the exponent in decimal.)

A standard scientific notation fo r rea Is in normalized form offers three advan
tages. It simplifies exchange of data that includes floating-point numbers; it sim
plifies the floating-point arithmetic algorithms to know that numbers will always
be in this fo rm; and it increases the accuracy of the numbers that ca n be sto red in
a word , sin ce the unnecessa ry leading Os are replaced by rea l digits to the right of
the binary point.

Roating-Point Representation

A designer of a floa ting-point representation must find a comp romise between
the size of the fraction and the size of the exponent because a fi xed word size
means you must take a bit from one to add a bit to the other. This trade-off is
between precision and range: Increasing the size of the fraction enhances the pre
cision of the fraction , while in creasing the size of the exponent increases the range
of numbers that ca n be represented. As our design guideline from Chapter 2
remind s us, good design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. The repre
sentation of a MIPS floating- point number is shown below, where s is the sign of
the floating- point number ( I mea ning negative), exponent is the va lue of the 8-bit
exponent field (including the sign of the exponent), and fraction is the 23-bit
number. This representation is called sign and magnitude, since the sign has a sep
arate bit from the rest of the number.
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floating point Computer
arithmetic that represents num
bers in which the binary point is
not fIxed.

fraction The value, generally
between 0 and 1, placed in the
fraction fIeld.

exponent In the numerical
representation system of float
ing-point arithmetic, the value
that is placed in the exponent
field.
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31 30 129 128 127 126 125 124 123 22 121120 119118117 116 115 114113112 111 110 191817161514131211I0
, exponent f raction

1 bit 8 bits 23 bits

In general, floa ting-point numbers are generally of the fo rm

overflow (floating-point) A
situation in which a positive
exponent becomes too large to
fit in the exponent field.

underflow (floating-point) A
situation in which a negative
exponent becomes too large to
fit in the exponent field.

double precision A floating
point value represented in two
32-bit words.

single precision A floating
point value represented in a
single 32-bit word.

F involves the value in the fraction field and E involves the value in the exponent
field; the exact relationship to these fields will be spelled out soon. (We will shortly
see that MIPS does something slightly more sophisticated.)

These chosen sizes of exponent and fraction give MIPS computer arithmetic an
extraordinary range. Fractions almost as small as 2.0ten X 10- 38 and numbers
almost as large as 2.0ten X 1038 can be represented in a computer. Alas, extraordi
nary differs from infinite, so it is still possible for numbers to be too large. Thus,
overflow interrupts ca n occur in floating-point arithmetic as well as in integer
arithmetic. Notice that overflow here mea ns that the exponent is too large to be
represented in the exponent fi eld .

Floating point offers a new kind of exceptional event as well. Just as program
mers will wa nt to kn ow when they have calculated a number th at is too large to be
represented , they will want to know if the nonzero fraction they are calculating
has become so small that it cannot be represented; either event could result in a
program giving inco rrect answers. To distinguish it from overflow, people call this
event underflow. This situation occurs when the nega tive exponent is too large to
fit in the exponent field.

One way to reduce chances of underflow o r overflow is to offer another fo rmat
that has a larger exponent. In C this number is called double, and operations on
doubles are ca lled double precision floating-point arithmetic; single precision
floating point is the name of the ea rlier format.

The representation of a double precision floa ting-point number takes two
MIPS words, as shown below, where s is still the sign of the number, exponent is
the va lue of the II -bit exponent fi eld , and fraction is the 52-bit number in the
fraction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

, exponent fraction

1 bit 11 bits

rraction(continued)

32 bits

20 bits
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MIPS double precision allows numbers alm ost as small as 2.0ten X 10- 308 and
almost as large as 2.0'en X 10

308
. Although double precision does increase the

expo nent range, its primary adva ntage is its grea ter precision because of the larger
significa nd.

These formats go beyond MIPS. They are pa rt of the IEEE 754 floating-po int
standard, found in virtually every computer invented since 1980. This standard
has greatly improved both the ease of porting floating-point p rograms and the
quality of computer arithmet ic.

To pack even more bits into the significa nd, IEEE 754 makes the lea ding 1bit of
normalized binary numbers implicit. Hence, the number is actually 24 bits long in
single precision (implied 1 and a 23- bit fraction), and 53 bits long in double preci
sion ( 1 + 52) . To be precise, we use the term significand to represent the 24- or 53
bit numberthat is 1plus the fraction, and fmction when we mea n the 23- o r 52-bit
number. Since 0 has no leading 1, it is given the reserved exponent va lue 0 so that
the hardwa re won't attach a lea ding 1 to it.

Thus 00 ... 001\\oU represents 0; the representation of the rest of the numbers
uses the fo rm from befo re with the hidden 1 added:

(_ I )S X ( 1 + Fraction) X 2E

where the bits of the fraction represent a number between 0 and 1 and E specifies
the value in the exponent field, to be given in detail shortly. If we number the bits
of the fraction from left to right s1, s2, s3, ... , then the va lue is

Figure 3.1 5 shows the encodings of IEEE 754 floating-point numbers. Other
features of IEEE 754 are special symbols to represent unusual events. For example,
instea d of interrupting on a divide by 0, softwa re can set the result to a bit pattern
representing + 00 or _00; the largest exponent is reserved for these special symbols.
When the programmer prints the results, the p rogram will print an infinity sym 
bol. (For the mathem atically trained, the purpose of infinity is to form topological
closure of the reals.)

IEEE 754 even has a symbol for the result of invalid operations, such as % or
subtracting infinity from infinity. This symbol is NaN, for Not a Number. The
purpose of NaNs is to allow programmers to postpone some tests and decisions to
a later time in the program when it is convenient.

The designers of IEEE 754 also wa nted a floating-point representation that
could be easily processed by integer comparisons, especially fo r sorting. This
desire is why the sign is in the most significa nt bit, allowing a quick test of less
than , greater than, or equal to o. (It's a little more complicated than a simple inte
ger sort, since this notation is essentially sign and magnitude rather than two's
complement.)
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Single precision Double precision Object represented

Expone nt Fra ction Expone nt Fraction

0 0 0 0 0

0 nonzero 0 nonzero ± denonnalized number

1- 254 anything 1-2046 anything ± t1oating.point number

255 0 2047 0 ± infinity

255 nonze ro 2047 nonzero NaN (Not a Number)

FIGURE 3.15 IEEE 754 encoding of floatlng·polnt numbers. A separate SIgn bIt determmes the
sign. Denormalized numbers are described in the elaboration on page 217.

Placing the exponent before the significand also simplifies sorting of floating
point numbers using integer comparison instructions, since numbers with bigger
exponents look larger than numbers with smaller exponents, as long as both
exponents have the same sign.

Negative exponents pose a challenge to simplified sorting. If we use two's com 
plement or any other notation in which negative exponents have a I in the most
significa nt bit of the exponent fi eld , a negative exponent wiII look like a big num 
ber. For example, 1.0'mJ Xr l would be represented as

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(Remember that the leading I is implicit in the significand.) The value 1.0,wo X 2+1

would look like the smaller binary number

3 1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The desirable notation must therefore represent the most negative exponent as
00 ... OO'mJ and the most positive as II ... 11"'0;0' This convention is called biased
flotation, with the bias being the number subtracted from the normal, unsigned
representation to determine the rea l value.

IEEE 754 uses a bias of 127 for single precision , so - I is represented by the bit
pattern of the value-I + 127,en'or I26,en = 0 111 11 1Otwo' and + I is represented by
I + 127, or I28,en = 1000 OOOO,wo' Biased exponent means that the value repre
sented by a fl oating-point number is really

(_ I )s X (i + Fraction) X 2(Exponent - Bias)

The exponent bias fo r double precision is 1023 .
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Thus IEEE 754 notation ca n be processed by integer compares to accelerate
sorting of floating-point numbers. Let's show the representation.

E

Floating-Point Representation

Show the IEEE 754 binary rep resentation of the number -0.75ten in single
EXAMPLand double precision.

The number -0.75ten is also
ANSWER

-3/4ten or -3/22
ten

It is also represented by the binary fraction

- lltwo/22ten or -0. 11 two

In scientific notation, the va lue is

0-0.1 Itwo X 2

and in normalized scientific notation , it is

- 1.1 1\\oU Xr'

The general representation for a single precision number is

(_ I)s X ( I + Fraction) X iExponent - 127)

Wh en we subtract the bias 127 from the exponent of - 1.l two Xr', the result

"
(- I)' X ( I + .1000 0000 0000 0000 0000 000t\» X i 126 - 127)

The single precision binary representation of -0.75ten is then

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 bit 8 bits 23 bits
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The double precision representation is

(_1)1x (1+ .1000 ()()()() 0<XXl ooסס ()()()() <XX>O ooסס 0<XXl ooסס ()()()() <XXX> ooסס O<XX>two) x i lon_ lOll)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 bit 11 bits 20 bits

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000 1

32 bits

Now let's try going the other direction.

Converting Binary to Decimal Floating Point

XAMPLE
What decimal number is represented by this single precision fl oat?

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ANSWER
The sign bit is I, the exponent fi eld contains 129, and the fraction field con -
tains 1X r 2 = 1/4, or 0.25. Using the basic equation,

(_ I)s X ( I + Fraction) X iExponent - Bias) = (_ 1) 1 X (i + 0.25) X 2(129-127)

=-IX1.2SX22

=-1.2Sx4
= -5.0

E

In the next sections we will give the algorithms for floa ting-point addition and
multiplication. At their core, they use the co rresponding integer operations on the
significands, but extra bookkeeping is necessary to handle the exponents and nor
malize the result. We first give an intuitive derivation of the algorithms in decimal,
and then give a more detailed, binary version in the figures.
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Elaboration: In an attempt to increase range without removing bits from the signifi
cand, some computers before the IEEE 754 standard used a base other than 2. For
example, the IBM 360 and 370 mainframe computers use base 16. Since changing the
IBM exponent by one means shifting the significand by 4 bits , "normalized" base 16
numbers can have up to 3 leading bits of Os! Hence , hexadecimal digits mean that up
to 3 bits must be dropped from the s ignificand, which leads to surpris ing problems in
the accuracy of floating-point arithmetic, as noted in Section .

Roating·Point Addition

Let's add numbers in scientific notation by hand to illustrate the problem s in
floating-point addition: 9.999ten X WI + 1.61Oten X 10- 1. Assume that we can store
only four decimal digits of the significa nd and two decimal digits of the exponent.

Step 1. To be able to add these numbers properly, we must align the decimal
point of the number that has the smaller exponent. Hence, we need a fo rm
of the smaller number, 1.6lOten X 10- 1, th at matches the la rger exponent.
We obta in this by observing that there are multiple representations of an
unnormalized floating-point number in scientific notation:

1.6 1Oten X 10- 1 = 0.1 61Oten X 10° = 0.0 16 10ten X WI

The number on the right is the version we desire, since its exponent
matches the exponent of the larger number, 9.999ten X WI. Thus the first
step shifts the significa nd of the smaller number to the right until its co r
rected exponent matches that of the larger number. But we ca n represent
only four decimal digits so, aft er shifting, the number is really:

I0.0 16ten X 10

Step 2. Next comes the addition of the significa nds:

9.999ten
+ 0.0 16ten

1O. 0 15ten

The sum is 10.0 15ten X WI.

Step 3. This sum is not in normalized scientific notation , so we need to adjust it:

I 210.0 15ten X 10 = 1.00 15ten X 10

Thus, aft er the addition we may have to shift the sum to put it into nor
malized fo rm , adjusting the exponent appropriately. This exa mple shows
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shifting to the right, but if one number were positive and the other were
negative, it would be possible for the sum to have many leading Os, requir
ing left shifts. Whenever the exponent is increased or decreased, we must
check for overflow or underflow-that is, we must make sure that the ex
ponent still fit s in its field.

Step 4. Since we assumed that the significa nd ca n be only four digits long (exclud
ing the sign), we must round the number. In our gra mmar school algo
rithm , the rules tnmca te the number if the digit to the right of the desired
point is between 0 and 4 and add I to the digit if the number to the right
is between 5 and 9. The number

21.00 15,<'n X 10

is rounded to four digits in the significand to

21.002ten X 10

sin ce the fourth digit to the right of the decimal point was between Sand
9. Notice that ifwe have bad luck on rounding, such as adding I to a string
of 9s, the sum may no longer be normalized and we would need to per
form step 3 again.

Figure 3.1 6 shows the algorithm for binary floating-point addition that follows
this decimal exa mple. Steps I and 2 are similar to the exa mple just
discussed: adjust the significand of the number with the smaller exponent and
then add the two significands. Step 3 normalizes the results, forcing a check for
overflow or underflow. The test for overflow and underflow in step 3 depends on
the precision of the opera nds. Recall that the pattern of all zero bits in the expo
nent is reserved and used for the floating-point representation of zero. Also, the
pattern of all one bits in the exponent is reserved for indica ting values and situa 
tions outside the scope of normal floating-point numbers (see the Elaboration on
page 2 17). Thus, for single precision, the ma ximum exponent is 127, and the min 
imum exponent is - 126. The limits for double precision are 1023 and - 1022.

Decimal Floating-Point Addition

Try adding the numbers O.Sten and -0.437Sten in binary using the algorithm
in Figure 3.16.
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Let's first look at the binary version of the two numbers in normalized scien
tific notation, assuming that we keep 4 bits of precision: ANSWER
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-0.4375'en

I12ten
0. 1two

-7/16'en
-0.0 1I I two =

1/2\en
o

O. I,,,-:? X 2

-7/2 'en
o-0.0 11I two X2

= 1.000twoxr1

=-1.1 lOtwo X r 2

Now we follow the algorithm:

Step I. The significand of the number with the lesser exponent (- 1.ll two X
r 2

) is shifted right until its exponent matches the larger number:

- 1.11O,wo X r 2 = -O. lll two X r 1

Step 2. Add the significands:

1.000two X r 1 + (-O.llltwoX r 1) = O.OO I,wo X r 1

Step 3. Normalize the sum, checking for overflow or underflow:

0.00 I,wo X r 1 = 0.0 I0two X r 2 = 0. 1OO,wo X r 3

= 1.000two X 2--4

Sin ce 127;::': - 4 ;::': - 126, there is no overflow or underflow. (The biased
exponent would be -4 + 127, or 123, which is between I and 254 , the
smallest and largest unreserved biased exponents.)

Step 4. Round the sum:

-41.000,wo X 2

The sum already fits exactly in 4 bits, so there is no change to the bits
due to rounding.

This sum is then

-41.000,wo X 2 = O.ooOIOOO,wo = O.Ooo l'mJ

1/2\en = 1/16ten = 0.0625'en

This sum is what we would expect from adding O.5,en to -0.4375'eoo

Many computers dedicate hardware to run floa ting-point operations as fast as
possible. Figure 3.17 sketches the basic orga nization of hardwa re for floating-point
addition.
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( Start

1. Compare the exponents of the two numbers.

Shift the smaller number to the right until its

exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

Overllow or Yo,

underflow?

No Exception

4. Round the significand to the appropriate

number of bits

No
Still normalized?

Yo,

FIGURE 3.16 floating-poInt addition. The normal p.1th is to execute steps 3 and 4 once, but if
rounding QlU'ie& the sum to be unnormalized , we must repeat step 3.
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lIer

ight

,

•

Sign Exponent Fraction Sign Exponent Fraction

""small ALU/
Compare

exponent

Exponent
difference

0 1 . ( 0 1 0 1
I

/ "- Shift sma
Cont~I Shift right number r

'-

"'"
V

/ Add
BigALU

0 10 1

+ •Increment or Shift left or right
decrement Normaliz

+
Rounding hardware Round

ISign IExponent I Fraction

FtGURE 3.17 Block diagra m of a n a rithme tic unit de dicat e d t o fl oating-poInt a ddition. The steps of Figure 3.16 cor·
respond to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to
determine which is larger and by how much. This difference controls the three multiplexors; from left to right, they select the larger
exponem, the significand of the smaller mUlIber, and the significand of the larger mUlIber. The smaller significand is shifted right,
and then the significands are added together using the big ALU. The normalization step then shifts the sum left or right and incre·
ments or decrements the exponent. Rounding then creates the final result, which may require normalizing again to proouce the final
result.
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Roating·Point Multiplication

Now that we have expla ined floating-point addition, let's try floating-point multi 
plication. We start by multiplying decimal numbers in scientific notation by
hand: l.llOten X 1010 X9.200ten X 10-5. Assume that we can store only four digits
of the significand and two digits of the exponent.

Step I. Unlike addition, we calculate the exponent of the product by simply add
ing the exponents of the opera nd s together:

New exponent = 10 + (-5) = 5

Let's do this with the biased exponents as well to make sure we obtain the
same result: 10+ 127= 137,and -5+ 127= 122, so

New exponent = 137 + 122 = 259

This result is too large for the 8-bit exponent field, so something is amiss!
The problem is with the bias because we are adding the biases as well as
the exponents:

New exponent = (10+ 127) + (-5 +127)= (5 +2x 127) =259

Accordingly, to get the correct biased slim when we add biased nllmbers, we
mllst 5lIbtract the bias from the slim:

New exponent = 137 + 122- 127= 259- 127 = 132 = (5 + 127)

and 5 is indeed the exponent we calculated initially.

Step 2. Next comes the multiplication of the significa nds:
1.1 IOten

x 9.200ten
0000

0000
2220

9990

102 12000ten

There are three digits to the right of the decimal for each opera nd, so the
decimal point is placed six digits from the right in the product significand:

10.212000ten

Assuming that we ca n keep only three digits to the right of the decimal
point, the product is 10.212 X 105.
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Step 3. This product is unnormalized, so we need to no rmalize it:

5 61O.2 12ten X 10 = 1.02 12ten X 10

Thus, after the multiplica tion , the product ca n be shifted right one digit to
put it in normalized form , adding 1 to the exponent. At this point, we ca n
check for overflow and underflow. Underflow may occur if both operands
are small- that is, if both have large negative exponents.

Step 4. We assumed that the significa nd is only four digits long (excluding the
sign), so we must round the number. The number

61.02 12ten X 10

is rounded to four digits in the significa nd to

61.02 1ten X 10

Step 5. The sign of the product depends on the signs of the original operands. If
they are both the same, the sign is positive; othenvise it 's negative. Hence
the product is

+1.02 1ten X 106

The sign of the sum in the addition algorithm was determined by addition
of the significa nds, but in multiplication the sign of the p roduct is deter
mined by the signs of the operands.

Once aga in , as Figure 3.1 8 shows, multiplication of binary floating- point num 
bers is quite similar to the steps we have just completed. We start with ca lculating
the new exponent of the product by adding the biased exponents, being sure to
subtract one bias to get the proper result. Next is multiplica tion of significands,
followed by an optional normaliza tion step. The size of the exponent is checked
for overflow or underflow, and then the product is rounded. If rounding leads to
further no rmalization , we once aga in check for exponent size. Finally, set the sign
bit to 1 if the signs of the operands were different (nega tive p roduct) or to 0 if they
were the same (positive product).

Decimal Floating-Point Multiplication

Let's try multiplying the numbers O.Sten and -0.437Sten, using the steps in
Figure 3.18. EXAMPLE
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In binary, the task is multiplying l.oo0two X r 1 by - 1.11 0two X 2- 2.

Step 1. Adding the exponents without bias:

- 1+ (-2) =-3

or, using the biased representation:

(- 1 + 127) + (-2+ 127) - 127 = (- 1 - 2)+( 127 + 127 - 127)
=-3+127=124

Step 2. Multiplying the significands:
1.000two

x 1.11Otwo

0000
1000

1000
1000

111 000°t\o,'o

The product is 1.11Ooo0 two X r 3
, but we need to keep it to 4 bits, so

it is 1.11Otwo X r 3
•

Step 3. Now we check the product to make sure it is normalized, and then
check the exponent for overflow or underflow. The product is already
normalized and , since 127;::>: -3;::0: - 126, there is no overflow or un
derflow. ( Using the biased representation, 254;::': 124 ;::0: 1, so the expo
nent fit s.)

Step 4. Rounding the product makes no change:

1.11O,wo X r 3

Step 5. Since the signs of the original opera nds differ, make the sign of the
product nega tive. Hence the product is

- 1.11O,wo X r 3

Converting to decimal to check our results:

- 1.11O,wo X r 3 = -O.OO lllOtwo = -O.OO III,wo

= -7/2\en = -7/32ten = -0.2 1875,en

The product of 0.5ten and -0.4375ten is indeed -0.2 1875ten.



( Start

1. Add the biased exponents of the two

numbers, subtracting the bias from the sum

to get the new biased exponent

2. Multiply the significands

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

Overllow or Ye,

underllow?

No Exception

4. Round the significand to the appropriate

number of bits

No
Still normalized?

Ye,

5. Set the sign of the product to positive if the

signs of the original operands are the same;

if they differ make the sign negative

( Done )

FIGURE 3.18 floating-poInt multiplication. The normal path IS to executesteps 3 and 4 once, but If

rounding causes the sum to be unnormalized, we must repeat step 3.

(page 205)
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Roating·Point Instructions in MIPS

MIPS supports the IEEE 754 single precision and double precision formats with
these instructions:

• Floa ting-point addition, single (add. s) and addition, double (add .d)

• Floa ting-point subtraction, single (sub . s) and subtraction, double (sub . d)

• Floa ting-point ml/ltiplication, single (mul . s) and ml/ltiplication, double
(mul . d)

• Floa ting-point division, single (di v. s) and division, dOl/ble (di v. d)

• Floa ting-point comparison, single (c . x . s) and comparison, double (e . x . d),
where x may be equal (eq), not equal (neq), less than (1 t ), less than or eql/al
(1 e), greater than (g t), or greater than or eql/al (ge)

• Floa ting-point branch, true (be I t ) and branch, false (bc I f)

Floa ting-point comparison sets a bit to true o r false, depending on the compari
son condition, and a floating-point branch then decides whether or not to branch,
depending on the condition.

The MIPS designers decided to add sepa rate floating-point registers-called
HO, HI, $f2, ... - used either fo r single precision o r double precision. Hence,
they included separate loads and stores for floating-point registers: lwcI and
swcl. The base registers for floating-point data transfers remain integer registers.
The MIPS code to load two single precision numbers from memo ry, add them,
and then store the sum might look like this:

lweI
lweI
add . s
swel

$f4,x( $sp) # Load 32 - bit F.P. number into F4
$f6,y( $sp) # Load 32 - bit F. P . number into F6
$f2, $f4,$f6 # F2 = F4 + F6 single precision
$f2,z( $sp) # Store 32 - bit F. P. number from F2

A double precision register is rea lly an even-odd pair of single precision registers,
using the even register number as its name.

Figure 3.1 9 summarizes the floating-point portion of the MIPS architecture
revea led in this chapter, with the additions to suppo rt floating point shown in
color. Similar to Figure 2.25 on page 103 in Chapter 2, we show the encoding of
these instructions in Figure 3.20.
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MIPS floating-point operands

207

Name Example Comments

32 floating.- Sf0 • Sf I. Sf2. • • • • $f3l MIPS floating.point registers are used in pairs for double predsion numbers.
point registers

230 memory words Memory(O], Accessed only by data transfer instructions. MIPS uses byte addresses, so
Memory(4], ... , sequential word addresses differ by 4. Memory holds data structures, such as
Memory(4294967292) arrays, and spilled registers, such as those saved on procedure calls.

MIPS f loating-point assembly language

Category Instruction Example Meaning Comments

FP add single add.s Sf 2. Sf4. Sf6 Sf2 Sf4 + Sf6 FP add (single precision)

FP subtract single sub.s Sf 2. Sf4. Sf6 Sf2 Sf4 Sf6 FP sub (single predsion)

FP multiply single mul.s Sf 2. Sf4. Sf6 Sf2 - Sf4 x Sf6 FP multiply (single predsion)

FP divide single d i v. s Sf2. Sf4. Sf6 Sf2 Sf4 / Sf6 FP divide (single predsion)
Arithmetic

FP add double add.d Sf 2. Sf4. Sf6 Sf2 Sf4 + Sf6 FP add (double predsion)

FP subtract double sub.d Sf 2. Sf4. Sf6 Sf2 Sf4 Sf6 FP sub (double precision)

FP multiply double mul.d Sf2. Sf4. Sf6 Sf2 Sf4 x Sf6 FP multiply (double precision)

FP divide double div.d Sf 2. Sf4. Sf6 Sf2 - Sf4 / Sf6 FP divide (double precision)

Do... load word copr. 1 1wel Sf I.I00 ($ s2 l Sf! Memory[ $s2 + 100] 32.t>it data to FP register

transfer store word copr. 1 swel Sf I.I00 ($ s2 l Memory( $s2 + 100)- $f} 32.t>it data to memory

branch on FP true belt 25 if (cond __ 1) go to PC + 4 + 100 PC-relative branch if FP condo

branch on FP false bclf 25 if (cond "'''' 0) go to PC + 4 + 100 PC-relative branch if not condo
Condi-
tional FP compare single elLs Sf2.Sf4 if (Sf2 < Sf4) FP compare less than

branch (eq,ne ,lt ,le ,gt ,ge) cond '" 1 ; e lse cond '" 0 single precision

FP compare double c.H.d Sf2.Sf4 if (Sf2 < Sf4) FP compare less than
(eq,ne ,lt ,le ,gt ,ge) cond '" 1 ; e lse cond '" 0 double precision

MIPS floating-point machine language

Name Example Comments

add. s R 17 16 6 4 2 0 add. s Sf2.Sf4.Sf6

sub.s R 17 16 6 4 2 1 su b. s Sf2.Sf4. Sf6

mu 1 . s R 17 16 6 4 2 2 mu 1 . s Sf2.Sf4. Sf6

d i v. s R 17 16 6 4 2 3 d i v. s Sf2.Sf4.Sf6

add. d R 17 17 6 4 2 0 add. d Sf2.Sf4. Sf6

sub.d R 17 17 6 4 2 1 sub.d Sf2.Sf4. Sf6

mul . d R 17 17 6 4 2 2 mul . d Sf2.Sf4.Sf6

di v. d R 17 17 6 4 2 3 d i v. d Sf2.Sf4. Sf6

1wel I 49 20 2 100 lwel Sf2.l00($s4l

swel I 57 20 2 100 swel Sf2.100($s4l

bel t I 17 8 1 25 bel t 25

bel f I 17 8 0 25 bel f 25

c. lt. s R 17 16 4 2 0 60 elLs Sf2.Sf4

c.H.d R 17 17 4 2 0 60 c.1 Ld Sf2.Sf4

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

FIGURE 3.19 MIPS floating-poInt architecture revealed thus far. See Appendix A, Section A.IO, on page A-49, for more detail.
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op(31:26):

28-26 0(000) l{OOl) 2{O10} 3(011) 4(100) 5(101) 6(110) 7(111)

31-29

0(000) Rfmt 81 tz/ger J j ~ 1 b" boe blez bgtz
1(001) ilddi ilddiu slti sIt i u andi on XOrl 1ui
2(010) HE Fl Pt

3(011)

4(100) 1b lh 1w1 1w lbo lho lwr
5(101) ;b ;h ;w1 ;w swr
6(110} lwcO 1wcl

7(111) swcO swcl

op(31:26) =010001 (Flpt), (rt(16:16) = 0 => c = f, rt(16:16) = 1 => c =t), rs(25:21):

23- 21 0(000) l{OOl) 2{O10} 3(011) 4(100) 5(101) 6(110) 7(111)

25-24

D{OO) mf cl del mtcl etel
l{D!) bcl. c

2(10) f - single f - doub l e

3(11)

op(31:26) =010001 (FIPt), (f above: 10000 => f = s, 10001 => f =d), funet(5:0):

2-0 0(000) l{OOl) 2{O10} 3(011) 4(100) 5(101) 6(110) 7(111)

;-3

O{OOO) add .f sub .f ml.ll .f di v.f d bs .f mov .f neg .f
l{DOl)

2{O10)

3{Ol1)

4(100) cvt.s ·f cvt. d. f cvt.w· f
5(101)

6(110) c. f .f C. IHI . ! c. eq. f c.ueq· f c.olt. f c.lJ lt ·f c.ole ·f c.lJle .f

7(111) c. s L f c.ngle· f c.seq·f c.ngl· f c.l t. f c. nge. f c.l e. f c. ngt.f

FIGURE 3.20 MIPS floating-point Instruction enc:odlng. This notation gives the value of a field by row and by column. For example, in the
top portion of the figure 1 w is fOWld in row number 4 (lOOtwo for bits 31- 29 of the instruction) and column nwnber 3 (Oil,,,,, for bits 28--26 of the
instruction), so the corresponding value of the op field (bits 31- 26) is 1000lltwo. Underscore means the field is used elsewhere. For example, FlPt in
row 2 and column I (op = 010001,,,,,) is defined in the bottom part of the figure. Hence sub. f in row 0 and column I of the bottom section means
that the funct field (bits 5-0) of the instruction) is OO<XXlI"", and the op field (bits 31- 26) is OIOOOltwo' Note that the 5-bit rs field, specified in the
middle portion of the figure, determines whether the operation is single precision (f = s so rs = 10000) or double precision (f = d so rs = I<XXlI ) . Sim
ilarly, bit 16 of the instruction determines if the bel . c instruction tests for true (bit 16 = I =>bel. t) orfalst' (bit 16 = 0 =>bel. f ). Instructions
in color are described in Chapters 2 or 3, with til Appendix A covering aU instructions.
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One issue that computer designers face in supporting floating-point arithmetic is
whether to use the same registers used by the integer in structions or to add a spe
cial set for floating point. Because programs no rmally perform integer operations
and floa ting-point operations on different data, separating the registers will only
slightly increase the number of instructions needed to execute a program. The
major impact is to create a separate set of data transfer instructions to move data
between floating- point registers and memory.
The benefit s of separate floating-point registers are having twice as many registers
without using up more bits in the instruction format, having twice the register
bandwidth by having separate integer and floating-point register sets, and being
able to customize registers to floating point ; for exa mple, some computers convert
all sized operands in registers into a single internal format

Compiling a Floating-Point C Program into MIPS Assembly Code

Let's convert a temperanlfe in Fahrenheit to Celsius:

f loa t f2c ( f loa t f ahr)
I

r et ur n «5 . 0/9 . 0l * ( f ah r - 32 . 0» ;
J

Assume that the floating- point argument f ah r is passed in $fl2 and the
result should go in $f O. (Unlike integer registers, floating-point register 0 can
contain a number.) What is the MIPS assembly code?

We assume that the compiler places the three floating- point constants in
memory within easy reach of the global pointer $gpoThe first two instruc
tions load the constants 5.0 and 9.0 into floa ting- point registers:
f 2c :

Hardware
Software
Interface

EXAMPLE

ANSWER
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l weI $f16 . eons t 5($gp) # $f16
l weI $f18 . eons t 9($gp) # $f18

5. 0 (5 . 0 1n memory)
9 . 0 (9 . 0 1n memory)
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They are then divided to get the fraction 5.0/9.0:

div . s H1 6 . Ifl6 . HIB II I fl6 ~ 5 . 0 / 9 . 0

( Many compilers would divide 5.0 by 9.0 at compile time and save the single
constant 5.0/9.0 in memory, thereby avoiding the divide at runtime.) Next we
load the constant 32.0 and then subtract it from fa h r ($ f 12):

lwei $f18, cons t32 ( $gp ) # $f18 = 32 . 0
sub . s $f18, $f12, $f18 # $f18 = fahr - 32 . 0

Finally, we multiply the two intermediate results, placing the product in $fO
as the return result, and then return:

mul . s HO . H1 6 , $fIB It $fO = (5/9l * ( fahr - 32 . 0)
J r $ ra It return

Now let's perform floating-point operations on matrices, code commonly
found in scientific programs.

Compiling F1oating·Point C Procedure with Two-Dimensional
Matrices into MIPS

Most floa ting-point calculations are performed in double precision. Let's per
form matrix multiply of X = X + Y ~ Z. Let's assume X, Y, and Z are all square
matrices with 32 elements in each dimension.

void mm (double x[][] , double y[][] , double z[][] )
I

int 1 , j , k;

f or ( i - 0 ; . ,
- 32 ; 1 - 1 + 111.

f or ( j - 0 ; . ,
- 32 ; J - J + 11J .

f or ( k - 0 ; k ! - 32 ; k - k + 11
x[iHj] - xl i Hj] + y[i Hk] * z[kHj] ;

}

The array starting addresses are parameters, so they are in $aO, $al, and
$a 2. Assume that the integer va riables are in $s 0, $s 1, and $s 2, respectively.
What is the MIPS assembly code for the body of the procedure?
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Note that X[i ] [j] is used in the innermost loop above. Since the loop in 
dex is k, the index does not affect X[i ] [j ], so we ca n avoid load ing and
storing X[i ] [j ] each iteration. Instead, the compiler loads X[i ] [j ] into
a register outside the loop, accumulates the sum of the products of y [ i ] [k]
and z[k] [j] in that same register, and then stores the sum into x[ i] [j]
upon termination of the innermost loop.

We keep the code simpler by using the assembly language pseudoinstruc
tions 1 i (which loads a constant into a register), and 1 . d and 5 . d (which the
assembler turns into a pair of data transfer instructions, 1we 1 or swe 1, to a
pa ir of floating-point registers).

The body of the procedure sta rts with saving the loop termination va lue of
32 in a temporary register and then initializing the three for loop variables:

mm : ...
I i It! . 32 II Itl ~ 32 (row sizelloop end)
I i $sO , 0 II 1 ~ 0 ; initialize 1st for loop

Ll ; I i $s 1, 0 II J ~ 0 ; restart 2nd for loop
L2 ; I i $sZ , 0 II k ~ 0 ; restart 3rd for loop

To calculate the address of x [i ] [j ], we need to know how a 32 X 32, two
dimensional array is stored in memory. As you might expect, its layout is the
sa me as if there were 32 single-d imension arrays, each with 32 elements. So the
first step is to skip over the i "single-dimensional arrays," or rows, to get the
one we wa nt. Thus we multiply the index in the first dimension by the size of
the row, 32. Since 32 is a power of 2, we ca n use a shift instead:

511 HZ , $50, 5 It HZ = i * Z5 (si ze of row of x)

Now we add the second index to select the j th element of the desired row:

addu HZ , HZ, $sl It HZ = i * size(row) + j

To turn this sum into a byte index, we multiply it by the size of a matrix
element in bytes. Since each element is 8 bytes for double precision, we ca n in 
stead shift left by 3:

511 HZ , HZ, 3 It HZ = byte offset of [i][j]

Next we add this sum to the base address of x , giving the address of
x [i ] [j], and then load the double precision number x[ i ] [j] into $f4:

addu HZ , $aO, HZ It HZ = byte address of x[i][j]
l . d $f4 , O($tZ) It $f4 = 8 bytes of x[i][j]

The fo llowing five instructions are virnlally identical to the last fi ve: calcu 
late the address and then load the double precision number z [k] [j ].

ANSWER
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L3 : sl1 $tO , $s2 , 5 It $tO = k * 25 (size of r ow o f z)
addu $tO , $t O, $sl It $tO = k * size( r ow) + j
sl1 $tO , $tO , 3 It $tO = byte off set of [kJ(j]
addu $t O, $a 2 , $t O It $tO = by t e address o f z [k][j]
I . d $f16 . 0(1<0) II $f16 ~ 8 bytes of z[k][j]

Similarly, the next fi ve instructions are like the last five: calculate the ad 
dress and then load the double precision number y[ i] [k] .

sll $t2 , $sO , 5 It $tO = 1 * 25 (size of r ow o f y)
addu $tO , $tO , $s2 It $tO = i * size( r ow) + k
sll $tO , $tO , 3 It $tO = by t e off set of [i J(k]
addu $tO , $al, $t O It $tO = by t e address o f y[iJ(k]
l.d $f18 . 0(1<0) II $f18 ~ 8 bytes of y[i][k]

Now that we have loaded all the data, we are finally rea dy to do some float
ing-point operations! We multiply elements of y and z located in registers
$ flB and H16, and then accumulate the sum in $f4.

mul.d Ifl6 . $f18 . Ifl6 II Ifl6 ~ y[i][k] * z[k][j]
add . d $f4 . $f4 . Ifl6 II f 4 ~ x[i][j] + y[i][k] * z[k][j]

The final block increments the index k and loops back if the index is not
32. If it is 32, and thus the end of the innermost loop, we need to store the sum
accumulated in $f4 into x[ i] [j] .

add i u
boe
5 • d

$s2 , $s2 , 1 It $k k + 1
$s2 , $t1, L3 It i f (k != 32) go to L3
$f4 . 0(1<21 II x[i][j] ~ $f4

Similarly, these fin al four instructions increment the index variable of the
middle and outermost loops, looping back if the index is not 32 and exiting if
the index is 32 .

add i u $sl, $s 1, 1 II I j ~ J + 1
boe $sl, I< 1 . L2 II i f (j != 32)
add i u $sO , $sO , 1 II I i - 1 + 1
boe $sO , I< 1 . L1 II i f ( i != 32)

go t o L2

go to L1

Elaboration: The array layout discussed in the example, ca lled row major order, is
used by C and many other programming languages . Fortran instead uses column major
order, whereby t he array is stored column by column.

Only 16 of the 3 2 MIPS floating-point registers could originally be used for s ingle pre
cision operations: Sf 0, Sf 2, Sf 4 • ... , $f 30. Double prec ision is computed using pa irs
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of these registers. The odd-numbered floating-point registers were used only to load
and store the right half of 64-bit floating-point numbers. MIPS-32 added 1 •d and s. d to
the instruction set. MIP&32 also added "paired single" versions of all floating-point
instructions, where a single instruction results in two parallel floating-point operations
on two 32-bit operands inside 64-bit registers. For example, add. ps Fa, F2, F4 is equiv
alenttoadd.s FO,F2,F4 followedbyadd.s Fl,F3,F5 .

Another reason for separate integers and floating-point registers is that microproces
sors in the 1980s didn't have enough transistors to put the floating-point unit on the
same chip as the integer unit. Hence the floating-point unit, including the floating-point
registers, were optionally available as a second chip. Such optional accelerator chips
are called coprocessors, and explain the acronym for floating-point loads in MIPS:
1weI means load word to coprocessor 1, the floating-point unit. (Coprocessor 0 deals
with virtual memory, described in Chapter 7.) Since the early 1990s, microprocessors
have integrated floating point (and just about everything else) on chip, and hence the
term "coprocessor" joins "accumulator" and "core memory" as quaint terms that date
the speaker.

Elaboration: Although there are many ways to throw hardware at floating-point multi
ply to make it go fast, floating-point division is considerably more challenging to make
fast and accurate . Slow divides in early computers led to removal of divides from many
algorithms, but parallel computers have inspired rediscovery of divide-intensive algo
rithms that work better on these computers. Hence, we may need faster divides .

One technique to leverage a fast multiplier is Newton's iteration, where division is
recast as finding the zero of a function to find the reciprocal 1!x, which is then multi
plied by the other operand . Iteration techniques cannot be rounded properly without cal
culating many extra bits. A Tl chip solves this problem by calculating an extra-precise
reciprocal .

Elaboration: Java embraces IEEE 754 by name in its definition of Java floating-point
data types and operations . Thus, the code in the first example could have well been
generated for a class method that converted Fahrenheit to Celsius.

The second example uses multiple dimensional arrays, which are not explicitly sup
ported in Java. Java allows arrays of arrays, but each array may have its own length,
unlike multiple dimensional arrays in C. Like the examples in Chapter 2, a Java version
of this second example would require a good deal of checking code for array bounds,
including a new length calculation at the end of row. It would also need to check that
the object reference is not null.

Accurate Arithmetic

Unlike integers, which can represent exactly every number between the smallest
and largest number, floating-point numbers are normally approximations for a
number they can't really represent. The reason is that an infinite variety of real
numbers exists between, say, 0 and I, but no more than 253 can be represented
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guard The first of t\\'o extra
bits kept on the right during
intermediate calculations of
floating-point numbers; used to
improve rounding accuracy.

round Method to make the
intermediate floating-point
result fit the floating-point for
mat; the goal is typically to find
the nearest number that can be
represented in the format.

EXAMPLE

ANSWER
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exactly in double precision floating point. The best we ca n do is get the floating
point representation close to the actual number. Thus, IEEE 754 offers several
modes of rounding to let the programmer pick the desired approximation.

Rounding sound s simple enough, but to round accurately requires the hard 
wa re to include extra bits in the calculation. In the preceding examples, we were
vague on the number of bits that an intermediate representation can occupy, but
clea rly if every intermediate result had to be truncated to the exact number of dig
its, there would be no opportunity to round . IEEE 754, therefore, always keeps 2
extra bits on the right during intermediate additions, ca lled guard and round,
respectively. Let's do a decimal exam ple to illustrate the value of these extra digits.

Rounding with Guard Digits

Add 2.56ten x 10° to 2.34ten x 102
, assuming that we have three significa nt

decimal digits. Round to the nea rest decimal number with three significa nt
decimal digits, first with gua rd and round digits, and then without them .

First we must shift the smaller number to the right to align the exponents, so
2.56ten X 10° becomes 0.0256ten X 102

• Since we have guard and roun d digits,
we are able to represent the two least significa nt digits when we align expo
nents. The guard digit holds 5 and the round digit holds 6. The sum is

2.3400ten
+ O.0256ten

2.3656ten

Thus the sum is 2.3656ten X 102
• Sin ce we have two digits to round, we wa nt

values 0 to 49 to round down and 5 1 to 99 to round up, with 50 being the tie
brea ker. Rounding the sum up with three significa nt digits yields 2.37ten X
102•

Doing this without guard and round digits drops two digits fro m the calcu 
lation. The new sum is then

2.34ten
+ O.02ten

2.36ten

The answer is 2.36ten X 102
, off by 1 in the last digit from the sum above.
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Since the worst case for rounding would be when the actual number is halfway
between two floating-point representations, accuracy in floating point is normally
measured in terms of the number of bits in error in the least significant bits of the
significand; the measure is called the number of units in the last place, or ulp. If a
number was off by 2 in the least significant bits, it would be called off by 2 ulps.
Provided there is no overflow, underflow, or invalid operation exceptions, IEEE
754 guarantees that the computer uses the number that is within one-half ulp.

Elaboration: Although the example above really needed just one extra digit, multiply
can need two. A binary product may have one leading 0 bit; hence, the normalizing step
must shift the product 1 bit left. This shifts the guard digit into the least significant bit
of the product, leaving the round bit to help accurately round the product.

There are four rounding modes : always round up (toward +(0), always round down
(toward -(0), truncate, and round to nearest even . The final mode determines what to
do if the number is exactly halfway in between . The Internal Revenue Service always
rounds 0.50 dollars up, possibly to the benefit of the IRS. A more equitable way would
be to round up this case half the time and round down the other half. IEEE 754 says
that if the least significant bit retained in a halfway case would be odd, add one ; if it's
even, truncate. This method always creates a 0 in the least significant bit in the tie
breaking case, giving the rounding mode its name. This mode is the most commonly
used, and the only one that Java supports.

The goal of the extra rounding bits is to allow the computer to get the same results
as if the intermediate results were calculated to infinite precision and then rounded .

To support this goal and rounding to the nearest even, the standard has a third bit
in addition to guard and round; it is set whenever there are nonzero bits to the right of
the round bit. This sticky bit allows the computer to see the difference between
0 .50 ... OOten and 0 .50 ... 01ten when rounding.

The sticky bit may be set, for example, during addition , when the smaller number is
shifted to the right. Suppose we added 5.0iten x 10-1 to 2.34ten x 102 in the example
above . Even with guard and round, we would be adding 0 .0050 to 2.34, with a sum of
2.3450. The sticky bit would be set since there are nonzero bits to the right. Without
the sticky bit to remember whether any ls were shifted off, we would assume the num
ber is equal to 2.345000...00 and round to the nearest even of 2.34 . With the sticky
bit to remember that the number is larger than 2.345000...00 , we round instead to
2.35.

Summary

The Big Picture below reinforces the stored-program concept from Chapter 2; the
meaning of the information cannot be determined just by looking at the bits, for
the same bits can represent a variety of objects. This section shows that computer
arithmetic is finite and thus can disagree with natural arithmetic. For example, the
IEEE 754 standard floating-point representation

(_I )s X ( I +Fraction) X 2 (Exponent - bias)
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units in the las t place
(ulp) The number ofbits in
error in the least significant bits
of the significand between the
actual number and the number
that can be prepresented.

sticky bit A bit used in round
ing in addition to guard and
round that is set whenever there
are nonzero bits to the right of
the round bit.
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is almost always all approximation of the real number. Computer systems must
take care to minimize this gap between computer arithmetic and arithmetic in the
real world , and programmers at times need to be aware of the implications of this
approximation.

C type Java type Data transfers Operations

i nt i nt 1w. '". 1u i add u . add iu . subu. mu l t o di v.
and. and i . oc • Orl. nor. 5 It . slti

unsig ned i nt - 1w. '". 1u i add u . add iu . subu. mult ll. di vu .
and. andi . oc • on . no r . sltu . sIt i u

ch ar - lb. 'b. 1u i add u . add i ll. subll. mult ll. di vu .
and. and i . oc • Orl. nor. 5 lt u. 5 It i u

- cha r 1h • 'h. 1u i add u . add iu . subu , multu . di vu ,
and. and i . oc • Orl , nor. 5 lt u. 5 It i u

fl oa t f1 oa t 1we 1 • swc1 add.s. sub.s. mu l t .s. div . s.
c.eq.s. el L s, c.le.s

double double 1. d. , •d add.d. sub.d. mu l t. d. div . d.
c.eq. d . c.l t. d. c.le. d

Bit patterns have no inherent meaning. They may represent signed inte
gers, unsigned integers, floating-point numbers, instructions, and so Oil.

What is represented depends on the instruction that operates on the bits
in the word.

The major difference between computer numbers and numbers in the
real world is that computer numbers have limited size, hence limited preci
sion; it's possible to calculate a number too big or too small to be repre
sented in a word. Programmers must remember these limits and write
programs accordingly.

In the last chapter we presented the storage classes of the programming language
C (see the Hardwa re Soft wa re Interfa ce section on page 142) . The table above
shows some of the C and lava data types together with the MIPS data transfer
instructions and instructions that operate on those types that appear in Chapters
2 and 3. Note that lava omits unsigned integers.
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Suppose there was a 16-bit IEEE 754 floating-point format with 5 exponent bits.
What would be the likely range of numbers it could represent?

1. 1.0000000000X2° to 1.1111111111 X2
31

,0

2. ± 1.0000 0000 0 X 2-
14

to ± 1.1111 1111 1 X 2
15

, ±O, ±oo, NaN

3. ± 1.0000 0000 00 X 2-
14

to ± 1.11111111 11 X 2
15

, ±O, ±oo, NaN

4. ± 1.0000 0000 00 X 2-
15

to ± 1.1111 1111 11 X 2
14

, ±O, ±oo, NaN

Elaboration: To accommodate comparisons that may include NaNs, the standard
includes ordered and unordered as options for compares . Hence the full MIPS instruc
tion set has many flavors of compares to support NaNs. (Java does not support unor
dered compares.)

In an attempt to squeeze every last bit of precision from a floating-point operation,
the standard allows some numbers to be represented in unnormalized form . Rather
than having a gap between a and the smallest normalized number, IEEE allows denor
malized numbers (also known as denonns or subnonnals). They have the same expo
nent as zero but a nonzero significand . They allow a number to degrade in significance
until it becomes 0, called gradual underllow. For example, the smallest positive single
precision normalized number is

1 .0000 0000 0000 0000 0000 00Otwo X 2- 126

but the smallest single precision denormalized number is

0.0000 0000 0000 0000 0000 00ltwo X 2- 126, or 1 .Otwo x 2- 149

For double precision, the denorm gap goes from 1.0 x 2-1022 to 1.0 X 2-1074.
The possibility of an occasional unnormalized operand has given headaches to floating

point designers who are trying to build fast floating-point units. Hence, many computers
cause an exception if an operand is denormalized, letting software complete the opera
tion . Although software implementations are perfectly valid, their lower performance
has lessened the popularity of denorms in portable floating-point software. Also, if pro
grammers do not expect denorms, their programs may be surprised.

Check
Yourself
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Real Stuff: Floating Point in the IA·32

The IA-32 has regular multiply and divide instructions that operate entirely on
registers, unlike the reliance on Hi and Lo in M IPS. (In fact, later versions of the
MIPS instruction set have added similar instructions.)

The main differences are found in floating-point instructions. The IA-32 float
ing-point architecture is different from all other computers in the world.
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The IA·32 Roating·Point Architecture

The Intel 8087 floating- point coprocessor was announced in 1980. This architec
ture extended the 8086 with about 60 floa ting- point instructions.

Intel p rovided a stack architecture with its floating-point instructions: loads
push numbers onto the stack, operations find operands in the two top elements of
the stacks, and sto res can pop elements off the stack. Intel supplemented this stack
architecture with instructions and addressing modes that allow the architecture to
have some of the benefits of a register-memory model. In addition to finding oper
ands in the top two elements of the stack, one operand ca n be in memory or in one
of the seven registers on-chip below the top of the stack. Thus, a complete stack
instruction set is supplemented by a limited set of register-memory instructions.

This hybrid is still a restricted register-memory model, however, since loads
always move data to the top of the stack while incrementing the top-of-stack
pointer and stores can only m ove the top of stack to memory. Intel uses the nota
tion 51 to indica te the top of stack, and 51 (i) to represent the ith register below
the top of stack.

Another novel feature of this architecture is that the operands are wider in the
register stack than they are stored in memo ry, and all operations are perfo rmed at
this wide internal precision. Unlike the maximum of 64 bits on MIPS, the IA-32
floating-point operands on the stack are 80 bits wide. Numbers are automatically
converted to the intern al 80-bit format on a load and converted back to the appro
priate size on a store. This double extended precision is not supported by program 
ming langll3ges, although it has been useful to programmers of mathematical
softwa re.

Memory data can be 32-bit (single precision) or 64-bit (double precision)
fl oating-point numbers. The register-memory version of these instructions will
then convert the memo ry operand to this Intel 80-bit format before performing
the operation. The data transfer instructions also will automatica lly convert 16
and 32-bit integers to floating point , and vice versa, for integer loads and sto res.

The IA-32 floating-point operations ca n be divided into four majo r classes:

1. Data movement instructions, including load, load constant , and store

2. Arithmetic in structions, including add, subtract, multiply, divide, sqll3re
root , and absolute value

3. Comparison, including instructions to send the result to the integer proces
sor so th at it can branch

4. Transcendental instructions, including sme, cosme, log, and exponen
tiation

Figure 3.21 shows some of the 60 floating-point operations. Note that we get even
more combinations when including the operand modes for these operations. Fig
u re 3.22 shows the many options for floating-point add.
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Data transfer Arithmetic Compare Transcendental

FII)LO mem/ST( i ) F(I)AOO(P) mem/ST(i) F{I)eOM(p) FPATAN
F{I)ST{P) F(I}SUB(R}{P) mem/ST(i) F(I)UeOM(p}{p) F2XMl

mem/ST(i)

FLOP 1 F(I}MUL(P} mem/ST(i) FSTSW AX/mem FeOS

FLOl F(I}OIV(R}{P) mem/ST(i) FPTAN
FLOZ FSQRT FPREM

FABS FSIN
FRNOINT FYL2X

FIGURE 3.21 The floatlng·polnt Instructions of the IA·32. We use the curly brackets 1f to show
optional variations of the basic operations: {Il means there is an integer version of the instruction, {PI
means this variation will pop one operand off the stack after the operation, and lR) means reverse the order
of the operands in this operation. The first column shows the data transfer instructions, which move data to
memory or to one of the registers below the top of the stack. The last three operations in the first column
pU'ih constants on the stack: pi , 1.0, and 0.0. The second column contains the arithmetic operations
described above. Note that the last three operate only on the top of stack. The third column is the compare
instructions. Since there are no special floating-point branch instructions, the result of the compare must
be transferred to the integer CPU via the FSTSW instruction, either into the AX register or into memory,
followed by an SA HF instruction to set the condition codes. The floating-point comparison can then be
tested using integer branch instructions. The final column gives the higher-level floating-poim operations.
Not all combinations suggested by the notation are provided. Hence, F{I )SUB {R ) {P} operations repre
sents these instructions fOlmd in the IA-32: FSUB, FI SUB, FSUBR, FI SUB R, FSUB P, FSUBRP . For the
integer subtract instructions, there is no pop (FI SUBP) or reverse pop (F I SUBRP).

Instruction Operands Comment

FAOO Both operands in stack; result replaces top of stack.

FAOO ST( i ) One source operand is ith register below the top of stack; result
replaces the top of stack.

FAOO ST(il. ST One source operand is the top of stack; result replaces ith register
below the top of stack.

FAOO mem32 One soun:e operand is a 32.tlit location in memory; result replaces the
top of stack.

FAOO mem64 One soun:e operand is a 64.tlit location in memory; result replaces the
top of stack.

FIGURE 3.22 The variations of operands for floating-poInt add In the IA·32.

The floating-point instructions are encoded using the ESC opcade of the 8086
and the postbyte address specifier (see Figure 2.46 on page 143). The memory
operations reserve 2 bits to decide whether the operand is a 32- or 64-bit floating
point or a 16- or 32-bit integer. Those same 2 bits are used in versions that do not
access memory to decide whether the stack should be popped after the operation
and whether the top of stack or a lower register should get the result.
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Thus mathematics may be
defined as the subject in
which we never know what
we are talking abollt, nor
whether what we are saying
is truc.

Bertrand Russell, Recent
Words 011 the Principles of
Mathematics, 1901
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Floating-point perfo rm ance of the IA-32 family has traditionally lagged faf
behind other com puters. Whether it is simply a lack of attention by Intel engineers
o r a fl aw with its architecture is hard to know. We ca n say that many new architec
tures have been announ ced sin ce 1980, and none have fo llowed in Intel's foot
steps. In addition , Intel created a m ore traditional floa ting-po int architecture as
part of SSE2.

The Intel Streaming SIMD Extension 2 (SSE2) Floating
Point Architecture

Chapter 2 notes that in 200 1 Intel added 144 instructions to its architecture,
including double precision floating-point registers and operations. It includes
eight registers th at can be used fo r floating-point operands, giving the compiler a
different target for fl oa ting-point operations than the unique stack architecture.
Compilers ca n choose to use the eight SSE2 registers as floating- point registers
like those found in other computers. AMD expanded the number to 16 as pa rt of
AM D64, which Intel relabled EM64T for its use.

In addition to holding a single precision o r double precision number in a regis
ter, Intel allows multiple floa ting-point operands to be packed into a single 128
bit SS E2 register: four single precision o r two double precision. If the operands
ca n be arranged in memory as 128-bit aligned data, then 128-bit data transfers
ca n load and sto re multiple operands per instruction. This packed floa ting-point
format is supported by arithmetic operations that ca n operate simultaneously on
four singles o r two doubles. This new architecture ca n mo re than double perfor
mance over the stack architecture.

Fallacies and Pitfalls

Arithmetic fallacies and pitfalls generally stem from the difference between the
limited precision of computer arithmetic and the unlimited precision of natural
arithmetic.

Fallacy: Floating-point addition is associative; that is, x + (y + z) = (x + y) + z.

Given the great range of numbers that ca n be represented in floa ting point , p rob 
lems occur when adding two large numbers of opposite signs plus a small number.
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For example, suppose x = - I.Sten X 1038, Y = I.Sten X 1038, and z = 1.0, and that
these are all single precision numbers. Then

(y) 38( 38)x + + z =- I.Sten X 10 + I.Sten X 10 + 1.0
38 ( 38)= - I.Sten X 10 + I.Sten X 10 = 0.0

(x + y) + z = (- I.Sten X 1038 + I.Sten X 1038) + 1.0
= (O.Oten) + 1.0
= 1.0

Therefore, x + (y + z) -:/c- (x + y) + z .
Since floating-point numbers have limited precision and result in approxima

tions of real results, I.Sten X 1038 is so much larger than l.0ten that I.Sten X 1038 +
1.0 is still I.Sten X 1038. That is why the sum of x, y, and z is 0.0 or 1.0, depending
on the o rder of the floating-point additions, and hence floating-point add is not
associative.

Fallacy: just as a left shift instrtlctioll CIlll replace all integer multiply by a power
of2, a right shift is the same as an integer division by a power of2.

Recall that a binary number x, where xi mea ns the ith bit, represents the number

... + ~3X23) + (x2X22) + (x I X21) + (xOX20)

Shifting the bits of x right by n bits would seem to be the sa me as dividing by 2n.
And this is true for unsigned integers. The p roblem is with signed integers. For
exa mple, suppose we wa nt to divide -Sten by 4ten; the quotient should be - Iten.
The two's com plement representation of -Sten is

111111111111111111111111 1111 1011 two

According to this fallacy, shifting right by two should divide by 4ten (22):

00111111111111111111111111111110 two

With a 0 in the sign bit , this result is clea rly wrong. The value created by the shift
right is actually 1,073,741 ,822ten instea d of - Iten.

A solution would be to have an arithmetic right shift (see II In More Depth:
Booth's Algorithm) th at extends the sign bit instead of shifting in Os. A 2-bit arith 
metic shift right of -Sten produces

11111111111111111111111111111110two

The result is -2ten instead of - Iten; close, but no ciga r.
The PowerPC, however, does have a fast shift instruction (sh ift right algebra ic)

that in conjunction with a special add (a dd with ca rry) gives the same answer as
dividing by a power of 2.
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Pitfall: The M IPS instruction add immediate unsigned add i u sign-extends its 16
bit immediate field.

Despite its name, add immediate unsigned (addi u) is used to add constants to
signed integers when we don't ca re about overflow. MIPS has no subtract immedi
ate instruction and negative numbers need sign extension , so the M IPS architects
decided to sign -extend the immediate fi eld.

Fallacy: Only theoretical mathematicians care about j1oating-point accuracy.

Newspaper hea dlines of November 1994 prove this statement is a fallacy (see Fig
ure 3.23) . The following is the in side sto ry behind the hea dlines.

The Pentium uses a standard fl oa ting-point divide algorithm that generates
multiple quotient bits per step, using the most significa nt bits of divisor and divi
dend to guess the next 2 bits of the quotient. The guess is taken from a lookup
table containing -2, - 1, 0, + 1, or +2. The guess is multiplied by the divisor and

FIGURE 3.23 A sampling of newspaper and magazine articles from November 1994,
Including the New Y«k Times. San Jose MfNeury News. San Francisco Chronicle, and
Infoworld. The Pentium floating-point divide bug even made the ~Top 10 List" of the David Lettenmm
Late Show on television. Intel eventuailytook a $300 million write-off to replace the buggy chips.
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subtracted from the remainder to generate a new remainder. Like nonresto ring
division (see Exercise 3.29), if a previous guess gets too large a remainder, the par
tial remainder is adjusted in a subsequent pass.

Evidently there were five elements of the table from the 80486 that Intel
thought could never be accessed , and they optimized the PLA to return 0 instead
of 2 in these situations on the Pentium. Intel was wrong: while the first 11 bits
were always correct, errors would show up occasionally in bits 12 to 52, or the 4th
to 15th decimal digits.

The following is a time line of the Pentium bug mora lity play:

• l illy 1994: Intel discovers the bug in the Pentium. The actual cost to fi x the
bug was several hundred thousa nd dollars. Following normal bug fix proce
dures, it will take months to make the change, reverify, and put the corrected
chip into production. Intel planned to put good chips into production in
January 1995, estimating that 3 to 5 million Pentiums would be produced
with the bug.

• September 1994: A math professor at Lynchburg College in Virginia , Thomas
Nicely, discovers the bug. After calling Intel technical support and getting no
official reaction, he posts his discovery on the Internet. It quickly ga ined a
following, and some pointed out that even small errors become big when
multiplying by big numbers: the fraction of people with a rare disease times
the population of Europe, for example, might lead to the wrong estimate of
the number of sick people.

• November 7, J994: Electronic Engineering Times puts the story on its front
page, which is soon picked up by other newspapers.

• November 22, J994: Intel issues a press release, ca lling it a "glitch." The Pen
tium "can make errors in the ninth digit. ... Even most engineers and
fin ancial an alysts require accuracy only to the fourth or fifth decimal point.
Spreadsheet and word processor users need not worry.... There are maybe
several dozen people that this would affect. So far, we've only hea rd from
one.... [Only] theo retical mathematicia ns (with Pentium computers pur
chased before the summer) should be concerned." What irked many was
that customers were told to describe their application to Intel, and then Intel
would decide whether or not their application merited a new Pentium with 
out the divide bug.

• December 5, J994: Intel claims the flaw happens once in 27,000 yea rs fo r the
typical spreadsheet user. Intel assumes a user does 1000 divides per day and
multiplies the error rate assuming floating- point numbers are random,
which is one in 9 billion, and then gets 9 million days, or 27,000 yea rs.
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Things begin to calm down, despite Intel neglecting to expla in why a typica l
customer would access floating-point numbers randomly.

• December 12, 1994: IBM Research Division disputes Intel's calculation of the
rate of errors (you ca n access this article by visiting www.mkp.comlbooks_
catalog/cod/lillks.htm). IBM claims that common spreadsheet programs,
recalculating for 15 minutes a day, could produce Pentium -related errors as
often as once every 24 days. IBM assumes 5000 divides per second, fo r 15
minutes, yielding 4. 2 million divides per day, and does not assume random
distribution of numbers, in stead calculating the chances as one in 100 mil
lion. As a result, IBM immediately stops shipment of all IBM personal com 
puters based on the Pentium. Things heat up again for Intel.

• December 21, 1994: Intel releases the following, signed by Intel's president,
chief executive offi cer, chief operating offi cer, and chairman of the board:
"We at Intel wish to sincerely apologize for our handling of the recently pub
licized Pentium processor flaw. The Intel In side symbol mea ns that your
computer ha s a microprocessor second to none in quality and performance.
Th ousand s of Intel employees work very hard to ensure that this is true. But
no microprocessor is ever perfect. \Vhat Intel continues to believe is techni
cally an extremely minor problem has taken on a life of its own. Alth ough
Intel firmly stands behind the quality of the current version of the Pentium
processor, we recognize that many users have concerns. \Ve want to resolve
these concerns. Intel will exchange the current version of the Pentium pro
cessor for an updated version, in which this floating-point divide fla w is cor
rected, for any owner who requests it, free of charge anytime during the life
of their computer." Analysts estimate that this reca ll cost Intel $500 million ,
and Intel employees did not get a Christm as bonus that year.

This story brings up a few points for everyone to ponder. How much cheaper
would it have been to fi x the bug in July 1994? What was the cost to repair the
damage to Intel's reputation? And what is the corporate responsibility in
disclosing bugs in a product so widely used and relied upon as a microprocessor?

In April 1997 another floating-point bug was revea led in the Pentium Pro and
Pentium II microprocessors. When the floa ting-point -to- integer store instruc
tions (fi st, fi stp) encounter a negative floa ting-point number that is too large
to fit in a 16- or 32-bit word after being converted to integer, they set the wrong bit
in the FPO status word (precision exception in stead of invalid operation excep
tion). To Intel's credit, this time they publicly acknowledged the bug and offered a
software patch to get around it-quite a different reaction from what they did in
1994.
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Concluding Remarks

Computer arithmetic is distinguished from paper-and-pencil arithmetic by the
constraints of limited precision. This limit may result in invalid operations
through calculating numbers larger or smaller than the predefined limits. Such
anomalies, ca lled "overflow" or "underflow," may result in exceptions or inter
rupts, emergency events similar to unplanned subroutine calls. Chapter 5 dis
cusses exceptions in more detail.

Floating-point arithmetic has the added challenge of being an approximation
of real numbers, and care needs to be taken to ensure that the computer number
selected is the representation closest to the actual number. The challenges of
imprecision and limited representation are part of the inspiration for the field of
numerical analysis.

Over the years, computer arithmetic has become largely standardized, greatly
enhan cing the portability of programs. Two's complement binary integer arith 
metic and IEEE 754 binary floa ting-point arithmetic are found in the vast major
ity of computers sold today. For exa mple, every desktop computer sold since this
book was first printed follows these conventions.

A side effect of the stored-program computer is that bit patterns have no inher
ent meaning. The same bit pattern may represent a signed integer, unsigned inte
ger, floa ting-point number, instruction , and so on. It is the instruction that
operates on the word that determines its meaning.

With the explanation of computer arithmetic in this chapter comes a descrip
tion of much more of the MIPS instruction set. One point of confusion is the
instructions covered in these chapters versus instructions executed by MIPS chips
versus the instructions accepted by MIPS assemblers. The next two figures try to
make this clear.

Figure 3.24 lists the MIPS instructions covered in this chapter and Chapter 2.
We call the set of instructions on the left -hand side of the figure the MIPS core.
The instructions on the right we call the MIPS arithmetic core. On the left of Fig
ure 3.25 are the instructions the MIPS processor executes that are not found in
Figure 3.24. We call the full set of hardware instructions MIPS-J2. On the right of
Figure 3.25 are the instructions accepted by the assembler that are not part of
MIPS-32. We ca ll this set of instructions Pseudo MIPS.
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Instruction subset

MIPS core 95% 57.
MIPS arithmetic core "" 41%

Remaining MIP5--32 5% 2%

MIPS core Instructions Name Format MIPS arithmetic: core Name Format

,dd ,dd R multiply mLl1t R

add immediate addi I multiply unsigned mLlltu R

add unsigned addu R divide div R

add immediate unsigned addiu I divide unsigned divu R

subtract "b R move from Hi mf hi R

subtract unsigned subu R move from Lo mfl 0 R

eo' eo' R move from system control (EPC) mf cO R

and immediate andi I floating·point add single add. s R

"' M R floating·point add double add.d R

or immediate "n I f1oating·point subtract single slIb.s R

0"' OM R f1oating·point subtract double sub.d R

shift left logical ," R floating·point multiply single mLl1.s R

shift right logical ,,1 R floating·point multiply double mLll.d R

load upper immediate 1u i I f1oating·point divide single di v. s R

load word ,. I floating-point divide double d i v. d R

store word '" I load word to floating.point single 1wel I

load halfword unsigned 1he I store word to floating.point single swel I

store halfword ,h I load word to floating.point double 1del I

load byte unsigned 1be I store word to floating.point double sdel I

store byte ,b I branch on f1oating.point true bel t I

branch on equal b,q I branch on f1oating.point false bclf I

branch on not equal boe I floating-point compare single c.x.s R

jump J J (x _ eq. neq. 1t. 1 e. gt. gel

jump and link j a1 J floating-point compare double c.x.d R

jump register JC R (x _ eq. neq. 1t. 1 e. gt. gel

set less than ,It R

set less than immediate sHi I

set less than unsigned sHu R

set less than immediate unsigned s H i u I

FIGURE 3.24 The MIPS Instruction set covered so far. This book concentrates on the instructions in the left column.



FIGURE 3.25 Remaining MIP5-32 and "Pseudo MIPS" Instruction sets. f means slJlgle ( s) or double preCISIon ( d) f]oallng,polJlt
instructions, and Smeans signed and unsigned ( tl ) versions, MIPS·32 also has FP instructions for multiply and add/sub ( ma dd. f lms lib .f ), ceiling
(eei 1 .f ), truncate (t rllne .f),round ( rollnd .f), and reciprocal ( ree i p .f),

Remaining MIP5-32 Name Format Pseudo MIPS Name Format

exclusive or (rs ~ rt) m R m~, move rd,rs

exclusive or immediate xon I absolute value , b' rd,rs

shift right arithmetic He R not (-,rs) eo' rd,rs

shift left logical variable s 11 v R negate (signed or unsigned) negs rd,rs

shift right logical variable s rl v R rotate left col rd,rs,rt

shift right arithmetic variable s ray R rotate right co, rd,rs,rt

move to Hi mt hi R multiply and don't check oflw (signed or oos.) mll l s rd,rs,rt

move to Lo mt lo R multiply and check oflw (signed or uns.) mli l os rd,rs,rt

load halfword 1h I divide and check overflow div rd,rs,rt

load byte 1b I divide and don't check overflow divll rd,rs,rt

load word left (unaligned) 1.1 I remainder (signed or oosigned) rems rd,rs,rt

load word right (unaligned) lwe I load immediate 1 i rd,imm

store word left (unalif!fled) ,,1 I load address 1, rd,addr

store word right (unaligned) m I load double ld rd,addr

load linked (atomic update) 11 I store double 'd rd,addr

store cond, (atomic update) " I unaligned load word "'. rd,addr

move if zero movz R

move if not zero movn R unaligned store word "" rd,addr

multiply and add (5 or uns.) madd s R

multiply and subtract (5 or ~s.) msubs I unaligned load halfword (signed oryns.) ul hs rd,addr

branch on ~ zero and link bgezal I unaligned store halfword d rd,addr

branch on < zero and link bHzal I branch b Label

jump and link register ja1 r R branch on equal zero beqz rS,L

branch compare to zero b" I branch on compare (signed or oosigned) b" rS,rt,L

branch compare to zero likely bxzl I (x _ H,le, g t , gel

(x _ H, le, gt, gel set equal "q rd,rs,rt

branch compare reg likely bxl I set not equal '"' rd,rs,rt

trap if compare reg 'x R set on compare (sif!fled or unsigned) m rd,rs,rt

trap if compare immediate txi I (x _ H,le, gt, gel

(x _ eq, neq, H, 1 e, gt, gel load to floating point (s orsf) 1.} rd,addr

retum from exception 'f' R store from floating point (s orsf) , .} rd,addr

system call syseall I

break (cause exception) break I

move from FP to integer mf c1 R

move to FP from integer mt c1 R

FP move ~ or sf) mov.J R

FP move if zero ~ or sf) movz. R

FP move if not zero ~ or sf) movn. R

FP square root (s orsf) sqr t . R

FP absolute value (s or sf) abs .) R

FP negate (s or sf) neg .f R

FP convert (~ ~ or sf) evt .).) R

FP compare un ~ or siJ e. xn.J R
..

(page 227)
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Figure 3.26 gives the popularity of the MIPS instmctions for SPEC2000 integer and
floating-point benchmarks. All instructions are listed that were responsible for at least
1% of the instructions executed. The following table summarizes that info rmation.

Note that although programmers and compiler writers may use M IPS-32 to
have a richer menu of options, MIPS core instructions dominate integer
SPEC2000 execution , and the integer core plus arithmetic core domin ate
SPEC2000 floa ting point.

For the rest of the book, we concentrate on the MIPS core instructions-the
integer instruction set exclud ing multiply and divide-to m ake the explanation of
computer design easier. As we can see, the MIPS core in cludes the most popular
MIPS instructions, and be assured that understand ing a computer that runs the
MIPS core will give you sufficient background to understand even more ambi
tious computers.

Core MIPS Name Arithmetic core + MIPS-32 Name

,dd ,dd 0'J6 O. FP add double ~dd.d 0'J6 8.
add immediate add i 0'J6 O. FP subtract double sub.d 0'J6 "add unsigned add u " 21. FP multiply double mul •d 0'J6 8.
add immediate unsigned ~ddiu 12% 2% FP divide double div.d 0'J6 0'J6

subtract unsigned subu " 2% load word to FP double 1.d 0'J6 15.

eo' ood " O. store word to FP double '.d 0'J6 "and immediate arid i " O. shift right arithmetic m " 0'J6

0' M " 2% load half 1ho " 0'J6

or immediate on 2% O. branch less than zero bltz " 0'J6

'" OM " " branch greater or equal zero bgez " 0'J6

shift left logical ,11 " " branch less or equal zero blez 0'J6 "shift right logical ,,1 0'J6 O. multiply ' 0' 0'J6 "load upper immediate 101 2% 5%

load word
"

24% 15%

store word " 9'J6 2%

load byte 1bo " O.
store byte ,b " O.
branch on equal (zero) b," 6. 2%

branch on not equal (zero) boo 5. "jump and link j" " O.
jump register j, " O.
set less than ,It 2% O.
set less than immediate slt i " O.
set less than unsigned sltu " O.
set less than imm. uns. slt i u " o.

FIGURE 3.26 11Ie frequency of the MIPS Instructions for SPEC2000 Integer and Iloating point. AU instructions that accounted for
at least 1% of the instructions are included in the table. Pseudoinstructions are converted into MIPS·32 before execution, and hence do not appear
here. This data is from Chapter 2 of Computer Architecture: A Quantitative Approoch, third edition.
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Historical Perspective and Further
Reading

This section surveys the history of the floating point going back to von Neumann ,
including the surprisingly controversial IEEE standards effort, plus the rationale
for the 80-bit stack architecture for floating point in the lA-32. See . Section
3.10.

Exercises

3.1 [3] <§3 .2> Convert 4096ten into a 32-bit two's complement binary number.

3.2 [3] <§3.2> Convert -2047ten into a 32-bit two's complement binary number.

3.3 [5] <§3 .2> Convert -2 ,OOO ,000ten into a 32-bit two's complement binary
number.

3.4 [5] <§3.2> What decimal number does this two's complement binary num 
ber represent: 1111 1111 1111 1111 1111 1111 0000 0110 two?

3.5 [5] <§3.2> What decimal number does this two's complement binary num 
ber represent: 1111 1111 1111 1111 1111 1111 1110 11l1 t wo?

3.6 [5] <§3.2> What decimal number does this two's complement binary num 
ber represent: 0111 1111 1111 1111 1111 1111 1110 11l1 two?

3.7 [ 10] <§3.2> Find the shortest sequence ofMI PS instructions to determine the
absolute va lue of a two's complement integer. Convert this instruction (accepted
by the MIPS assembler):

abs $t2,$t3

This instruction mea ns that register H2 has a copy of register $t3 if register $t3
is positive, and the two's complement of register $t3 if $t3 is negative. (Hint: It
ca n be done with three instructions.)

3.8 [ 10] <§3.2> II For More Practice: Number Rep resentations
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Gresham's Law ("Bad
money drives out Good") for
compu ters would say, "The
Fast dr ives alit the Slow even
if the Fast is wrong."

W. Kahan, 1992

N ever give in, never give in,
never, never, never-m
nothing, great or small, large
or petty-never give in.

Winston Churchill, address at
Harrow School, 1941 ,Abroad,
1869
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3.9 [ IO J <§3.2> If A is a 32-bit address, typica lly an instruction sequence such as

1ui $tO, A_upper
ori $tO, $tO . A_lower
lw $sO , O(HOl

ca n be used to load the word at A into a register (in this case, $sO). Consider the
following alternative, which is more efficient:

lui $tO, A_upper_adjusted
lw $sO , A_lower($tO)

Describe how A_upper is adjusted to allow this simpler code to work. (Hint:
A_uppe r needs to be adjusted because A_lowe r will be sign -extended.)

3.10 (10 ) <§3.3> Find the sho rtest sequence of MIPS instructions to determine if
there is a ca rry out from the addition of two registers, say, registers $t3 and $t4.
Place a 0 or 1 in register $t 2 if the ca rry out is 0 or 1, respectively. (Hint: It ca n be
done in two instructions.)

3.11 [15J <§3.3> II For More Practice: Writing MIPS Code to Perfonn Arithmetic

3.12 [ IS) <§3.3> Suppose that all of the conditional branch instructions except
beq and bne were removed from the MIPS instruction set along with s 1t and all
of its variants (sl ti , sltu , sltui).Show how toperform

slt $tO, $sO, $sl

using the modified in struction set in which s 1t is not available. (Hint: It requires
more than two instructions.)

3.13 (10 ) <§3.3> Draw the gates for the Sum bit of an adder, given the equation
on . page 8-28.

3.14 [5J <§3.4> • For More PrJctice: Writing MIPS Code to Perform Arithmetic

3.15 [20J <§3.4> II For More Practice: Writing MIPS Code to Perform Arithmetic

3.16 [2 weeks) <§3.4> .. For More Practice: Simulating MIPS Machines

3.17 [ I week) <§3.4> 15 For More Practice: Simulating MIPS Machines

3.18 [5 J <§3.4> III For More Practice: Carry Lookahead Adders

3.19 [ IS) <§3.4> .. For More Practice: Carry Looka head Adders

3.20 (10 ) <§3.4> .. For More Practice: Relative Performance of Adders
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3.21 (15) <§3.4> 18 For More Practice: Relative Perform ance of Adders

3.22 (15) <§3.4> 1& For More Practice: Relative Perform ance of Adders

3.23 (30) <§3.4> 1& In More Depth: Booth 's Algorithm

3.24 (15)(30) <§3.4> II For More Practice: Special MIPS Registers

3.25 (10 ) <§§3.5, 3.4> II In More Depth: The Power PC's Multiply-Add
Instruction

3.26 (20) <§3.5> 1& In More Depth: The Power PC's Multiply-Add Instruction

3.27 <§§3.3, 3.4, 3.5> W ith x = 0000 0000 0000 0000 0000 0000 0 10 1 10 II ,wo and
y = 0000 0000 0000 0000 0000 0000 0000 11 0 1two representing two's complem ent
signed integers, perform , showing all wo rk:

a. x + y

b. x- y

c. x ~ y

d. xly

3.28 (20) <§§3 .3, 3.4, 3.5> Perform the sa m e operations as Exercise 3.27, but
with x = 1111 1111 1111 1111 1011 00 11 0 101 00 11 and y = 0000 0000 0000 0000
0000 00 10 110 1 0 111 t\o,"o.

3.29 (30) <§3.5> The division algorithm in Figure 3.11 on page 185 is called
restoring division, since each time the result o f subtracting the divisor from the div
idend is negative you must add the divisor back into the dividend to resto re the
o riginal value. Recall that shift left is the sam e as multiplying by 2. Let's look at the
value of the left half of the Rem ainder again, sta rting with step 3b of the divide
algorithm and then going to step 2:

(Remainder + Divisor) X 2 - Divisor

This va lue is created from restoring the Rem ainder by adding the Divisor, shifting
the sum left , and then subtracting the Divisor. Simplifying the result we get

Rem ainder X 2 + Divisor X 2 - Divisor = Remainder X 2 + Divisor

Based on this o bservation, write a nonrestoring division algorithm using the no ta
tion of Figure 3.11 that does not add the Divisor to the Rem ainder in step 3b.
Show that your algo rithm wo rks by dividing 0000 10 11 two by 00 1l two.

231
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3.30 [15) <§§3.2, 3.6> The Big Picture on page 216 mentions that bits have no
inherent meaning. Given the bit pattern:

101011010001 0000 0000 0000 0000 0010

what does it represent, assuming that it is

a. a two's complement integer?

b. an unsigned integer?

c. a single precision floating-point number?

d. a MIPS instruction?

You may find Figures 3.20 (page 208) and II A.tO.l (page A-50) useful.

3.31 <§§3.2, 3.6> This exercise is similar to Exercise 3.30, but this time use the bit
pattern

0010 0100 1001 0010 0100 1001 0010 0100

3.32 [10 11 10] <§3.6> II For More Practice: Floating Point Number Represen 
tations

3.33 (10 ) <§3 .6> II For More Practice: Floating Point Number Representations

3.34 (10 ) <§3.6> II For More Practice: Writing MIPS Code to Perform FP
Arithmetic

3.35 [51 <§3.6> Add 2.85ten X 103 to 9.84ten X 104, assuming that you have o nly
three significant digits, first with guard and round digits and then witho ut them.

3.36 [5J <§3 .6> This exercise is similar to Exercise 3.35 , but this time use the
numbers 3.63ten X 104 and 6.87ten X 103

•

3.37 [5 J <§3.6> Show the IEEE 754 binary representatio n for the floating-point
number 20ten in single and double precision.

3.38 [5J <§3.6> This exercise is similar to Exercise 3.37, but this time replace the
number 20ten with 20.5ten.

3.39 (10 ) <§3.6> This exercise is similar to Exercise 3.37, but this time replace the
number 20ten with O. l ten.

3.40 (10 ) <§3.6> This exercise is similar to Exercise 3.37, but this time replace the
number 20ten with the decimal fraction -5/6.

3.41 (10 ) <§3.6> Suppose we introduce a new in struction that adds three
floating-point numbers. Assuming we add them together with a triple adder, with
guard, round, and sticky bits, are we guaranteed results within I ulp of the results
using two distinct add instmctions?
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3.42 (15) <§3 .6> W ith x = 0100 0 110 110 1 1000 0000 0000 0000 OOOOt\o,"O and y =
1011 1110 1110 0000 0000 0000 0000 OOOO\WO representing single precision IEEE
754 fl oating-point numbers, perform, showing all wo rk:

a. x + y

b. x ~ Y

3.43 (15) <§3.6 > W ith x = 010 1 1111 1011 1110 0100 0000 0000 OOOOtwo'
y = 00 11 1111 1111 10000000 0000 0000 OOOOtwo, and z = 1101 1111 1011 1110
0 100 0000 0000 OOOOtwo representing single precision IEEE 754 fl oating-point
numbers, perform, showing all wo rk:

a. x + y

b. (result o f a) + z

c. W hy is this result counterintuitive?

3.44 (20) <§§3.6, 3.7> The IEEE 754 fl oating-point standard specifies 64-bit
double precision with a 53-bit significand (including the implied 1) and an II -bit
exponent. IA-32 offers an extended precision option with a 64-bit significand and
a 16-bit exponent.

a. Assuming extended precision is similar to single and double precision, what
is the bias in the exponent?

b. W hat is the range of numbers that ca n be represented by the extended preci
sion option?

c. How much greater is this accuracy compared to double precision?

3.45 (51 <§§3.6, 3.7> The internal representation of fl oating point numbers in
IA-32 is 80 bits wide. This contains a 16 bit exponent. However it also advertises a
64 bit significa nd. How is this possible?

3.46 (10 ) <§3.7> While the IA-32 allows 80-bit floating-point numbers inter
nally, only 64-bit fl oating-point numbers ca n be loaded or sto red. Starting with
only64-bit numbers, how many opera tions are required before the full range ofthe
80-bit exponents are used? Give an example.

3.47 (25) <§3.8> II For More Practice: Floating Point on Algorithms

3.48 (30) <§3.8> II For More Practice: Floating Point Rounding Modes

3.49 (30) <§3.8> II For More Practice: Denormalized Numbers

3.50 (10 ) <§3.9> II For More Practice: Eva luating Instruction Frequencies

3.51 (10 ) <§3.9> 'II For More Practice: Eva luating Instruction Frequencies
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Answers To
Check Yourself
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3.52 (10 ) <§3.9> .. For More Practice: Evaluating Instruction Frequencies

3.53 (10 ) <§3.9> .. For More Practice: Eva luating Instruction Frequencies

3.54 (15) <§3.9> .. For More Practice: Evaluating Performan ce

3.55 (15) <§3.9> II For More Practice: Eva luating Perfo rman ce

§3.2. page 168: 3, since each chara cter in a Java string takes 16 bits plus one word
for length.
§3.3, page 174:2.
§3.6, page 217: 3.





Computers
in the

Real World

Problem: Analyzing and understanding

archeological sites is cha llenging. Can we find
ways to use computers to help researchers to

explore archeologica l sites and artifacts dis
covered at those sites?

Solution: Archeology is undergoing a revolu

tion with the use of digital tools for mapping

out ancient sites, reconstructing damaged arti

facts , and recreating ancient sites in three
dimensions. Among the important new tech

niques being used to ana lyze and recreate sites

are the following:

D The use of geographical information sys

tems (GIS) to help accurate ly measure

sites. GIS uses globa l positioning systems

(GPS) to accurately pinpoint locations,

allowing fast and precise measurements

of a site.

D Laser range finding to obtain accurate

measurements of the two- and three

dimensional structure of objects. Laser

range-finding is even being used with

low-flying aircraft to obtain height

measurements.

Reconstructing the
Ancient World

A digital photograph taken from a \llrtual reality

model of the new temple at Chavin de Huantar.

D Digital photography to obta in accurate

images of sites as well as individual

objects.

D Virtua l reality and three-dimensional vi

sualization systems can use digital pho

tographic data and accurate geospatia l

information to create realistic versions of

archeological sites, allowing archeolo-



gists to gain new insights, as well as to

share their work with other researchers

and the genera l public.

These techniques have been used to explore

and create an interactive virtua l reality model

of an archeological site ca lled Chavin de

Huantar, which is in the Peruvian highlands.

The image on the top of the previous page is a

digital still photograph taken from the virtual

reality model. Chavin de Huantar was occu

pied from about 1000 BCE and predates the

classical Incan civilization by more than 1000

years. Highly detailed photos together with

measurements of over 25,000 points allows a

reconstruction of an accurate virtual model.

The image on the top of the previous page is

from the new temple at Chavin, which played

Images of pottery fragments found at

Petra, Jordan

a key role in the establishment of formalized

religious authority in the New World.

Three-dimensional modeling and recon

struction have also been used in the reconstruc

tion of artifacts from fragments. The images on

the left below are fragments of pottery found at

Petra, the famous archeological site in Jordan.

On the right is a computer reconstruction of the

original vessel, highlighting the position of one

of the fragments.

To learn more see these references on

the II library

D Reconstructing objects from fragments at the SHAPE
Laboratory at Brown University

D The Chavin de Huantar exploration (includes virtual
reality tour of the site)

A computer reconstruction from the fragments In

the pre\llous photo
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Introduction

This chapter discusses how to measure, report, and summarize performance and
describes the majo r factors that determine the performance of a computer. A pri
mary reason for examining performance is that hardwa re performance is often
key to the effectiveness of an entire system of hardwa re and software. Much of the
material in this chapter, especially this section and the next, will be critical to
understanding the next three chapters. The rest of the chapter provides impo rtant
insights and principles that anyone seeking to eva luate the performance of a com 
puter system should know. The material in Sections 4.3-4.5, however, is not nec
essa ry for the immediately following chapters and ca n be returned to later.

Assessing the performance of such a system ca n be quite challenging. The scale
and intricacy of m odern software system s, together with the wide range of perfor
man ce improvement techniques employed by hardwa re designers, have made per
formance assessment much m ore difficult. It is simply impossible to sit down with
an instruction set manual and a significa nt software system and determine, simply
by analysis , how fast the software will run on the computer. In fact , for different
types of applications, different performance metrics may be appropriate, and dif
ferent aspects of a computer system may be the most significa nt in determining
overa ll performance.

Of course, in trying to choose among different computers, performance is
almost always an important attribute. Accurately measuring and comparing dif
ferent computers is critical to purchasers, and therefore to designers. The people
selling computers know this as well. Often, salespeople would like you to see their
computer in the best possible light , whether or not this light accurately refl ects the
needs of the purchaser's application. In some cases, claims are made about com 
puters that don't provide useful insight for any real applications. Hence, under
standing how best to measure performance and the limitations of performance
measurements is important in selecting a computer.

Our interest in performance, however, goes beyond issues of assessing
performance only from the outside of a computer. To understand why a piece of
software performs as it does, why one instruction set ca n be implemented to per
form better than another, or how some hardware feature affects performance, we
need to understand what determines the performance of a computer. For exa m
ple, to improve the performance of a software system, we may need to understand
what factors in the hardwa re contribute to the overall system performance and the
relative importan ce of these factors. These factors may include how well the pro
gram uses the instructions of the computer, how well the underlying hardware
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implements the instructions, and how well the memory and I/O systems perform.
Understanding how to determine the performance impact of these fa ctors is cru
cial to understa nding the motivation behind the design of particular aspects of the
computer, as we will see in the chapters that follow.

The rest of this section describes different ways in which performance ca n be
determined. In Section 4.2, we describe the metrics for measuring performance
from the viewpoint of both a computer user and a designer. We also look at how
these metrics are related and present the classical processor performance equa
tion , which we will u se throughout the text. Sect ions 4. 3 and 4.4 describe how best
to choose benchmarks to evaluate computers and how to accurately summarize
the performance of a group of programs. Section 4.4 also describes one set of
commonly used CPU benchmarks and exa mines measurements for a variety of
Intel processors using those benchmarks. Finally, in Section 4.5, we' ll exa mine
some of the many pitfalls that have trapped designers and those who analyze and
report performance.

Defining Performance

When we say one computer has better performance than another, what do we
mean? Alth ough this question might seem simple, an analogy with passenger air
planes shows how subtle the question of performance ca n be. Figure 4.1 shows
some typical passenger airplanes, together with their cruising speed, range, and
capacity. If we wa nted to know which of the planes in this table had the best per
formance, we would first need to define performance. For exa mple, considering
different measures of performance, we see that the plane with the high est cruising
speed is the Concorde, the plane with the longest range is the DC-B, and the plane
with the largest capacity is the 747.

Let's suppose we define performance in terms of speed. This still leaves two possi
ble definitions. You could define the fastest plane as the one with the high est cruis
ing speed, taking a single passenger from one point to another in the least time. If
you were interested in transporting 450 passengers from one point to another, how-

Passenger Cruising range Cruising speed Passenger throughput
Airplane capacity (miles) (m.p.h.) (passengers x m.p.h.)

Boeing 777 375 4630 610 228,750

Boeing 747 470 4150 610 286,700

BAC/Sud Concorde 132 4000 1350 178,200

Douglas DC-8-50 146 8720 544 79,424

FIGURE 4.1 The capacity, range, and speed for a number of commercial airplanes. The
last colwun shows the rate at which the airplane transports passengers, which is the capacity times the
cruising speed (ignoring range and takeoff and landing times).
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response time Also called
execution time. The total time
required for the computer to
complete a task, including disk
accesses, memory accesses, I/O
activities, operating system
overhead, CPU execution time,
and so all.

EXAMPLE

ANSWER
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ever, the 747 would clearly be the fastest, as the last column of the figure shows. Sim
ilarly, we can define computer performance in several different ways.

If you were running a program on two different desktop computers, you'd say
that the faster one is the desktop computer that gets the job done first. If you were
running a data center that had several servers running jobs submitted by many
users, you'd say that the faster computer was the one that completed the most jobs
during a day. As an individual computer user, you are interested in reducing
response time-the time between the start and completion of a task-also referred
to as execution time. Data center managers are often interested in increasing
throughput-the total amount of work done in a given time. Hence, in most cases,
we will need different performance metrics as well as different sets of applications to
bendlmark desktop computers versus servers, and embedded computers require yet
other metrics and applications. We will see exa mples of this in section 4.4 when we
look at different SPEC benchmarks: one meant to measure CPU performance
(SPEC CPU) and one mea nt to measure Web server performance (SPECweb99).

Throughput and Response Time
Do the following changes to a computer system increase throughput , decrease re

spo nse time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors
for sepa rate tasks-for example, searching the Wo rld Wide Web.

Decreasing response time almost always improves throughput. Hence, in case
1, both response time and th roughput are improved. In case 2, no one ta sk
gets work done faster, so only throughput increases. If, however, the demand
for processing in the second case was almost as large as the throughput , the
system might fo rce requests to queue up. In this case, increasing the through 
put could also improve response time, since it would reduce the waiting time
in the queue. Thus, in many rea l computer systems, changing either execu 
tion time or throughput often affects the other.

In discussing the performance of computers, we will be primarily concerned
with response time for the first few chapters. (In Chapter 8, on input/output sys
tems, we will discuss th roughput-related measu res.) To maximize performance,
we wa nt to minimize response time or execution time for some task. Thus we ca n
relate performance and execution time for a computer X:
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1
Performancex =

Execution timex

This mea ns that for two computers X and Y, if the performance of X is greater
than the performance ofY, we have

Performancex > Perforrnancey

1 1
oo----,,-'----c- > oo----,,-'----c
Execution timex Execution timey

Execution timey > Execution timex

That is, the execution time on Y is longer than that on X, if X is faster than Y.
In discussing a computer design, we often want to relate the performance of

two different computers quantitatively. We will use the phrase "X is 11 times faster
than y"-or equiva lently "X is 11 times as fast as y"-to mea n

Performan cex = 11
Performancey

If X is 11 times faster than Y, then the execution time on Y is 11 times longer than it is
onX:

Performancex
Performancey

Execution timey

Execution timex
n

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

EXAMPLE

We know that A is 11 times fa ster than B if ANSWER
Performance"

Performances

Execution times

Execution time" "

Thus the performance ratio is

15 = 1.5
10

and A is therefore 1.5 times faster th an B.
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In the above example, we could also say that computer B is 1.5 times slower
thall computer A, since

means that

PerformanceA

PerformanceB

1.5

CPU execution time Also
called CPU time. The actual
time the CPU spends comput
ing for a specific task.

PerformanceA = Performance B1.5

For simplicity, we will normally use the terminology faster than when we try to
compare computers quantitatively. Because performance and execution time are
reciprocals, increasing performance requires decreasing execution time. To avoid
the potential confusion between the terms increasing and decreasing, we usually
say "improve performance" or "improve execution time" when we mean "increase
performance" and "decrease execution time."

Elaboration: Performance in embedded systems is often characterized by real-time
constraints: that is, certain application-specific events must occur within a limited
amount of time . There are two common types of real-time constraints: hard real time
and soft real time . Hard real time defines a fixed bound on the time to respond to or
process some event. For example, the embedded processor that controls an anti lock
brake system must respond within a hard limit from the time it receives a signal that
the wheels are locked. In soft real-time systems, an average response or a response
within a limited time to a large fraction of the events suffices. For example, handling
video frames in a DVD playback system would be an example of a soft real-time con
straint. since dropping a frame is permissible, if it happens very rarely. In embedded
real-time applications, once the response-time performance constraint is met, design
ers often optimize throughput or try to reduce cost.

Measuring Performance

Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execlltion time is
measured in seconds per program. But time can be defined in different ways,
depending on what we count. The most straightforward definition of time is
called wall-clock time, response time, or elapsed time. These terms mean the total
time to complete a task, including disk accesses, memory accesses, input/output
0 /0 ) activities, operating system overhead-everything.

Computers are often shared , however, and a processor may work on several
programs simultaneously. In such cases, the system may try to optimize through
put rather than attempt to minimize the elapsed time for one program. Hence, we
often want to distinguish between the elapsed time and the time that the proces
sor is working on our behalf. CPU execution time or simply CPU time, which
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recognizes this distinction, is the time the CPU spends computing for this ta sk
and does not include time spent waiting for I/O or running other programs.
(Remember, though , that the response time experienced by the user will be the
elapsed time of the program, not the CPU time.) CPU time ca n be further divided
into the CPU time spent in the program, called user CPU time, and the CPU time
spent in the operating system performing tasks on behalf of the program, called
system CPU time. Differentiating between system and user CPU time is difficult
to do accurately because it is often hard to assign responsibility for operating sys
tem activities to one user program rather than another and because of the func
tionality differences among operating systems.

For consistency, we maintain a distinction between performance based on
elapsed time and that based on CPU execution time. We will use the term system
performance to refer to elapsed time on an unloaded system , and use CPU perfor
mance to refer to user CPU time. We will focus on CPU performance in this chap
ter, although our discussions of how to summarize performance ca n be applied to
either elapsed time or to CPU time measurements.

Alth ough as computer users we ca re about time, when we exa mine the details
of a computer it 's convenient to think about performance in other metries. In par
ticular, computer designers may wa nt to think about a computer by using a mea
sure that relates to how fast the hardware can perform basic functions. Almost all
computers are constructed using a clock that runs at a constant rate and deter
mines when events take place in the hardware. These discrete time interva ls are
called clock cycles (or ticks, clock ticks, clock periods, clocks, cycles). Designers
refer to the length of a clock period both as the time for a complete clock cycle
(e.g. , 0.25 nanoseconds, 0.25 ns, 250 picoseconds , or 250 ps) and as the clock rate
(e.g. , 4 giga hertz, or 4 GHz), which is the inverse of the clock period. In the next
section, we will formalize the relationship between the clock cycles of the hard
ware designer and the seconds of the computer user.

Different applications are sensitive to different aspects of the performance of a com 
puter system. Many applications, especially those running on servers, depend as
much on I/O performance, which , in turn , relies on both hardware and software,
and total elapsed time measured by a wall clock is the measurement of interest. In
some application environments, the user may care about throughput, response
time, or a complex combination of the two (e.g. , maximum throughput with a
worst-case response time). To improve the performance of a program, one must
have a clear definition of what performance metric matters and then proceed to
look for the performance bottlenecks by measuring program execution and looking
for the likely bottlenecks. In the following chapters, we will describe how to search
for bottlenecks and improve performance in various parts of the system.
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user CPU time The CPU time
spent in a program itself.

system CPU time The CPU
time spent in the operating sys
tem performing tasks on behalf
of the program.

dock cyd e Also called tick,
dock tick, dock period, dock,
cyde. The time for one dock
period, usually of the processor
dock, which runs at a constant
rate.

dock period The length of
each clock cycle.

Understanding
Program
Performance
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1. Suppose we know that an application that uses both a desktop client and a
remote server is limited by network performance. For the following
changes state whether only the throughput improves, both response time
and throughput improve, or neither improves.

3. An extra netwo rk channel is added between the client and the server,
increasing the total network throughput and reducing the delay to
obtain network access (sin ce there are now two channels),

b. The networking software is improved, thereby red ucing the network
communication delay, but not increasing throughput.

c. More mem ory is added to the computer.

2. Computer Cs performance is 4 times better than the performance of com 
puter B, which runs a given application in 28 seconds. How long will com 
puter C take to run that application?

CPU Performance and Its Factors

Users and designers often exa mine performance using different m etrics. If we
could relate these different m etrics, we could determine the effect of a design
change on the performance as seen by the user. Since we are confining ourselves to
CPU performance at this point, the bottom-line performance m easure is CPU
execution time. A simple formula relates the m ost basic m etrics (clock cycles and
clock cycle time) to CPU time:

CPU execution time
fo r a program

CPU clock cycles X Clock cycle time
for a program

Alternatively, because clock rate and clock cycle time are inverses,

CPU execution time
for a program

_ CPU clock cycles for a program
Clock rate

This formula m akes it clear that the hardware designer ca n improve performance
by reducing either the length of the clock cycle or the number of clock cycles
required for a program. As we will see in this chapter and later in Chapters 5,6,
and 7, the designer often faces a trade-off between the number of clock cycles
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needed for a program and the length of each cycle. Many techniques that decrease
the number of clock cycles also increase the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 4 GHz
clock. We are trying to help a computer designer build a computer, B, that
will run this program in 6 seconds. The designer has determined that a sub
stantial increase in the clock rate is possible, but this increase will affect the
rest of the CPU design, ca using computer B to require 1.2 times as many
clock cycles as computer A for this program. \-¥hat clock rate should we tell
the designer to target?

Let's first find the number of clock cycles required for the program on A:

CPU clock cyclesA
CPU timeA =

Clock rateA

CPU clock cyclesA
10 seconds =

4 X 109 cycles
second

EXAMPLE

ANSWER
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CPU clock cyclesA = 10 seconds X4 X 109 cycles
second

,
40 X 10 cycles

CPU time for B can be found using this equation:

1.2 X CPU clock cyclesA

Clock rateB

6 second s
,

1.2 X 40 X 10 cycles
Clock rateB

Clock rateB =
,

1.2 X40 X 10 9'cles =
6 seconds

,
8 X 10 cycles = 8 GHz

second

computer B must therefore have twice the clock rate of A to run the program
in 6 seconds.
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dock cycles per instruction
(CPI) Average number ofdock
cycles per instruction for a pro
gram or program fragment.

EXAMPLE

ANSWER
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The equations in our previous examples do not include any reference to the number
of instructions needed for the program. However, since the compiler clearly gener
ated instmctions to execute, and the computer had to execute the instructions to
run the program, the execution time must depend on the number of instructions in
a program. One way to think about execution time is that it equals the number of
instructions executed multiplied by the average time per instruction. Therefore, the
number of clock cycles required for a program can be written as

CPU clock cycles = Instructions for a program X Avera&e clock ~cles
per IIlstructlon

The term clock cycles per instruction, which is the average number of clock
cycles each instruction takes to execute, is often abbreviated as CPI. Sin ce different
instructions may take different amounts of time depending on what they do, CPI
is an average of all the instructions executed in the program. CPI provides one
way of comparing two different implementations of the same instruction set
architecture, since the instruction count required for a program will , of course, be
the same.

Using the Performance Equation

Suppose we have two implementations of the sa me instruction set architec
ture. Computer A has a clock cycle time of 250 ps and a CP I of 2.0 for some
program, and computer B has a clock cycle time of 500 ps and a CP I of 1.2
for the sa me program. Which computer is faster for this program, and by
how much?

We know that each computer executes the same number of instructions for
the program; let's call this number 1. First, find the number of processor clock
cycles for each computer:

CPU clock cyclesA = 1X 2.0

CPU clock cyclesB = 1 X 1.2
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Now we can compute the CPU time for each computer:

249

CPU timeA

Likewise, for B:

CPU clock cycles" X Clock cycle time"

IX2.0x250 ps = 500 X Ips

CPU timeB = 1X 1.2 X 500 ps = 600 X 1ps

Clea rly, computer A is faster. The amount faster is given by the ratio of the
execution times:

CPU performanceA

CPU performanceB

Execution timeB

Execution time"
= 600x/ ps = 1.2

500x/ps

We ca n conclude that computer A is 1.2 times as fast as computer B for this
program.

We can now write this basic performance equation in terms of instruction count
(the number of instructions executed by the program), CPI, and clock cycle time:

CPU time = Instruction count X CPI X Clock cycle time

CPU
. Instruction count X CPI

time =
Clock rate

These formulas are particularly useful because they separate the three key factors
that affect performance. 'lVe ca n use these formulas to compare two different
implementations or to eva luate a design alternative if we know its impact on these
three parameters

How can we determine the value of these factors in the performance equation?
We ca n measu re the CPU execution time by running the program, and the clock
cycle time is usually published as part of the documentation for a computer. The
instruction count and CPI ca n be more difficult to obtain. Of course, if we know
the clock rate and CPU execution time, we need only one of the in struction count
or the CPI to determine the other.

We ca n measure the instruction count by using software tools that profile the
execution or by using a simulator of the architecnlfe. Alternatively, we ca n use
hardware counters, which are included on many processors, to record a variety of
measurements, including the number of in structions executed, the average CPI ,
and often, the sources of performance loss. Since the instruction count depends
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Figure 4.2 shows the basic measurements at different levels in the computer
and what is being measured in each case. We ca n see how these factors are
combined to yield execution time m easu red in seconds per program:

T " Seconds Instructions Clock cycles -,;S"""o"n,d~',""line = = X - x-;.
Program Program Instruction Clock cycle

Always bear in mind that the only complete and reliable measure of
computer perform ance is time. For example, changing the instruction set
to lower the instruction count m ay lead to an orga nization with a slower
clock cycle time that offsets the improvem ent in instruction count. Simi 
la rly, becau se C PI depends on type of instructions executed, the code that
executes the fewest number of instructions m ay not be the fastest.

Components of performance Units of measure

CPU execution time for a program Se<:onds for the program

Instruction count Instructions eXe<:uted for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time Se<:onds per clock cycle

FIGURE 4.2 The basic components of performance and how each Is measured.

on the a rchitecture, but not on the exact implem entation , we ca n m easure the
instruction count without knowing all the deta ils of the implem entation. The
C PI , however, depends on a wide va riety of design details in the computer, includ 
ing both the m emory system and the processor structure (as we will see in Chap 
ters 5, 6, and 7), as well as on the mix of instruction types executed in an
application. Thus, CPI va ries by application , as well as am ong implem entations
with the sa m e instruction set.

Designers often obtain CPI by a detailed simulation of an implementation or by
using hardware counters, when a CPU is operational. Som etimes it is possible to com 
pute the CPU clock cycles by looking at the different types of instructions and using
their individual clock cycle counts. In SUdl cases, the following formula is useful:

"
CPU clock cycles = L (CPIi XCi)

; '" I
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where Cj is the count of the number of instructions of class i executed, CPl j is the
average number of cycles per instruction for that instruction class, and n is the
number of instruction classes. Remember that overall CPI for a program will
depend on both the number of cycles for each instruction type and the frequency
of each instruction type in the program execution.

As we described in Chapter 1, the performance of a program depends on the algo
rithm, the language, the compiler, the architecture, and the actual hardware. The
following table summarizes how these components affect the factors in the CPU
performance equation.

Hardware or
software
component Affects what? How?

Algorithm Instruction count, The algorithm determines the number of source program
possibly CPI instructions executed and hence the number of processor

instructions executed. The algorithm may also affect the CPI, by
favoring slower or faster instructions. For example, if the
algorithm uses more f10atinglXlint operations, it will tend to
have a higher CPI.

Programming Instruction count, The programming language certainly affects the instruction
language ePi count, since statements in the language are translated to

processor instructions, which determine instruction count. The
language may also affect the CPI because of its features; for
example, a language with heavy support for data abstraction
(e.g., Java) will require indirect calls, which will use higher.cPI
instructions.

Compiler Instruction count, The efficiency of the compiler affects both the instruction count
ePi and average cycles per instruction, since the compiler

detennines the translation of the source language instructions
into computer instructions. The compiler's role can be very
complex and affect the CPI in complex ways.

Instruction set Instruction count, The instruction set architecture affects all three aspects of CPU
architecture clock rate, perfonnance, since it affects the instructions needed for a

ePi function, the cost in cycles of each instruction, and the overall
clock rate of the processor.

Understanding
Program
Performance
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Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a par
ticular computer. The hardware designers have supplied the following facts:

CPI for this Instruction class

ePi 1 2 3

For a particular high-level-la nguage statement, the compiler writer is consid 
ering two code sequences that require the following instmction counts:

Instruction counts for Instruction class

Code sequence

1

2

2

4

1

1

2

1

ANSWER

Which code sequence executes the most instructions? Which will be fa ster?
What is the CPI for each sequence?

Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes
4 + I + 1 = 6 instructions. So sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count a nd CPI
to find the total number of clock cycles for each sequence:

"CPU clock cycles = L (CPI ; xC;)

; =0 I

This yields

CPU clock cycles]

CPU clock cycles2

(2X 1)+ (IX 2) +(2X3)

(4X 1) +( IX 2)+( I X3)

2+2+6

4 +2+3

10 cycles

9 cycles
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So code sequence 2 is faster, even though it acn,ally executes one extra
in struction. Since code sequence 2 takes fewer overall clock cycles but has
more instructions, it must have a lower CPI. The CPl values can be computed
by

253

CPI = CPU clock cycles
Instruction count

CPI ,
CPU clock cycles, 10-
Instruction count , 5

CPI 2 =
CPU clock cycles2 9-
Instruction count 2 6

2

1.5

The above example shows the danger of using only one factor (instruction
count) to assess perfo rmance. When comparing two computers, you must look at
all three components, which combine to form execution time. If some of the fac
tors are identical, like the clock rate in the above exa mple, performance can be
determined by comparing all the nonidentical factors. Since CPI va ries by
instruction mix, both instruction count and CPI must be compared , even if clock
rates are identica l. Several of the exercises ask you to eva luate a series of computer
and compiler enhancements that affect clock rate, C PI , and instruction count. In
the next section, we'll examine a common performance measurement that does
not incorporate all the term s and can thus be misleading.

Two of the major fa ctors that affect CPI are the performance of the pipeline,
whicll is the tecllllique used by all modern processors to execute instructions, and
the performance of the memory system. In Chapter 6, we will see how pipeline per
formance adds to the CPI through stalls, and in Chapter 7 we will see how the per
formance of the caclles ca n increase the CPI due to stalls in the memory system.

A given application written in lava runs IS seconds on a desktop processo r. A new
lava compiler is released that requires only 0.6 as many instructions as the old
compiler. Unfortunately it increases the CPI by 1.1. How fast can we expect the
application to run using this new compiler?

instruction mix A measure of
the dynamic frequency of
instructions across one or many
programs.

Check
Yourself

,.

b.

15xO.6 '" 8. 2sec
I.I

15xO.6 xl.l ",9.9sec

15x l.l
0.6

'" 27.5sec
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Evaluating Performance

workload A set of programs
run on a computer that is either
the actual collection of applica
tions run by a user or is con
structed from real programs to
approximate such a mix. A typi
cal workload specifies both the
programs as well as the relative
frequencies.

A computer user who runs the sa me programs day in and day out would be the
perfect candidate to evaluate a new computer. The set of programs run would
form a workload. To evaluate two computer systems, a user would simply com 
pare the execution time of the workload on the two computers. Most users, how
ever, are not in this situation. In stead, they must rely on other methods that
measure the performance of a ca ndidate computer, hoping that the meth ods will
reflect how well the computer will perform with the user's wo rkload. This alterna
tive is usually followed by evaluating the computer using a set of bellchmarks
programs specifically chosen to measure performance. The benchmarks form a
workload that the user hopes will predict the performance of the actual workload.

Today, it is widely understood that the best type of programs to use for bench
marks are real applications. These may be applications that the user employs regu
larly or simply applications that are typical. Fo r exa mple, in an environment
where the users are primarily engineers, you might use a set of benchmarks con
taining several typical engineering or scientific applications. If the user commu 
nity were primarily soft wa re development engineers, the best benchmarks would
probably include such applications as a compiler or document processing system.
Using rea l applications as benchmarks makes it much more difficult to find trivial
ways to speed up the execution of the benchmark. Furthermore, when techniques
are found to improve performance, such techniques are much more likely to help
other programs in addition to the benchmark.

The use of benchmarks whose performance depends on very small code seg
ments encourages optimizations in either the architecture o r compiler that target
these segments. The compiler optimizations might recognize special code frag
ments and genera te an instruction sequence that is particularly efficient for this
code fragment. Likewise, a designer might try to make some sequence of instruc
tions run especially fast because the sequence occurs in a benchmark. In fact, sev
eral companies have introduced compilers with special-purpose optimizations
targeted at specifi c benchmarks. Often these optimizations must be explicitly
enabled with a specific compiler option , which would not be used when compil
ing other programs. Whether the compiler would produce good code, or even cor
rect code, if a rea l application program used these switches, is unclea r.

Sometimes in the quest to produce highly optimized code fo r benchmarks,
engineers introduce erroneous optimizations. For exa mple, in late 1995, Intel
published a new performance rating for the integer SPEC benchmarks running on
a Pentium processor and using an internal compiler, not used outside of Intel.
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Unfortunately, the code produced for one of the benchmarks was wrong, a fact
that was discovered when a competitor read through the binary to understand
how Intel had sped up one of the programs in the benchmark suite so dramati
cally. In January 1996, Intel admitted the erro r and restated the performance.
Small programs or programs that spend almost all their execution time in a very
small code fragment are especially vulnerable to such efforts.

So why doesn't everyone run real programs to measure performance? One rea
son is that small benchmarks are attractive when beginning a design , sin ce they
are small enough to compile and simulate easily, sometimes by hand. They are
especia lly tempting when designers are working on a novel computer because
compilers may not be available until much later in the design. Although the use of
such small benchmarks ea rly in the design process may be justified, there is no
valid rationale fo r using them to evaluate working computer systems.

As mentioned ea rlier, different classes and applications of computers will require
different types of benchmarks. For desktop computers, the most common bench
marks are either measures of CPU performance or benchmarks focusing on a spe
cific task, such as DVD playback or graphics performance for games. In Section 4.4,
we will examine the SPEC CPU benchmarks, which focus on CPU performance and
measure response time to complete a benchmark. For servers, the decision of which
benchmark to use depends heavily on the nature of the intended application. For
scientific servers, CPU-oriented benchmarks with scientific applications are typi
cally used, and response time to complete a benchmark is the metric. For other
server environments, benchmarks of Web serving, file serving, and databases are
commonly used. These server benchmarks usually emphasize throughput, albeit
with possible requirements on response time to individual events, such as a database
query or Web page request. Section 4.4 exa mines the SPECweb99 benchmark
designed to test Web server performance. In embedded computing, good bench
marks are much more rare. Often customers use their specific embedded applica
tion or a segment of it for benchmarking purposes. The one major benchmark suite
developed for embedded computers is EEMBC, and we discuss those benchmarks
in the In More Depth section on the CD.

Once we have selected a set of suitable benchmarks and obtained performance
measurements, we ca n write a performance report. The guiding principle in
repo rting performance measurements should be reproducibility-we should list
everything another experimenter would need to duplicate the results. This list
must include the version of the operating system , compilers, and the input , as well
as the computer configuration. As an exa mple, the system description section of a
SPEC CPU2000 benchmark report is in Figure 4. 3.

One impo rtant element of reproducibility is the choice of input. Different
inputs ca n generate quite different behavior. For exa mple, an input ca n trigger
certain execution paths that may be typical, o r it may exercise rarely used, and
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Hardware

Hardware vendor Dell

Model number Precision WorkStation 360 (3.2 GHz Pentium 4 Extreme Edition)

CPU Intel Pentium 4 (BOO MHz system bus)

CPU MHz 3200

FPU Integrated

CPU{s) enabled 1

CPU{s) orderable 1

Parallel No
Primary cache 12K{I) micro-<lps + 8KB{D) on chip

Se<:ondary cache 512KB(I+D) on chip

L3 cache 2048KB{I+D) on chip

Other cache NfA
Memory 4 x 512MB ECC DDR400 SDRAM CL3

Disk subsystem 1x 80GB AlA/lOO 7200 RPM

Other hardware

Software

Operating system Windows XP Professional SPl

Compiler Intel C++ Compiler 7 .1 (20030402Zj

Microsoft Visual Studio.NET (7.0 .9466)

MicroQuili SmartHeap Library 6 .0 1

File system type NTFS

System state Default

FIGURE 4.3 System description of a desktop system using the fastest Pentium 4 avail
able In 2003. In addition to this formatted mandatory description, there are 23 lines of notes describing
special flag settings used for portability (4), optimization (2), truling (12), base timing (2), a special library
(2), and BIOS setting (I ).

hence less important, pa rts of an application. Some of the most important effects
from the input set are in the memo ry system. Larger input sets tend to stress the
memo ry system to a grea ter extent , and the use of realistically sized workloads in
servers both for commercial and scientific applications is critica l if a benchmark is
intended to predict what rea l applications may see.

Comparing and Summarizing Performance

Once we have selected programs to use as benchmarks and agreed on whether we
are measuring response time or throughput, you might think that performance
comparison would be straightforwa rd. However, we must still decide how to sum
marize the performance of a group of benchmarks. Although summarizing a set of
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Program 1 (seconds)

Program 2 (seconds)

Total time (seconds)

Computer A

1

1000

1001

Computer B

10

100

110
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FtGURE 4.4 Execution times of two programs on two different
computers. T.'lken from Figure I of Smith [19881.

measurements results in less information , marketers and even users oft en prefer to
have a single number to compare performance. The key question is, How should a
summary be computed? Figure 4.4, which is abstracted from an article about sum
marizing performance, illustrates some of the difficulties facing such efforts.

Using our definition of faster, the following statements hold fo r the p rogram
measurements in Figure 4.4:

• A is 10 times faster than B for p rogram 1.

• B is 10 times faster than A for program 2.

Taken individually, each of these statements is true. Collectively, however, they
present a confusing picture-the relative performance of computers A and B is unclear.

Total Execution Time: A Consistent Summary Measure

The simplest approach to summarizing relative performance is to use total execu 
tion time of the two programs. Thus

PerformanceB

Perfo rmanceA

Execution timeA

Execution timeB

1001
110

9.1

That is, B is 9.1 times as fast as A for program s I and 2 together.
This summary is directly proportional to execution time, our final measure of

performance. If the wo rkload consists of running program s I and 2 an equal
number of times, this statement would predict the relative execution times fo r the
workload on each computer.

The average of the execution times that is directly proportional to total execu 
tion time is the arithmetic mean (AM):

"
AM ~L Timei

; =0 t

arithmetk mean The average
of the execution times that is
directly proportional to total
execution time.
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weighted arithmetic mean
An average of the execution
time of a workload with weight
ing factors design ed to reflect
the presence of the programs in
a workload; computed as the
sum of the products of weight
ing factors and execution times.

where Time; is the execution time for the ith program of a total of n in the work
load. Since it is the mea n of execution times, a smaller mea n indicates a smaller
average execution time and thus imp roved performance.

The arithmetic mean is proportional to execution time, assuming that the pro
grams in the workload are each run an equal number of times. Is that the right
workload? If not, we can assign a weighting factor wi to each program to indicate
the frequency of the program in that workloa d. If, for exa mple, 20% of the tasks in
the workload were program 1 and 80% of the tasks in the workload were program
2, then the weighting factors would be 0.2 and 0.8. By summing the products of
weighting factors and execution times, we can obtain a clear picture of the perfor
mance of the workload. This sum is called the weighted arithmet ic m ean . One
method of weighting program s is to choose weights so that the execution time of
each benchmark is equal on the computer used as the base. The standard arith 
metic mea n is a specia l case of the weighted arithmet ic mean where all weights are
equal. We explore the weighted mea n in more detail in Exercises 4.1 5 and 4.1 6.

Check
Yourself

1. Suppose you are choosing between four different desktop computers: one is
an Apple Macintosh and the other three are PC-compatible computers that
use a Pentium 4, an AMD processor (using the sa me compiler as the Pen
tium 4), and a Pentium 5 (which does not yet exist in 2004 but has the sa me
architecture as the Pentium 4 and uses the sa me compiler). \Vhich of the
following statements are true?

a. The fastest computer will be the one with the highest clock rate.

b. Sin ce all PCs use the sa me Intel-compatible instruction set and execute
the sa me number of instructions for a program , the fastest PC will be
the one with the highest clock rate.

c. Sin ce AMD uses different techniques than Intel to execute instructions,
they may have different CPI s. But, you ca n still tell which of the two
Pentium -based PCs is fastest by looking at the clock rate.

d. Only by looking at the results of benchmarks for tasks similar to your
workload ca n you get an accurate picture of likely performance.

2. Assume the following measurements of execution time were taken:

Computer BComputer A

~I ==""":'":":":=== ====-;~":=:====
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\Vhich of the following statements is true?

a. A is faster than B for program 1.

b. A is fa ster than B for program 2.

c. A is faster than B for a workload with equal numbers of executions of pro
gra m I and 2.

d. A is faster than B for a workload with twice as many executions of program
I as of program 2.

25.

Real Stuff: Two SPEC Benchmarks
and the Performance of Recent
Intel Processors

SPEC (System Performance Evaluation Corporation) is an effort fund ed and
supported by a number of computer vend ors to create standard sets of bench
marks for m odern co mputer systems. It began in 1989 focusing on benchmark
in g workstations and servers using CPU- intensive benchmarks. (A more
detailed histo ry is co ntained in Section 4. 7.) Today, SPEC offers a dozen differ
ent benchmark sets designed to test a w ide variety of computing environments
u sing real applications and strictly specified execution rules and reporting
requirem ents. The SPEC benchmark sets include benchmarks for CPU perfor
mance, graphics, high -performan ce computing, object -oriented computing,
lava applications, client-server m odels, mail syste m s, fil e system s, and \Veb serv
ers. In this section, we exa mine the performance of a variety of Dell computer
systems that use Pentium III and Pentium 4 processors usin g a CPU perfor
mance benchmark and a Web-oriented system benchmark.

Performance with SPEC CPU Benchmarks

The latest release of the SPEC CPU benchmarks is the SPEC CPU2000 suite,
which consists of 12 integer and 14 fl oating-point programs, as shown in Figure
4. 5. The SPEC CPU benchmarks are intended to measure CPU performance,
although wa ll clock time is the reported m easurem ent. Separate summaries are
reported for the integer and fl oating-point benchmark sets. The execution time
measurem ents are first normalized by dividing the execution time on a Sun Ultra
5_ 10 with a 300 MHz processor by the execution time on the m easu red computer;
this normalization yields a m easure, ca lled the SPEC ratio, which has the advan
tage that bigger numeric results indicate faster performance (i.e., SPEC ratio is the
inverse of execution time). A CINT2000 or C FP2000 summary m easurement is
obtained by taking the geometric m ean of the SPEC ratios. (See the In More
Depth section on the CD for a discussion of trade-offs in u sing geom etric m ea n.)

system performance evalua
tion cooperative (SPEC)
benchmark A set of standard
CPU-intensive, integer and
floating point benchmarks
based on real programs.
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Integer benchmarks FP benchmarks

Description

gzip

'p'
goo

mol

crafty

parser

pertbmk

g,p

vortex

bzip2

twolf

Compression

FPGA cin:uit placement and routing

The Gnu C compiler

Combinatorial optimization

Chess program

Word processing program

Computer visualization

pert application

Group theory, interpreter

Obje<:t~riented database

Compression

Place and rote simulator

wupwise

swim

applu

mesa

galgel

,rt

equake

fac erec

ammp

lucas

fma3d

sixtrack

apsi

Quantum chromodynamics

Shallow water model

Multigrid solver in 3.Q potential f ield

Parabolic/ elliptic partial differential equation

Three-dimensional graphics library

Computational fluid dynamics

Image re<:ognition using neural networks

Seismic wave propagation simulation

Image re<:ognition of faces

Computational chemistry

Primality testing

Crash simulation using finite-element method

HiglHmergy nuclea r physics accelerator design

Meteorology: pollutant distribution

FIGURE 4.5 The SPEC CPU2000 benchmarks. The 12 integer benchntarks in the left half of the
table are written in C and C++, while the floating-point benchmarks in the right half are written in Fortran
(77 or 90) and C. For more information on SPEC and on the SPEC benchmarks, see www.spec.org. The
SPEC CPU benchmarks use wall dock t inte as the metric, b ut because there is little 110, they measure CPU
performance.

For a given instruction set architecture, lIlcreases III CPU performance can
come from three sources:

1. Increases in clock rate

2. Improvements in processo r orga nization that lower the CPI

3. Compiler enhancements that lower the instruction count or generate
in structions with a lower average CPI (e.g., by using simpler instructions)

To illustrate such performance improvements, Figure 4.6 shows the SPEC
CINT2000 and CFP2000 measurements for a series of Intel Pentium III and Pen
tium 4 processo rs measured using the Dell Precision desktop computers. Since
SPEC requires that the benchmarks be run on real hardwa re and the memory sys
tem has a significa nt effect on perfo rmance, other systems with these processors
may p roduce different performance levels. In addition to the clock rate differ
ences, the Pentium III and Pentium 4 use different pipeline structures, which we
describe in mo re detail in Chapter 6.

There are several important observations from these two performance graphs.
First, observe that the performance of each of these processors scales almost lin 
ea rly with clock rate increases. Often this is not the case, since losses in the mem -
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FtGURE 4.6 The SPEC CINT2000 and CFP2000 ratings for the Intel Pentium III and Pen
tium 4 processors at different clock speeds. SPEC requires two sets of measurements: one that
allows aggressive optimization with benchmark-specific switches, and one that allows only the standard
optimization switches (called the "base" measurements) . This chart contains base measurements; for the
integer benchmarks the differences are small. For more details on SPEC, see www.spec.org. The Pentium 4
Extreme (a version of the Pentium 4 introduced in late 2003) is not included in these resu lts, since it uses a
different cache architecture than the rest of the PentiwlI 4 processors.

o ry system , which we discuss in Chapter 7, oft en wo rsen with higher clock rates.
The st rong perfo rmance of these p rocessors is due both to the aggressive cache
systems used in these processors, and the inability of many of the SPEC bench 
marks to stress such a memory system.

Comparing the Pentium III and Pentium 4 performan ces yields even more
interesting insights. In particula r, note the relative positions of the CINT2000 and
CFP2000 curves for the Pentium III versus the Pentium 4. One ca n quickly draw
the inference that the Pentium 4 is either relatively better than the Pentium III on
floating-point benchmarks o r relatively worse on integer benchmarks. But, which
is the case?

The Pentium 4 uses a more advanced integrated ci rcuit technology as well as a
more aggressive pipeline structure, both of which allow for a significa nt clock rate
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increa se. One comparison that is particularly interesting is the SPEC CINT2000
and CFP2000 measurement divided by the clock rate in MHz. The following
tables summarizes the average value of this ratio across different clock rates for
each processor:

Ratio Pentium III Pentium 4

CINT2000 / Clock rate in MHz 0.47 0 .36

CFP2000/ Clock rate in MHz 0.34 0 .39

Metrics such as benchmark performance divided by clock rate are sometimes
thought of as measurements of implementation efficiency, although , as we have
seen, one cannot sepa rate the interaction of clock rate and other improvements.

These measurements are particularly interesting because of the differences between
the integer and floating-point bendlmarks. The CINT2000 performance ratios are
typical: when a faster version of a processor is introduced it may sacrifice one aspect of
a design (such as CPI ) to enhance another (SUdl as clock rate). Assuming one com 
piler for both processors, and hence identical code, the CINT2000 ratios tell us that
the CPI of the Pentium 4 is 1.3 (0.47/0.36) times that of the Pentium 3.

How then ca n these numbers be reversed for the floating-point benchmarks?
The answer is that the Pentium 4 provides a set of new instructions (called the
Strea ming SIMD Extensions 2; see Chapter 3) that provide a significa nt boost for
fl oating point. Thus, both the instruction count and the CPI for the Pentium 4
will differ from that of the Pentium 3, producing improved performance.

SPECweb99: A Throughput Benchmark for Web Servers

In 1996, SPEC introduced its first benchmark designed to measure Web server
performance; the benchmark was superseded by a new version in 1999.
SPECweb99 differs from SPEC CPU in a number of ways:

• SPECweb99 focuses on throughput, measuring the ma ximum number of
connections that a system running as a Web server ca n support. The system
must provide response to a client request within a bounded time and with a
bounded number of errors.

• Because SPECweb99 measures throughput, multiprocessors (systems with
m ore than one CPU) are often used in benchmarks.

• SPECweb99 provides only a program to generate Web server requests; the
\Veb server softwa re becomes part of the system being measured.

• SPECweb99 performance depends on a wide measure of system characteris
tics, including the disk system and the netwo rk.
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Number Number Clock
of disk Number of rate

System Processor drives of CPUs networks (GHz) Result

1550/ 1000 Pentium III 2 2 2 1 2765

1650 Pentium III 3 2 1 1 .4 1810

2500 Pentium III 8 2 4 1.13 3435

2550 Pentium III 1 2 1 1.26 1454

2650 Pentium 4 Xeon 5 2 4 3 .06 5698

4600 Pentium 4 Xeon 10 2 4 2 .2 4615

6400/ 700 Pentium III Xeon 5 4 4 0 .7 4200

6600 Pentium 4 Xeon MP 8 4 8 2 6700

8450/ 700 Pentium III Xeon 7 8 8 0 .7 8001

FtGURE 4.7 SPECweb9999 performance for a variety of Dell PowerEdge systems using
the Xeon versions of the Pentium III and Pentium 4 microprocessors.

To show how these characteristics produce a remarkably va ried picture of Web
server performance, we selected the SPECweb99 results for a series of Dell Power
Edge servers that use the Xeon versions of the Pentium III and Pentium 4 proces
sors. The Xeon processo rs are built using the basic structure of the Pentium 1lI or
Pentium 4, but support multiprocessing. In addition the Xeon MP supports a third
level of off-chip cache and can support more than two processors. The results for a
va riety of these Dell systems are shown in Figu re 4.7.

Looking at the data in Figure 4.7, we ca n see that clock rate of the processo rs is
clea rly not the most important factor in determining Web server performance. In
fact, the 8400 has twice as many slow processors as the 6600 and yet offers better
perfo rmance. We expect these systems to be configured to achieve the best perfor
mance. That is, fo r a given set of CPUs, disks and additional networks are added
until the processor becomes the bottleneck.

Performance, Power, and Energy Efficiency

As mentioned in Chapter 1, power is in creasingly beco min g th e key limitation
in p rocesso r performance. In th e embed ded m arket, where m any processo rs
go int o enviro nm ent s that rely solely on passive cooling o r on ba ttery power,
power consum ption is often a constraint th at is as import ant as performance
and cost.

No doubt, many readers will have encountered power limitations when using
their laptops. Indeed, between the challenges of removing excess heat and the lim
itations of battery life, power consumption has become a critical factor in the

263
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design of processors for laptops. Battery capacity has improved only slightly over
time, with the major improvements coming from new m aterials. Hence, the abil
ity of the processor to operate effi ciently and conserve power is crucial. To save
power, techniques ranging from putting parts of the computer to sleep, to reduc
ing clock rate and voltage, have all been used. In fact, power consumption is so
impo rtant th at Intel has designed a line of processo rs, the Pentium M series, spe
cifica lly fo r mobile, battery-powered applications.

As we discussed in Chapter 1, for CM OS technology, we can reduce power by
reducing frequency. Hence, recent processors intended fo r laptop use all have the
ability to adapt frequency to reduce power consumption, simultaneously, of
course, reducing perfo rmance. Thus, adequately evaluating the energy effi ciency
of a processor requires exa mining its performance at maximum power, at an
intermediate level that conserves battery life, and at a level th at maximizes battery
life. In the Intel Mobile Pentium and Pentium M lines, there are two available
clock rates: m aximum and a reduced clock rate. The best performance is obtained
by running at maximum speed , the best battery life by running always at the
reduced rate, and the intermediate, performance-power optimized level by
switching dynamically between these two clock rates.

Figure 4.8 shows the performance of three Intel Pentium p rocessors designed
fo r u se in mobile applications running SPEC CINT2000 and SPEC CFP2000 as
benchmarks. As we ca n see, the newest p rocesso r, the Pentium M , has the best
performance when run a full clock speed , as well as with the adaptive clock rate
mode. The Pentium M's 600 M Hz clock makes it slower when run in minimum
power mode th an the Pentium 4-M, but still faster than the older Pentium lIl -M
design.

For power-limited applica tions, the m ost im po rtant m etric is probably
energy effi ciency, which is computed by taking perfo rmance and dividing by
average power consumption when running the benchmark. Figure 4. 9 shows th e
rela tive energy effi ciency fo r these processors running the SPEC2000 ben ch 
marks.This data clea rly shows the energy efficiency advantage of the newer Pen 
tium M design . In all three modes, it h as a significa nt adva ntage in energy
effi ciency over the mobile version s of the Pentium III and Pentium 4. Notice
that the Pentium 4-M has only a slight effi ciency adva ntage over the Pentium
llI -M. This data clea rly shows the adva ntage of a processor like the Pentium M,
which is designed for reduced power usage fro m the start, as opposed to a
design like the Pentium llI -M or Pentium 4-M, which are modified version s of
the standard processors. Of course, adequately measuring energy effi ciency also
requires the use of additional benchmarks designed to refl ect h ow users employ
battery- powered com puters. Both PC review magazines and Intel's technical
journal regularly undertake such studies.
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1.6

1.4

• Pentium M @ 1.610 .6 GHz

• Pentium 4-M @ 2.411.2 GHz

D Pentium III -M@ 1.210.8GHz

1.2

0.4

o.o-P-

0.2

SPECINT2000 SPECFP2000 SPECINT2000 SPECFP2000 SPECINT2000 SPECFP2000

Always on/maximum clock Laptop mode/adaptive
dod<

Benchmark and power mode

Minimum power/minimum
clock

FtGURE 4.8 Relative performance of three Intel processors on SPECINT2000 and
SPECFP2000 In three different modes. Each processor operates 3ttwo different dock rates, listed in
the legend.

Which of the following one-processor Pentium III configurations is likely to pro
duce the best performance on SPECweb99 based on the data in Figure 4.7?

a. 1.26 GHz processor, I disk, I network connections

b. I GHz processor, 6 disks, 3 network connections

c. 1.1 GHz processor, 2 disks, 2 network connections

Check
Yourself



266 Chapter 4 Assessing and Understanding Performance

6

5

4
il'c•:l;l
';j 3•.,••'" 2

• Pentium M @ 1.610 .6 GHz

• Pentium 4-M @ 2.4 GHz
o Pentium III-M @ 1.2 GHz
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SPECINT2000 SPECFP2000 SPECINT2000 SPECFP2000 SPECINT2000 SPECFP2000

Always on/maximum clock Laptop mcxlefadaptive
clock

Benchmark and power mode
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FIGURE 4.9 The relative energy efficiency of three mobile Pentium processors running
SPEC2000 In three modes. Energyefficiencyis me.'\Sured as the inverseofjoulesoonswned per benchmark,
which is computed by dividing the inverse of the execution time for a benchmark by the w:lttsdissiJXlled.

Fallacies and Pitfalls

Cost/performance fallacies and pitfalls have ensnared many a computer architect,
including liS. Accordingly, this section suffers no shortage of releva nt examples.
We sta rt with a pitfall that has trapped many designers and reveals an important
relationship in com puter design.

Pitfall: Expecting the improvement ofone aspect ofa compl/ter to increase perfor
mance by an amount proportional to the size of the improvement.

TIlis pitfall has visited designers of both hardware and software. A simple design prob
lem illustrates it well. Suppose a program mns in 100 seconds on a computer, with
multiply operations responsible for 80 seconds of this time. How much do I have to
improve the speed of multiplication if I want my program to run five times faster?
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The execution time of the program after I make the improvement is given by
the following simple equation known as Amdahl's law:

Execution time after improvement

(
Execution time affected by improvement + Execution time unaffected)

Amount of improvement

For this problem:

Execution time after improvement = 80 seconds + (100 _ 80 seconds)
n

Since we wa nt the performance to be fi ve times faster, the new execution time
should be 20 seconds, giving

20 seconds = 80 seconds + 20 seconds

"
80 seconds

0=
n

That is, there is no amOll1lt by which we ca n enhance multiply to achieve a fivefold
increase in performance, if multiply accounts for only 80% of the workload. The
performance enhancement possible with a given improvement is limited by the
amount that the improved feature is used.

This concept also yields what we call the law of diminishing returns in everyday
life. \¥e ca n use Amdahl's law to estimate performance improvements when we
know the time consumed for some function and its potential speed up. Amdahl's
law, together with the CPU performance equation , are handy tools for evaluating
potential enhan cements. Amdahl's law is explored in more detail in the exercises
and in the II In More Depth: Amdal's Law on the CD.

A comm on theme in hardwa re design is a corollary of Amdahl's law: Make the
common case fast. This simple guideline reminds us that in many cases the fre
quency with which one event occurs may be much higher than another. Amdahl's
law reminds us that the opportunity for improvement is affected by how much
time the event consumes. Thus, making the common case fast will tend to
enhan ce performance better than optimizing the rare case. Ironically, the com
mon case is often simpler than the rare case and hence is often easier to enhance.

Pitfall: Using a subset of the performance equation as a performance metric.

We have already shown the fallacy of predicting performance based on simply one
of clock rate, instruction count, or CP I. Another common mistake is to use two of
the three factors to compare performance. Although using two of the three factors
may be valid in a limited context, it is also easily misused. Indeed , nea rly all pro
posed alternatives to the use of time as the performance metric have led evennlally
to misleading claims, distorted results, or in correct interpretations.
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Amdahl's law A rule stating
that the performance
enhancement possible with a
given improvement is limited by
the amount that the improved
feature is used.
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One alternative to time as the metric is MIPS (million instructions per second).
For a given program , MIPS is simply

Exec uti o n time X 106

This MIPS measu rement is also ca lled native MIPS to distinguish it from some
alternative definitions of MI PS that we discuss in II in Section 4.8 on the CD.

Since MIPS is an instruction execution rate, MIPS specifies performance
inversely to execution time; faster computers have a higher MIPS rating. The good
news about MIPS is that it is easy to understand, and faster computers mea n big
ger MIPS, which matches innlition.

There are three problems with using MIPS as a measure fo r comparing com 
puters. First , MIPS specifies the instruction execution rate but does not take into
account the capabilities of the in structions. We cann ot compare computers with
different instruction sets using MIPS, since the instruction counts will certainly
differ. In our ea rlier example exa mining the SPEC CFP2000 performance, using
MIPS to compare the performan ce of the Pentium III and Pentium 4 would yield
misleading results. Second, MIPS va ries between programs on the sa me com 
puter; thus a computer cannot have a single MIPS rating for all programs. Finally
and most impo rtantly, MIPS ca n va ry inversely with performance! There are
many exa mples of this anomalous behavior; one is given below.

million instructions per sec
ond (MIPS) A measurement of
program execution speed based
on the number of millions of
instructions. MIPS is computed
as the instruction count divided
by the product of the execution
time and 1(1'.

MIPS = Instruction count

EXAMPLE

MIPS as a Performance Measure

Consider the computer with three in struction classes and CPI measurements
from the last exa mple on page 252. Now suppose we measure the code for the
same program from two different compilers and obtain the following data:

Instruction counts (In billions)
for each Instruction class

Code from

Compiler 1

Compiler 2

5

10

1

1

1

1

Assume that the computer's clock rate is 4 GHz. \Vhich code sequence will
execute faster according to MIPS? According to execution time?
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First we find the execution time for the two different compilers using the fol
lowing equation: ANSWER

Execution time
CPU clock cycles

Clock rate

We ca n use an ea rlier fo rmula fo r C PU clock cycles:

"
C PU clock cycles = L (CPI j XCi )

; = I

CPUclock cycles\ = (5 x l + 1 x2+ 1 X 3) X 109 = lOx 109

CPU clockcycles2 = ( lOX 1 + 1 X 2+ 1 X 3)X 109 = 15 X 109

= 2.5 secondsExecution time\ =

Now, we find the execution time for the two compilers:

10 X 109

4 X 109

Execution time2 3.75 seconds

So, we conclude that compiler 1 genera tes the faster program, according to
execution time. Now, let's compute the MIPS rate for each version of the pro
gram, USlllg

MIPS Instruction count
Execution time X 106

(5 + 1 + 1) X109 = 2800

2.5 X 10
6

MIPS
2

= (10 + 1 + 1) X 10
9 = 3200

3.75(30) X 10
6

So, the code from compiler 2 has a higher MIPS rating, but the code from
compiler 1 runs faster!
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As examples such as this show, MIPS ca n fail to give :I true pienne of
performance-even when comparing two versions of the sa me program on the
sa me computer. In Section 2.7, we discuss other uses of the term MI PS, and how
such usages ca n also be mislead ing.

Consider the following performance measurements fo r a program:

Measurement Computer A Computer B

Instruction count 10 billion 8 billion

Clock rate 4 GHz 4 GHz

ePi 1.0 1.1

3. \Vhich computer ha s the higher MIPS rating?
b. Which computer is faster?

Concluding Remarks

Although we have focused on performance and how to eva luate it in this chapter,
designing only for performance without considering cost, functionality, and other
requirements is unrealistic. All computer designers must balance performance
and cost. Of course, there exists a domain of high-performance design, in which
performance is the primary goa l and cost is secondary. Much of the supercom
puter and high-end server industry designs in this fashion. At the other extreme is
low-cost design, typified by the embedded market, where cost and power take pre
cedence over performance. In the middle are most desktop designs, as well as low
end servers; these computers require cost/performance design, in which the
designer balances cost against performance. Exa mples from the desktop computer
industry typify the kinds of trade-offs that designers in this region must live with.

We have seen in this chapter that there is a reliable method of determining and
reporting performance, using the execution time of real programs as the metric.
This execution time is related to other important measurements we ca n make by
the following equation:

Seconds
Program

Instructions X Clock cycles X Seconds
Program Instruction Clock cycle
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We will use this equation and its constituent factors many times. Remember,
though, that individually the factors do not determine perfo rmance: Only the
product, which equals execution time, is a reliable measure of perfo rmance.

Execution time is the only valid and unimpeachable measu re of perfor
mance. Many other metrics have been proposed and found wa nting.
Sometimes these metrics are flawed from the start by not reflecting exe
cution time; other times a metric valid in a limited context is extended
and used beyond that context or without the additional clarification
needed to make it va lid.

Similarly, any measure that summarizes performance should reflect
execution time. Weighted arithmetic mea ns summarize performance
while tracking execution time. Through the use of weights, a weighted
arithmetic mean can adjust for different running times, balancing the
contribution of each benchmark to the summary.

Of course, simply knowing this equation is not enough to guide the design or
evaluation of a computer. We must understand how the different aspects of a
design affect each of these key pa rameters. This insight involves a wide va riety of
issues, from the effectiveness of the com piler, to the effects of instruction set
design on instruction count, to the impact of pipelining and memory systems on
CPl , to the interaction between the techn ology and orga niza tion th at determine
the clock rate. The art of computer design and evaluation lies not in plugging
numbers into a performance equation , but in accurately determining how alter
natives will affect performance and cost.

Most computer users ca re about both cost and perfo rmance. \-Vhile under
standing the relationship among aspects of a design and its performance is chal
lenging, determining the cost of va rious design features is often a more difficult
problem. The cost of a computer is affected not only by the cost of the compo
nents, but by the costs of labor to assemble the com puter, of resea rch and develop
ment overhead, of sa les and marketing, and of the profit margin. Finally, because
of the rapid change in implementation technologies, the most cost-effective
choice today is often suboptimal in six month s or a yea r.

Computer designs will always be measured by cost and performance, as well as
other important factors such as power, reliability, cost of ownership, and scalabil
ity. Although this chapter has focused on perfo rmance, the best designs will strike
the app ropriate balance for a given market among all these factors.

The BIG
Picture
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Historical Perspective and Further
Reading

This section , which reviews the histo ry of performance measurement and bench
marking, appears as Section 4.7011 the . C D.

Exercises

4.1 [5J <§4.i > We wish to compare the performance of two different
computers: M 1 and M2. The following measurements have been made on these
computers:

Program Time on Ml Time on M2

1 2 .0 se<:onds 1.5 seconds

2 5.0 seconds 10 .0 seconds

Which computer is faster for each program , and how many times as fast is it?

4.2 [5J <§4.i > Consider the two computers and program s in Exercise 4.1. The
following additional measurements were made:

Program

1

Instructions executed on Ml Instructions executed on M2

Find the instruction execution rate (instructions per second) for each computer
when running program 1.

4.3 [SJ <§4.1 > Suppose that M I in Exercise 4.1 costs $500 and M2 costs $800. If
you needed to run program I a large number of times, which computer would you
buy in large quantities? Why?

4.4 [ IO J <§4.1 > • For More Practice: Cost-Effective Computing

4.5 [SJ <§4.1 > • For More Practice: Cost-Effective Computing

4.6 [SJ <§4.1 > Another user has the following requirements for the computers
discussed in Exercise 4.1: PI must be executed 1600 times each hour. Any remain 
ing time is used to run P2. If the computer has enough performance to execute
program I the required number of times per hour, then performance is measured



4.8 Exercises 273

by the th roughput for program 2. Which computer is faster for this wo rkloa d?
Which computer is more cost -effective?

4.7 [ IO J <§4.2> Suppose you wish to run a program P with 7.5x 109 instructions
on a 5 GHz machine with a CPl of 0.8.

a. What is the expected CPU time?

b. When you run P, it takes 3 seconds of wa ll clock time to complete. What is
the percentage of the CPU time P received?

4.8 [ IO J <§4. 2> Consider two different implementations, PI and P2, of the sa me
instruction set. There are five classes of in structions (A, B, C, 0 , and E) in the in 
struction set.

P I has a clock rate of 4 GHz. P2 has a clock rate of 6 GHz. The average number of
cycles for each instruction class fo r PI and P2 is as follows:

CPI on PI CPI on P2

A 1 2

B 2 2

C 3 2

D 4 4

E 3 4

Assume that peak performance is defined as the fastest rate that a computer can
execute any instruction sequence. What are the peak perfo rmances of P I and P2
expressed in instructions per second ?

4.9 [5J <§§4.1-4.2> If the number of instructions executed in a certain program
is divided equally among the classes of instructions in Exercise 4.8 except for class
A, which occurs twice as oft en as each of the others, how much faster is P2 th an PI ?

4.10 [12J <§4.2> Consider two different implementations, 1I and 12, of the same
instmction set. There are three classes ofinstructions (A, B, and C) in the instruction
set. 1I has a clock rate of 6 GHz, and 12 has a clock rate of3 GHz. The average number
of cycles for each instmction class on 1I and 12 is given in the following table:

C3 UsageC2 UsageCl UsageCPI on M2CPI on MlElIII
1~ 1---;;:-- --~~;--- --~:~:;;;-- _~~;oo;;;:__ --~:~::;;--
The table also conta ins a summary of average proportion of instruction classes gen
erated by three different compilers. C I is a compiler p roduced by the makers of 1I,
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C2 is produced by the makers of 12, and the other compiler is a third -pa rty product.
Assume that each compiler uses the same number of instmctions for a given pro
gram but that the instruction mix is as described in the table. Using C i on both II
and 12, how much faster can the makers of I1 claim II is compared to 12? Using C2,
how much faster ca n the makers of 12 claim that 12 is compared to I I? If you pur
chase I I, which compiler would you use? If you purchased 12, which compiler would
you use? Which computer and compiler would you purcllase if all other criteria are
identical, including cost?

4.11 [5J <§4.2 > Consider program P, which runs on a 1 GHz machine Min 10
seconds. An optimization is made to P, replacing all instan ces of multiplying a va l
ue by 4 (mult X, X,4) with two instructions that set x to x + x twice (add X,X; add
X,X). Call this new optimized program P'. The CPI of a multiply instruction is 4,
and the CPI of an add is 1. After recompiling, the program now runs in 9 seconds
on ma chine M. How many multiplies were replaced by the new compiler?

4.12 [5 J <§4.2> Your company could speed up a Java program on their new com 
puter by adding hardware support for ga rbage collection. Garbage collection cur
rently comprises 20% of the cycles of the program. You have two possible changes
to the machine. The first one would be to automatically handle ga rbage collection
in hardware. This causes an increase in cycle time by a factor of 1.2. The second
would be to provide for new hardware instructions to be added to the ISA that
could be used during garbage collection. This would halve the number of instruc
tion needed for garbage collections but increase the cycle time by 1.1. Which of
these two options, if either, should you choose?

4.13 [5J <§4.2> For the following set of variables, identify all of the subsets that
ca n be used to calculate execution time. Each subset should be minimal; that is, it
should not contain any va riable that is not needed.

{CPI , clock rate, cycle time, MIPS, number of instructions in program, number of
cycles in program}

4.14 [5 J <§4.2> The table below shows the number of floating-point operations
executed in three different programs and the runtime for those programs on three
different computers:

Floating-point Execution time In seconds

Program operations Computer A Computer B Computer C

Program 1 5x109 2 5 10

Program 2 20x109 20 20 20

Program 3 40x109 200 50 15

Which computer is fastest acco rding to total execution time? How many times as
fast is it compared to the other two computers?
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4.15 [ IS) <§§4.2, 4.3> One user has told you that the three programs in Exercise
4.14 constitute the bulk of his workload , but he does not run them equally. The
user wa nts to determine how the three computers compare when the workload
consists of different mixes of these three programs. (You know you ca n use the
arithmetic mean to find the relative performance.)

Suppose the total number of floating- point operations (FLOPs) executed in the
workloa d is equally divided am ong the three p rograms. That is, program 1 runs 8
times for every time program 3 runs, and program 2 run s twice for every time
program 3 runs. Find which computer is fastest forth is wo rkload and by what fa c
tor. How does this compare with the total execution time with equal numbers of
p rogram executions?

4.16 [15J <§§4.2, 4. 3> An alternative weighting to that of Exercise 4.1 5 is to assume
that equal amounts of time will be spent running each p rogram on one of the com
puters. Which computer is fastest using the data given for Exercise 4.14 and assum
ing a weighting that generates equal execution time for each of the benchmark
p rograms on computer A? Which computer is fastest if we assume a weighting that
generates equal execution time on computer B? Computer C? Explain the results.

4.17 [5 J <§§4.2-4.3> If the clock rates of computers M 1 and M2 in Exercise 4.1
are 4 GH z and 6 GHz, respectively, find the clock cycles per instruction (CPI) for
program 1 on both computers using the data in Exercises 4.1 and 4. 2.

4.18 [5J <§§4.2-4.3> Assuming the CPI for program 2 on each co mputer in
Exercise 4.1 is the sa me as the CPI for program 1 found in Exercise 4.1 7, find the
instruction count for program 2 running on each computer using the execution
times from Exercise 4.1.

4.19 [5J <§4. 3> !II In More Depth: Amdahl's Law

4.20 (10 ) <§4. 3> II In More Depth: Amdahl's Law

4.21 (10 ) <§4. 3> II In More Depth: Amdahl's Law

4.22 [5J <§4. 3> II In More Depth: Amdahl's Law

4.23 [5J <§4. 3> {II In More Depth: Amdahl's Law

4.24 [20) <§4. 3> II In More Depth: Amdahl's Law

4.25 [5J <§4. 3> !II In More Depth: Choosing the Right Mea n

4.26 [ IS) <§4. 3> II In More Depth: Choosing the Right Mea n

4.27 [3 hours) <§4.3> !II In More Depth: Synthetic Benchmarks: Attempts to
Replicate "Typical" Behavio r

4.28 [3 hours) <§4.3> • In More Depth: Synthetic Benchmarks: Attempts to
Replicate "Typical" Behavio r
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4.29 [4 hours ) <§4. 3> II In More Depth: MIPS, MOP S, and Other FLOPS

4.30 [51<§4. 3> . In More Depth: M FLOPS as a Performance Metric

4.31 [15) <§4. 3> .. In More Depth: MFLOPS as a Perfo rm ance metric

4.32 [4 hours ) <§4. 3> II In More Depth: MFLOPS as:1 Perfo rmance Metric

4.33 [51<§4. 3> .. In More Depth: Embedded Benchmarks

4.34 [20 ) <§§4.2, 4.3> II In More Depth: Using Hardwa re- Independent Metrics
to T ry to Pred ict Performance

4.35 (10 ) <§§4. 2, 4. 3> .. For More Practice: An alyzing a Processo r with Float 
ing- Point Implemented in Hardwa re or Softwa re

4.36 (10 ) <§§4. 2, 4. 3> • For More Practice: Analyzing a Processor with Float 
ing point implemented in Hardwa re o r Softwa re

4.37 [51<§§4.2, 4.3> III For More Practice: Analyzing a Processor with Floating
Point Implemented in Hardware o r Softwa re

4.38 ( 10 ) <§§4. 2, 4. 3> II For More Practice: Analyzing Enhancem ents to a
Processo r

4.39 (5 ) <§§4. 2, 4. 3> II For More Practice: Analyzing Enhancements to a
Processor

4.40 ( 10 ) <§§4. 2, 4. 3> II For More Practice: Analyzing Enhancem ents to a
Processor

4.41 (5 ) <§§4. 2, 4. 3> .. For More Practice: Analyzing Enhancements to a
Processor

4.42 (5 ) <§§4. 2, 4. 3> .. For More Practice: Analyzing Enhancements to a
Processo r

4.43 ( 10 ) <§§4. 2, 4. 3> .. For More Practice: Analyzing Enhancem ents to a
Processo r

4.44 ( 10 ) <§§4. 2, 4. 3> .. For More Practice: Analyzing Enhancem ents to a
Processo r

4.45 (5] <§4.3> Assume that multiply in stmctions take 12 cycles and account for
15% of the instructions in a typica l program, and the other 85% of the in structions
require an average of 4 cycles fo r each instmction. What percentage of time does
the CPU spend doing multiplication?

4.46 (5] <§4. 3> Your hardwa re engineering team has indica ted that it would be
possible to reduce the number of cycles required for multiplication to 8 in Exercise
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4.45, but this will require a 20% increase in the cycle time. Nothing else will be af
fected by the change. Should they proceed with the modifica tion?

4.47 (10) <§4.4> Look at the current list of SPEC programs in Figure 4.5 on page
260. Does it include applications that match the ways you typica lly use your com 
puter? What classes of programs are irreleva nt or missing? Why do you think they
were or were not included in SPEC? What would have to be done to include/ex
clude such programs in the next SPEC release?

4.48 (5 J <§4.4> !fbenchmark suites are designed to provide a real-world metric
for a specifi c computing task, explain why benchmarks suites need to be updated.

4.49 (5 J <§§4.2, 4.3, 4.4> In More Depth: The Difficulty with Kemel Benchmarks

4.50 ( ISJ <§§4.2, 4. 3, 4.4> II In More Depth: The Difficulty with Kernel
Benchmarks

4.51 (10) <§§4.1-4.S> Consider the following hypothetica l news release:

"The company will unveil the industry's first 5 GHz version of the chip, which
offers a 25% performance boost over the company's former speed champ, which
rims at 4 GHz. The new chip can be plugged into system boards for the older
original chip (which ran at 1 GHz) to provide a 70% performance boost."

Comment on the definition (o r definitions) of performance that you believe the
company used. Do you think the news release is mislead ing?

4.52 (indefinite J <§§4.1-4.S> Collect a set of articles that you believe contain in 
co rrect analyses of performance or use misleading performance metrics to try to
persuade readers. For example, an article in the New York Times (April 20, 1994, p.
01 ) described a video ga me player " that will surpass the computing power ofeven
the most powerful personal computers" and presented the following chart to sup 
port the argument that "video ga me computers may be the supercomputers of to
morrow":

Approximate number of
Computer Instructions per second Price

1975 IBM mainframe 10,000,000 $10,000,000

1976 Cray-1 160,000,000 $20,000,000

1979 Digital VAX 1,000,000 $200,000

1981 IBM PC 250,000 $3,000

1984 Sun 2 1,000,000 $10,000

1994 Pentium~hipPC 66,000,000 $3,000

1995 Sony PCX video game 500,000,000 $500

1995 Microunity seHop 1,000,000,000 $500
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The article never discussed how the nature of the instructions should impact the
definition of "powerful." For each article you collect, describe why you think it is
mislead ing or incorrect. Good places to look for material include the business or
technology sections of newspapers, magazines (both articles and ads), and the
Internet (newsgroups and the Web).

§4.1 , page 246: 1. a: both, b: latency, c: neither. 2. 7 sec.
§4.2, page 253: 6.
§4.3, page 258: 1. F, F, F, T. 2. T, F, F, T
§4.4, page 265: b.
§4.5, page 270: 3. Computer A. b. Computer B.





Computers
in the

Real World

Moving People Faster
and More Safely

Problem: Find ways to help transport people
quickly while maintaining safety, comfort, and

efficiency.

Solution: For more than 20 years, computers
have played an increasingly important role in the

control of transportation systems including

planes, trains, automobiles, and even ships. Essen
tially aU modern transportation systems rely o n

computers to enhance their safety, comfort, and

efficiency. Computers also play a critical role in

improving fuel consumption and reducing air

pollution. In these two pages, we examine some of
the uses of computers in trains and automobiles.

In designing pipelines we must prevent hazards,at
aUcosts, and we try to avoid pipeline delays. Com
puter-controlled trains try to do the same: hazards

are life-threatening and can never be permitted,

and delays are to be avoided!
The French TGV ( Train aGra nde Vitesse) is

o ne of the fastest train systems in the world ,

with a typical top speed of 300 km/hour. Tra

ditionally, trains were controlled by an engi

neer, using a set o f track-side lights and signals

that tell the engineer to proceed , slow down,

or stop. At 300 km/hour, it is difficult to read

such signals, and easy to miss one completely,

leading to a poss ible disaster. In addition ,

some tracks, such as those containing tight

curves, can be unsafe at the higher speeds;

since the TGV was designed to run on existing

track, finding a fail-safe method to communi

ca te track conditions was critica l.

The TGV designers solved this problem by a

clever signaling system, called TVM ( Transmis

sioll Voie-Machine), that runs through the rails

and is picked up by antennas in the locomotive.

The track is divided into blocks, which are typi

cally about 1.5 krn in le ngth . Sho rter blocks are

used when track conditio ns change quickly o r

where a higher degree of safety is critical, such

as in the Chunnel , where the block length is

about one-tenth as lo ng. Transmitters at the

beginning of each block are used to communi

cate instructio ns to the cab, where they are car

ried out by an engineer; a computer also

watches the communicatio ns, and implements

the commands if the engineer fails to.

The Eurostar TGY train In Nice, France.



One challenge is that the stopping distance

for the TGV is nominally four blocks (some

what shorter in an absolute emergency). The

time to travel four blocks is 1.2 minutes, and

the newest signaling system trains are run at a

3 minute headway, even in fog! So the system

must monitor the presence of all trains and

ensure the most important property: only one

train ever occupies a block of track at the same

time! The system constantly communicates

the maximum safe speed for the current block,

improving performance and safety.

The TVM system has been built with eA1ensive

attention to safety, which means heavy use of

redundancy to ensure the operation of the system

in the face of failure of a component. The failure

rate ofTVM has been estimated at less than 1 fail

ure in a million years. This attention to safety has

paid off. in over two decades of service, there have

been no fatal accidents caused by a TVM failure

The images on the previous page and below

show the Eurostar TGV and the cab and oper

ator's seat.

Computers have also played a key role in mak

ing cars safer, more efficient, and less polluting.

The modern automobile has dozens of micro

processors controlling everything from braking,

to ignition, to air bag deployment.

In the area of safety, airbags and antilock brakes

have been two of the most important innovations

since the seat belt. Antilock brakes preserve the

The Interior of a Eurostar TGV cab.

ability to steer during the severe braking that

might occur in emergency conditions. By detect

ing wheel lockup and alternately applying and

releasing the brakes under computer control, an

antilock brake system can avoid wheel lockup.

Airbags use a force sensor to detect severe

deacceleration, which occurs during a collision.

The airbags are deployed by a computer that

reads the sensor. The new generation of airbags

uses a two-stage deployment: when the deaccel

eration indicates a collision of moderate severity,

the airbag inflates more slowly, reducing the pos

sibility of passenger injury from rapid deploy

ment in a moderate collision. Reliability of these

safety systems has been enhanced by a com

puter-controlled test that is run every time the

vehicle is started.

Modern ignition systems in automobiles aim to

enhance mileage while reducing pollution. Hap

pily these two goals are doubly congruent:

enhancing mileage reduces pollution through the

use of less fuel, and mileage is enhanced by more

effective combustion, which also reduces the

emission of partially combusted fuel. Computers

control the injection of fuel , the amount of air

injected, and the spark timing, which must

change as the engine runs faster. Careful control of

these elements over the full operating range from

1000 to 6000 RPM and different temperature con

ditions has helped improve mileage and reduce

pollution.

To learn more see these references on

the IIiI library

"An investigation of the Therac-25 accidents," Nancy G.
Leveson and Clark S. Tumer.IEEE Computer, 26(7): 18
41 , July 1993.
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Introduction

In Chapter 4, we saw that the performance of:1 ma chine was determined by three
key facto rs: in struction count, clock cycle time, and clock cycles per instruction
(CPl). The compiler and the instruction set architecture, which we exa mined in
Chapters 2 and 3, determine the instruction count required for a given program.
However, both the clock cycle time and the number of clock cycles per instruction
are determined by the implementation of the processor. In this chapter, we con
struct the data path and control unit for two different implementations of the
MIPS instruction set.

This chapter contains an explanation of the principles and techniques used in
implementing a processor, starting with a highly abstract and simplified overview
in this section , followed by sections that build up a data path and construct a sim
ple version of a processor sufficient to implement instructions sets like MIPS, and
finally, developing the concepts necessary to implement mo re complex instruc
tions sets, like the IA-32.

For the reader interested in understanding the high-level interp retation of
instructions and its impact on program performance, this initial section provides
enough background to understand these concepts as well as the basic concepts of
pipelining, which are expla ined in Section 6.1 of the next chapter.

For those readers desiring an understanding of how hardware implements
instructions, Sections 5.3 and 5.4 are all the additional material that is needed.
Furthermore, these two sections are sufficient to understand all the material in
Chapter 6 on pipelining. Only those readers with an interest in hardwa re design
should go further.

The remaining sections of this chapter cover how modern hardwa re-includ 
ing more complex processors such as the Intel Pentium series-is usually imple
mented. The basic principles of finite state control are explained, and different
methods of implementation, including microprogra mming, are exa mined. For
the reader interested in understanding the processor and its performance in more
depth, Sections 5.4 and 5.5 will be useful. For readers with an interest in modern
hardwa re design, • Section 5.7 covers microprogra mming, a technique used to
implement more complex control such as that present in IA-32 processors, and
.. Section 5.8 describes how hardwa re design languages and CAD tools are used
to implement hardware.



5.1 Introduction

A Basic MIPS Implementation

We will be exa mining an implementation that includes a subset of the co re MIPS
instruction set:

• The memory- reference instructions load word (l w) and store word (s w)

• The arithmetic-logical instructions add, sub, and, 0 r, and s 1t

• The instructions branch equal (beq) and jump (j), which we add last

This subset does not include all the integer instructions (for example, shift, multi 
ply, and divide are missing), nor does it include any floating- point instructions.
However, the key principles used in crea ting a datapath and designing the cont rol
will be illustrated. The implementation of the remaining instructions is similar.

In exa mining the implementation , we will have the opportunity to see how the
instruction set architecture determines many aspects of the implementation , and
how the choice of va rious implementation strategies affects the clock rate and CPI
for the machine. Many of the key design principles introduced in Chapter 4 ca n be
illustrated by looking at the implementation, such as the guidelines Make the com
mall case fast and Simplicity favors regularity. In addition , most concepts used to
implement the MIPS subset in this chapter and the next are the sa me basic ideas
that are used to construct a broad spectrum of computers, from high-perfor
mance servers to general-purpose m icroprocessors to embedded processo rs,
which are used increasingly in products ranging from VCRs to automobiles.

An Overview of the Implementation

In Chapters 2 and 3, we looked at the core MIPS instructions, including the inte
ger arithmetic-logical instructions, the memory-reference instructions, and the
branch instructions. Much of what needs to be done to implement these instruc
tions is the same, independent of the exact class of instruction. For every instruc
tion , the first two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and
fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the regis
ters to read. For the load word instruction , we need to read only one regis
ter, but most other in structions require that we read two registers.

After these two steps, the actions required to complete the instruction depend on
the instruction class. Fo rtunately, for each of the three instruction classes (mem
ory- reference, arithmetic-logica l, and branches), the actions are largely the sa me,
independent of the exact opcode.

285
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Even across different instruction classes there are some similarities. For exam 
ple, all instruction classes, except jump, use the arithmetic-logical unit (ALU)
after reading the registers. The memory- reference instructions use the ALU for an
address calculation, the arithmetic-logical in structions for the operation execu
tion , and branches for comparison. As we can see, the simplicity and regularity of
the instruction set simplifies the implementation by making the execution of
many of the instruction classes similar.

After using the ALU, the actions required to complete va rious instruction
classes differ. A mem ory-reference instruction will need to access the memory
either to write data for a store or read data fo r a load. An arithmetic-logical
instruction must write the data from the ALU back into a register. Lastly, for a
branch instruction, we may need to change the next instruction address based on
the comparison; otherwise the PC should be incremented by 4 to get the address
of the next instruction.

Figure 5.1 shows the high-level view of a MIPS implementation , focusing on
the various functional units and their interconnection. Although this figure shows
most of the flow of data through the processor, it omits two important aspects of
instruction execution.

First, in several places, Figure 5. 1 shows data going to a particular unit as
coming from two different sources. For example, the va lue written into the PC
ca n come from one of two adders, and the data written into the register fil e can
come from either the ALU or the data memory. In practice, these data lines ca n
not simply be wired together; we must add an element that chooses from among
the multiple sources and steers one of those sources to its destination. This selec
tion is commonly done with a device ca lled a multiplexor, although this device
might better be ca lled a data selector. The multiplexo r, which is described in
detail in .. Appendix B, selects from among several inputs based on the setting
of its control lines. The co ntrol lines are set based primarily on information
taken from the instruction being executed.

Second , several of the units must be controlled depending on the type of
insrtruction. For exa mple, the data memo ry must read on a load and write on a
store. The register fil e must be written on a load and an arithmetic-logical in struc
tion. And, of course, the ALU must perform one of several operations, as we saw
in Chapter 3. (II Appendix B describes the detailed logic design of the ALU.) Like
the muxes, these operations are directed by control lines that are set on the basis
of va rious fields in the instruction.

Figure 5.2 shows the datapath of Figure 5. 1 with the three required multiplex
o rs added, as well as control lines for the major functional units. A control unit
that has the instruction as an input is used to determine how to set the control
lines for the functional units and two of the multiplexors. The third multiplexor,
which determines whether PC + 4 or the branch destination address is written
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FtGURE 5.1 An abstract view of the Implementation of the MIPS subset showing the major
functional units and the major connections between them. All instructions start by using the pro
gram counter to supply the instruction address to the instruction memory. After the instruction is fetched , the
register operands used by an instruction are specified by fields of that instruction. Once the register operands
have been fetched, they can be operated on to compute a memory address (for a load or store), to compute an
arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a branch). If the instruction
is an arithmetic-logical instruction, the result from the ALU must be WTitten to a register. If the operation is a
load or store, the ALU result is used as an address to either store a value from the registers or load a value from
memory into the registers. The result from the ALU or memory is written b.1ck into the register file. Branches
require the use of the ALU output to determine the next instruction address, which comes from either the ALU
(where the PC and branch offset are slUumed) or from an adder that increments the current PC by 4. The thick
lines interconnecting the functional units represent buses, which consist of multiple signals. The arrows are
used to guide the reader in knowing how information flows. Since signal lines may cross, we explicitly show
when crossing lines are connected by the presence of a dot where the lines cross.

into the PC, is set based on the zero output of the ALU, which is used to perform
the comparison of a beq instruction. The regularity and simplicity of the M IPS
instruction set means that a simple decoding process ca n be used to determine
how to set the control lines.

In the remainder of the chapter, we refine this view to fill in the details, which
requires that we add further functional units, increase the number of connections
between units, and, of course, add a control unit to control what actions are taken
for different instruction classes. Sections 5.3 and 5.4 describe a simple implemen
tation that uses a single long clock cycle for every instruction and follows the gen
era l form of Figures 5. 1 and 5.2. In this first design, every instruction begins
execution on one clock edge and completes execution on the next clock edge.
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FIGURE 5.2 11Ie basic Implementation of the MIPS subset Ineludlng the necessary multiplexors and control
lines. The top multiplexor controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is oon·
trolled by the B-1le that "ands~ together the Zero output of the ALU and a control signal that indicates that the instruction is a
branch. The multiplexor whose output returns to the register file is used to steer the output oflhe ALU (in the case of an arithmetic
logical instruction) or the output oflhe data memory (in the case of a load) for writing into the register file. Finally, the bottommost
multiplexor is used to determine whether the second ALU input is from the registers (for a nonimmediate arithmetic-logical
instruction) or from the offset field of the instruction (for an immediate operation, a load or store, or a branch). The added control
lines are straightforward and determine the operation performed at the ALU, whether the data memory should read or write, and
whether the registers should perform a write operation. The control lines are shown in color to make them easier to see.

While easier to understand, this approach is not practical, sin ce it would be
slower than an implementation that allows different instruction classes to take dif
ferent numbers of clock cycles, each of which could be much sho rter. After design
ing the control for this simple machine, we will look at an implementation that
uses multiple clock cycles for each instruction. This multicycle design is used



5.2 Logie Design Conventions

when we discuss more advanced control concepts, handling exceptions, and the
use of hardwa re design languages in Sections 5.5 through 5.8.

The single-cycle datapath conceptually described in this section must have sepa
rate in struction and data memories because

I. the format of data and instructions is different in M IPS and hence different
memories are needed

2. having separate memories is less expensive

3. the processor opera tes in one cycle and cannot use a single-ported memory
for two different accesses within that cycle

Check
Yourself
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Logic Design Conventions

To discuss the design of a machine, we must decide how the logic implementing
the machine will operate and how the ma chine is clocked. This section reviews a
few key ideas in digital logic that we will use extensively in this chapter. If you have
little or no background in digital logic, you will find it helpful to read through
Appendix B before continuing.

The functional units in the MIPS implementation consist of two different types
of logic elements: elements that operate on data values and elements that contain
state. The elements that operate on data va lues are all combinational, which mea ns
that their outputs depend only on the current inputs. Given the sa me input, a
combinational element always produces the sa me output. The ALU shown in
Figure 5. 1 and discussed in Chapter 3 and . Appendix B is a combinational ele
ment. Given a set of inputs, it always produces the same output because it has no
internal storage.

Other elements in the design are not combinational, but instead contain state.
An element contains state if it has some internal storage. We call these elements
state elem ents because, if we pulled the plug on the machine, we could restart it
by loading the state elements with the values they contained before we pulled the
plug. Furthermore, if we saved and restored the state elements, it would be as if
the ma chine had never lost power. Thus, these state elements completely chara c
terize the ma chine. In Figure 5. 1, the instruction and data memories as well as the
registers are all exa mples of state elements.

A state element has at least two inputs and one output. The required inputs are
the data value to be written into the element and the clock, which determines

state element A memory
element.
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docking methodology The
approach used to determine
when data is valid and stable rel
ative to the clock.

edge-triggered docking A
clocking scheme in which all
state changes occur on a clock
edge.

wlltrol signal A signal used
for multiplexor selection or for
directing the operation of a
functional unit; contrasts with a
data signal, which contains
information that is operated on
by a functional unit.
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when the data value is written. The output from a state element provides the value
that was written in an ea rlier clock cycle. For example, one of the logically sim
plest state elements is a D-type flip -flop (see Appendix B), which has exactly these
two inputs (3 value and a clock) and one output. In addition to flip -flops, our
M IPS implementation also uses two other types of state elements: memories and
registers, both of which appear in Figure 5. 1. The clock is used to determine when
the state element should be written; a state element can be rea d at any time.

Logic components that contain state are also called sequential because their
outputs depend on both their inputs and the contents of the internal state. For
exa mple, the output from the functional unit representing the registers depends
both on the register numbers supplied and on what was written into the registers
previously. The operation of both the combinational and sequential elements and
their construction are discussed in more detail in II Appendix B.

We will use the word asserted to indica te a signal that is logica lly high and assert
to specify that a signal should be driven logica lly high , and deassert or deasserted
to represent logica l low.

Clocking Methodology

A docking methodology defines when signals can be read and when they ca n be
written. It is important to specify the timing of reads and writes because, if a sig
nal is written at the same time it is read, the value of the read could correspond to
the old value, the newly written value, o r even some mix of the two! Needless to
say, computer designs ca nnot tolerate such unpredictability. A clocking methodol
ogy is designed to prevent this circumstance.

For simplicity, we will assume an edge-triggered clocking methodology. An
edge-triggered clocking methodology mea ns that any va lues stored in a sequential
logic element are updated only on a clock edge. Beca use only state elements can
store a data value, any collection of combinational logic must have its inputs com 
ing from a set of state elements and its outputs written into a set of state elements.
The inputs are va lues that were written in a previous clock cycle, while the outputs
are values that ca n be used in a following clock cycle.

Figure 5.3 shows the two state elements surrounding a block of combinational
logic, which operates in a single clock cycle: All signals must propagate from state
element 1, through the combinational logic, and to state element 2 in the time of
one clock cycle. The time necessa ry for the signals to reach state element 2 defines
the length of the clock cycle.

For simplicity, we do not show a write control signal when a state element is
written on every active clock edge. In contrast, if a state element is not updated on
every clock, then an explicit write control signal is required. Both the clock signal
and the write control signal are inputs, and the state element is changed only
when the write control signal is asserted and a clock edge occurs.
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FIGURE 5.3 Combinational logic, state elements, and the clock are closely related. In a
synchronous digita l system, the clock determines when elements with state will write values into internal
storage. Any inputs to a state element must reach a stable va lue (that is, have reached a value from which
they will not change until after the clock edge) before the active clock edge causes the state to be updated.
All state elements, including memory, are assumed to be edge-triggered.

State
,-I element f--( Combinational logic

FIGURE 5.4 An edge·triggered methodology allows a state element to be read and writ·
ten In the same clock cycle without creating a race that could lead to Indeterminate data
values. Of course, the clock cycle still must be long enough so that the input values are stable when the
active clock edge occurs. Feedback cannot occur within I clock cycle because of the edge-triggered update
of the state element. If feedback were possible, this design could not work properly. Our designs in this
chapter and the next rely on the edge- triggered timing methooology and structures like the one shown in
this figure.

An edge-triggered methodology allows us to read the contents of a register,
send the value th rough some combinational logic, and write th at register in the
same clock cycle, as shown in Figu re 5.4. It doesn't matter whether we assume that
all writes take place on the rising clock edge or on the falling clock edge, sin ce the
inputs to the combinational logic block cannot change except on the chosen clock
edge. With an edge-triggered timing methodology, there is no feedback within a
single clock cycle, and the logic in Figure 5.4 works correctly. In II Appendix Bwe
briefly discuss additional timing constraints (such as setup and hold times) as well
as other timing methodologies.

Nea rly all of these state and logic elements will have inputs and outputs that are
32 bits wide, since that is the width of most of the data handled by the processo r.
We will make it clea r whenever a unit has an input or output that is other than 32
bits in width. The figures will indicate buses, which are signals wider than 1 bit,
with thicker lines. At times we will want to combine several buses to form a wider
bus; for example, we may wa nt to obtain a 32-bit bus by combining two 16-bit
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buses. In such cases, labels on the bus lines will make it clear that we are concate
nating buses to form a wider bus. Arrows are also added to help clarify the direc
tion of the flow of data between elements. Finally, color indicates a control signal
as opposed to a signal that ca rries data; this distinction will become clea rer as we
proceed through this chapter.

True or false: Because the register file is both read and w ritten on the same
clock cycle, any MIPS datapath using edge-triggered w rites must have more
than one copy of the register file .

Building a Datapath

datapatb element A func
tional unit used to operate on or
hold data within a processor. In
the MIPS implementation the
datapath elements include the
instruction and data memories,
the register file, the arithmetic
logic unit (ALU), and adders.

program counter (PC) The
register containing the address
of the instruction in the pro
gram being executed

A reasonable way to start a datapath design is to examine the major components
required to execute each class of MIPS instruction. Let's start by looking at which
datapath elements each instruction needs. When we show the datapath elements,
we will also show their cont rol signals.

Figure 5.5 shows th e fir st element we need: a memory unit to store the
instruct ions of a program and supply instructions given an address. Figure 5.5
also shows a register, which we ca ll the program counter (PC) , that is used to
hold the address of the current instruction. Lastly, we will need an adder to
in crement the PC to the address of the next instruction. This adder, which is
combinational , ca n be built from the ALU we described in Chapter 3 and
designed in detail in Appendix B, simply by wirin g the co nt rol lines so that th e
cont rol always specifies an add operation. We will draw such an ALU with the
label Add, as in Figure 5.5, to ind icate that it has been permanently made an
adder and ca nnot perfo rm the other ALU functions.

To execute any instruction , we must start by fetching the instruction from
memory. To prepare for executing the next instruction , we must also increment
the program counter so that it points at the next in struction, 4 bytes later.
Figure 5.6 shows how the three elements from Figure 5.5 are combined to form a
datapath that fetches instructions and increments the PC to obtain the address of
the next sequential instruction.

Now let's consider the R-format instructions (see Figure 2.7 on page 67). They
all read two registers, perform an ALU operation on the contents of the registers,
and write the result. We call these instructions either R-type instructions or arith
metic-logical instructions (since they perform arithmetic or logical operations).
This instruction class includes add, sub, and, or, and sl t , which were intro -
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FIGURE 5.5 Two state elements are needed to store and access Instructions, and an
adder Is needed to compute the next Instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We wiU need to write the instruction memory when we lo.1d the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that wiU be WTit
ten at the end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired
to always perform an add of its tm> 32-bit inputs and place the result on its output.
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Instruction f---.
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FIGURE 5.6 A portion of the datapath used for fetching Instructions and Incrementing
the program counter. The fetched instruction is used by other parts of the datap.1th.

duced in Chapter 2. Recall that a typical instance of such an instruction is add
$11. st2. $13 ,which reads $12 and $13 and writes $11 .

The processor's 32 general-purpose registers are stored in a structure called a
register fil e. A register file is a collection of registers in which any register can be

r egist er fil e A state element
that consists of a set of registers
that can be read and written by
supplying a register number to
be accessed.
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sign-extend To increase the
size of a data item by replicating
the high-order sign bit of the
origin al data item in the h igh
order b its of the larger, destina
tion data item.

branch target address The
address specified in a branch,
which becomes the new program
counter (PC) if the bran ch is
taken. In the M IPS architecture
the branch target is given by the
sum of the offset field of the
instruction and the address ofthe
instruction following the branch.

Chapter 5 The Processor: Datapath and Control

read or written by specify ing the number of the register in the fil e. The register fil e
contain s the register state of the machine. In addition , we will need an ALU to
operate on the values read from the registers.

Because the R-format instructions have three register operands, we will need to
read two data words from the register file and write one data word into the register
fil e for each instruction. Fo r each data wo rd to be read from the registers, we need
an input to the register file that specifies the register number to be rea d and an
output from the register file that will ca rry the va lue that has been read from the
registers. To write a data word, we will need two inputs: one to specify the register
nllmber to be written and one to supply the data to be written into the register.
The register file always outputs the contents of whatever register numbers are on
the Rea d register inputs. Writes, however, are cont rolled by the write cont rol sig
nal , which must be asserted fo r a write to occur at the clock edge. Thus, we need a
total of four inputs (th ree for register numbers and one fo r data) and two outputs
(both for data), as shown in Figure 5.7. The register number in puts are 5 bits wide
to specify one of 32 registers (3 2 = 25

) , whereas the data in put and two data out 
put buses are each 32 bits wide.

Figu re 5.7 shows the ALU, which takes two 32-bit inputs and p roduces a 32-bit
result, as well as a I-bit signal if the result is O. The four-bit cont rol signal of the
ALU is described in detail in II Appendix B; we will review the ALU cont rol
shortly when we need to know how to set it.

Next, consider the MIPS load word and store word instructions, which have
the general form 1w $tl , offse t _va 1ue ( H2) or sw $tl , offset_va 1ue
( H2). These instructions com pute a memory address by adding the base regis
ter, which is HZ, to the 16-bit signed offset field contained in the instruction . If
the instruction is a store, the va lue to be sto red must also be read from the register
fil e where it resides in $t 1. If the instruction is a load , the value rea d from mem 
o ry must be written into the register fil e in the speci fied register, which is $t 1.
Thus, we will need both the register fil e and the ALU from Figure 5.7.

In addition , we will need a unit to sign-extend the 16-bit offset field in the
instruction to a 32-bit signed value, and a data memory unit to read from or write
to. The data memo ry must be written on store instructions; hence, it has both
read and write cont rol signals, an address in put , as well as an input for the data to
be written into memory. Figure 5.8 shows these two elements.

The beq instruction has three operands, two registers that are compared for
equality, and a 16-bit offset used to compute the branch target address relative to
the branch instruction address. Its form is beq $tl , H2 , off set. To imple
ment this instruction, we must compute the branch target address by adding the
sign-extended offset fi eld of the instruction to the Pc. There are two details in the
definition of branch instructions (see Chapter 2) to which we must pay attention:



5.3 Building a Datapath

5 Read ALU operation
register 1 4

Read

Register 5 Read data 1

numbers register 2 z.~ -
Regis ters Data ) ALU ALU

5 Write result
register Read

~
Data {

data 2
Write
Data

I RegWrite

a. Registers b. ALU

FIGURE 5.7 The two elements needed to Implement R·format ALU operations are the reg·
Ister file and the ALU. The register file contains all the registers and has tm> read ports and one write port.
The design of multiported register files is discussed in Section B.8 of Appendix B. The register file always out
puts the contents of the registers corresponding to the Read register inputs on the outputs; no other control
inputs are needed. In contrast, a register write must be explicitly indicated by asserting the write control signal.
Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to be written, the register
munber, and the write control signal) must be valid at the clock edge. Since writes to the register file are edge
triggered, our design can legally read and write the same register within a clock cycle: the read will get the value
written in an earlier dock cycle, while the value written will be available to a read in a subsequent dock cyde.
The inputs carrying the register number to the register file are all 5 bits wide, whereas the lines carrying data
values are 32 bits wide. The operation to be performed by the ALU is controlled with the ALU operation signal,
which will be 4 bits wide, using the AW designed in 'II Appendix B. We will use the Zero detection output of
the ALU shortly to implement branches. The overflow output will not be needed until Section 5.6, when we
discuss exceptions; we omit it wltil then.

• The instruction set ardlitecture specifies that the base for the brandl address cal
culation is the address of the instruction following the branch. Since we compute
PC + 4 (the address of the next instruction) in the instruction fetch datapath , it is
easy to use this value as the base for computing the branch target address.

• The architecnlfe also states that the offset field is shifted left 2 bits so that it
is a word offset; this shift increases the effective range of the offset field by a
factor of four.

To deal with the latter complication , we will need to shift the offset field by two.
In addition to computing the branch target address, we must also determine

whether the next instruction is the instruction that follows sequentially or the
instruction at the branch target address. When the condition is true (Le., the
operands are equal), the branch target address becomes the new PC, and we say
that the branch is taken . If the operands are not equal, the incremented PC
should replace the current PC Oust as for any other normal instruction); in this
case, we say that the branch is not taken.
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bram:h taken A branch where

the branch condition is satisfied
and the program counter (PC)
becomes the branch target. All
unconditional branches are

taken branches.

branch not taken A branch

where the branch condition is
false and the program counter
(PC) becomes the address ofthe
instruction that sequentially fol

lows the branch.
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FIGURE 5.8 The two units needed to Implement loads and stores, In addition to the reg·
Ister file and ALU of Figure 5.7, are the data memory unit and the sign extension unit. The
memory unit is a stale element with inputs for the address and the write data, and a single output for the
read result. There are separate read and write controls, although only one of these may be asserted on any
given dock. The memory unit needs a read signal, since, unlike the register file, reading the value of an
invalid address can c.1use problems, as we will see in Chapter 7. The sign extension unit has a 16·bit input
that is sign-extended into a 32-bit result appearing on the output (see Chapter 3). We assume the data
memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is used
for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be
adapted to work with real memory chips. See Section B.8 of III Appendix B for a further discussion of how
real memory chips work.

Thus, the branch datapath must do two operations: compute the branch target
address and compare the register contents. (Branches also affect the instruction
fetch portion of the datapath, as we will deal with shortly.) Because of the complex
ity of handling branches, we show the structure of the datapath segment that han 
dles branches in Figure 5.9. To compute the branch target address, the branch
datapath includes a sign extension unit, just like that in Figure 5.8, and an adder. To
perform the compare, we need to use the register file shown in Figure 5.7 to supply
the two register operands (although we will not need to write into the register file).
In addition , the comparison ca n be done using the ALU we designed in Appendix B.
Since that ALU provides an output signal that indicates whether the result was 0, we
can send the two register operands to the ALU with the control set to do a subtract.
If the Zero signal out of the ALU unit is asserted, we know that the two values are
equal. Although the Zero output always signals if the result is 0, we will be using it
only to implement the equal test of branches. Later, we will show exactly how to
connect the control signals of the ALU for use in the datapath.

The jump instruction operates by replacing the lower 28 bits of the PC with the
lower 26 bits of the in struction shifted left by 2 bits. This shift is accomplished
simply by concatenating 00 to the jump offset, as described in Chapter 2.
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FIGURE 5.9 11Ie datapath for a branch uses the ALU to evaluate the branch condition and a
separate adder to compute the branch target as the sum of the Incremented PC and the
slgn-extended, lower 16 bits of the Instruction (the branch displacement), shifted left 2
bits. The unit labeled Shift left 2 is simply a routing of the signals between input and output that adds oolwo to
the low-order end of the sign-extended offset field; no actual shift hardware is needed, since the amount of the
"shift" is constant. Since we know that the offset was sign-extended from 16 bits, the shift wiU throwaway only
"sign bits." Control logic is used to decide whether the incremented PC or branch target should replace the Pc,
based on the Zero output of the ALU.

Elaboration: In the MIPS instruction set, branches are d elayed , meaning that the
instruction immediately following the branch is always executed, independent of
whether the branch condition is true or false . When the condition is false, the execu
tion looks like a normal branch . When the condition is true, a delayed branch first exe
cutes the instruction immediately following the branch in sequential instruction order
before jumping to the specified branch target address . The motivation for delayed
branches arises from how pipelining affects branches (see Section 6 .6). For simplic
ity, we ignore delayed branches in this chapter and implement a nondelayed beq
instruction .
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delayed bran ch A type of
branch where the instruction
immediately following the
branch is always executed, inde
pendent ofwhether the branch
condition is true or false.
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Creating a Single Datapath

Now that we have exa mined the data path components needed for the individual
instruction classes, we can combine them into a single datapath and add the con
trol to complete the implementation. The simplest datapath might attempt to exe
cute all instructions in one clock cycle. This mea ns that no data path resource can
be used m ore than once per instruction, so any element needed more than once
must be duplicated. 'We therefore need a memory for instructions separate from
one for data. Although some of the functional units will need to be duplicated ,
many of the elements can be shared by different instruction flows.

To share a datapath element between two different instruction classes, we may
need to allow multiple connections to the input of an element, using a multi 
plexor and control signal to select among the multiple inputs.

Building a Datapath

The operations of arithmetic-logical (or R-type) instructions and the memory
instructions datapath are quite similar. The key differences are the following:

• The arithmetic-logical instructions use the ALU with the inputs coming
from the two registers. The memory instructions ca n also use the ALU
to do the address calculation, although the second input is the sign-ex
tended 16-bit offset field from the instruction.

• The va lue stored into a destination register comes from the ALU (for an
R-type instruction ) or the memory (for a load).

Show how to build a datapath for the opera tional portion of the memory ref
erence and arithmetic-logical instructions that uses a single register file and a
single ALU to handle both types of instructions, adding any necessary multi
plexors.

To crea te a datapath with only a single register fil e and a single ALU, we must
support two different sources for the second ALU input, as well as two differ
ent sources for the data stored into the register file. Thus, one multiplexor is
placed at the ALU input and another at the data input to the register file.
Figure 5. 10 shows the operational portion of the combined datapath.

Now we ca n combine all the pieces to make a simple datapath for the MIPS
architecture by adding the datapath for instruction fetch (Figure 5.6 on page 293),
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FIGURE 5.10 The da t a pa th for the memory Instructions and the R·type Instructions. ThIS example shows how
a single datapath can be assembled from the pieces in Figures 5.7 and 5.8 by adding multiplexors. l\I.u multiplexors are needed,
as described as in the example.

the datapath from R-type and memory instructions (Figure 5.10 on page 299),
and the datapath fo r branches (Figure 5.9 on page 297). Figure 5. 11 shows the
datapath we obtain by composing the separate pieces. The branch instruction uses
the main ALU for comparison of the register operands, so we must keep the
adder in Figure 5.9 for co mputing the branch target address. An additional mul 
tiplexor is required to select either the sequentially followin g instruction address
(PC + 4) or the branch target address to be written into the Pc.

Now that we have completed this simple datapath , we ca n add the control unit.
The control unit must be able to take inputs and generate a write signal for each
state element, the selector control fo r each multiplexor, and the ALU cont rol. The
ALU cont rol is different in a number of ways, and it will be useful to design it first
before we design the rest of the control unit.

299

Which of the following is correct for a load instruction?

a. MemtoReg should be set to cause the data from memo ry to be sent to the
register fil e.

b. MemtoReg should be set to cause the correct register destination to be sent
to the register fil e.

c. We do not ca re about the setting of MemtoReg.

Check
Yourself
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FIGURE 5.11 The simple dat apath f or the MIPS architecture combines the elements required by diffe rent Instruction
classes. This datapath can execute the basic instructions (load/store word,ALU operations, and branches) in a single dock cycle. An additional mul·
tiplexor is needed to integrate branches. The support for jumps will be added later.

A Simple Implementation Scheme

In this section, we look at what might be thought of as the simplest possible
implementation of our MIPS subset. We build this simple implementation using
the datapath of the last section and adding a simple control function. This simple
implementation covers load wo rd (1 w), store word ( sw), branch equal (beq), and
the arithmetic-logical in structions add, sub, and, or, and set on less than.
We will later enhance the design to include a jump instruction (j ).
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The ALU Control

As ca n be seen in Appendix B, the ALU has four control inputs. These bits were not
encoded; hence, only 6 of the possible 16 possible input combinations are used in
this subset. The MIPS ALU in II Appendix Bshows the 6 following combinations:

AW control lines Function

0000 ANO

OOO! OR

0010 ,dd

0110 subtract

0111 set on less than

1!oo NOR

Depending on the instmction class, the ALU will need to perform one of these first
five functions. (NO R is needed for other parts of the M IPS instruction set.) For load
word and store word instructions, we use the ALU to compute the memory address
by addition. For the R-type instructions, the ALU needs to perform one of the five
actions (AND, OR, subtract, add, or set on less than), depending on the value of the
6-bit funct (or function) field in the low-order bits of the inst ruction (see Chapter
2). For branch equal, the ALU must perform a subtraction.

We ca n generate the 4-bit ALU control input using a small control unit that ha s
as inputs the function field of the instruction and a 2-bit control field , which we
call ALUOp. ALUOp indicates whether the operation to be performed should be
add (00) for loads and stores, subtract (0 1) for beq, or determined by the opera
tion encoded in the funct fi eld ( 10). The output of the ALU control unit is a 4-bit
signal that directly controls the ALU by generating one of the 4-bit combinations
shown previously.

In Figure 5.1 2, we show how to set the ALU control inputs based on the 2-bit
ALUOp control and the 6-bit function code. For completeness, the relationship
between the ALUOp bits and the instruction opcode is also shown. Later in this
chapter we will see how the ALUOp bits are generated from the main control unit.

This style of using multiple levels of decoding-that is, the main control unit
generates the ALUOp bits, which then are used as input to the ALU control that
generates the actual signals to control the ALU unit- is a common implementa 
tion technique. Using multiple levels of control can red uce the size of the main
control unit. Using several smaller control units may also potentially increase the
speed of the control unit. Such optimizations are important, since the control unit
is oft en performance-critical.

There are several different ways to implement the mapping from the 2-bit
ALUOp field and the 6-bit funct fi eld to the three ALU operation control bits.
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IIInstruction Instruction Desired ALU control
opcode operation Funct field AlU action Input

LW 00 load word XXJ()()(J( odd 0010

SW 00 store word XXJ()()(J( odd 0010

Branch equal 01 branch equal XXJ()()(J( subtract 0110

R<ype 10 odd 100000 odd 0010

R<ype 10 subtract 100010 subtract 0110

R<ype 10 ANO 100100 ",' 0000

R<ype 10 OR 100101 0' 0001

R<ype 10 set on less than 101010 set on less than 0111

FIGURE 5.12 How the ALU control bits are set depends on the ALUOp control bits and
the different function codes for the R·type Instruction. The opcode, listed in the first column,
determines the selting of the ALUOp bits. All the encodings are shown in binary. Notice that when the
ALUOp cooe is 00 or 01, the desired ALU action does not depend on the function code field; in this case, we
say that we "don't care" about the value of the function code, and the funct field is shown as xxxxxx.
When the ALUOp value is 10, then the function code is used to selthe ALU control input.

IIiIlmlliIElElIIiiI
ALUOp Funct field

AlUOpl AlUOpO Operation

0 0 X X X X X X 0010

X 1 X X X X X X 0110

1 X X X 0 0 0 0 0010

1 X X X 0 0 1 0 0110

1 X X X 0 1 0 0 0000

1 X X X 0 1 0 1 0001

1 X X X 1 0 1 0 0111

FIGURE 5.13 The truth table for the three ALU control bits (called Operation). The inputs
are the ALUOp and function code field. Only the entries for which the ALU control is asserted are shown.
Some don't-care entries have been added. For example, the ALUOp does not U'ie the encoding II, so the
tmth table can contain entries IX and XI, rather than 10 and 01. Also, when the function field is used, the
first two bits (FS and F4) of these instructions are always 10, so they are don't-care terms and are replaced
with XX in the truth table.

Beca use only a small number of the 64 possible values of the function field are of
interest and the function field is used only when the ALUOp bits equal 10, we can
use a small piece of logic that recognizes the subset of possible values and causes
the correct setting of the ALU control bits.

As a step in designing this logic, it is useful to create a truth table for the inter
esting combinations of the function code field and the ALUOp bits, as we've done
in Figure 5. 13; this truth table shows how the 3-bit ALU control is set depending
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on these two input fields. Since the full truth table is very large (28 = 256 entries)
and we don't care about the value of the ALU control for many of these input
combinations, we show only the truth table entries for which the ALU control
must have a specific va lue. Throughout this chapter, we will use this practice of
showing only the truth table entries that must be asserted and not showing those
that are all zero or don't care. (This practice has a disadvantage, which we discuss
in Section C2 of Appendix C)

Because in many instances we do not ca re about the values of some of the
inputs and to keep the tables compa ct, we also include don't-care terms. A don't 
care term in this truth table (represented by an X in an input column) indica tes
that the output does not depend on the value of the input corresponding to that
column. For exa mple, when the ALUOp bits are 00, as in the first line of the table
in Figure 5. 13, we always set the ALU control to 010, independent of the function
code. In this case, then , the function code inputs will be don't ca res in this line of
the truth table. Later, we will see exa mples of another type of don't-care term. If
you are unfamiliar with the concept of don't-ca re terms, see Appendix B for more
infonnation.

Once the truth table ha s been constructed, it can be optimized and then turned
into ga tes. This process is completely mechanical. Thus, rather than show the final
steps here, we describe the process and the result in Section C2 of Appendix C

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code
and a 2-bit signal as its control inputs, we ca n return to looking at the rest of the
control. To start this process, let's identify the fi elds of an instruction and the con
trollines that are needed for the datapath we constructed in Figure 5. 11 on page
300. To understand how to connect the fields of an instruction to the datapath, it
is useful to review the formats of the three instruction classes: the R-type, branch,
and load/store instructions. Figure 5. 14 shows these formats.

There are several major observations about this instruction format that we will
rely on:

• The op field , also called the opcade, is always contained in bits 3 1:26. We
will refer to this field as Op[5:0].

• The two registers to be read are always specified by the rs and rt fields, at
positions 25:2 1 and 20: 16. This is true for the R-type instructions, branch
equal, and for store.

• The base register for load and store instructions is always in bit positions
25:2 1 (rs).
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don't-care term An element of
a logical function in which the
output does not depend on the
values of all the inputs. Don't
care terms may be specified in
different ways.

opcode The field that denotes
the operation and format of an
instruction.
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Field 0 "
Bit positions 31:26 25 :21

0- R- t ype instruction

Field 35 or 43 "
Bit positions 31:26 25 :21

b. Lo ad " s t ore ins t ruction

Field 4 "
Bit positions 31:26 25 :21

c Branch instruction

rt

20 :16

rt

20 :16

rt

20 :16

15 :11

shamt

10:6

address

15:0

address

15:0

funct

5 :0

FIGURE 5.14 The three Instruction classes (R·type, load and store, and branch) use two
different Instruction formats. The jmnp instructions use another format, which we will discuss
shortly. (a) Instruction format for R-format instructions, which aU have an opoode of o. These instructions
have three register operands: rs, fI , and rd. Fields rs and rt are sources, and rd is the destination. The ALU
nUlction is in the funct field and is decoded by the ALU control design in the previous section. The R- type
instructions that we implement are add, sub, a nd , or, and s 1t. The shamt field is wed only for shifts.; we
will ignore it in this chapter. (b) Instruction format for load (opcode = 35tet,) and store (opcode = 43t...)

instructions. The register rs is the base register that is added to the 16-bit address field to form the memory
address. For 10.1ds, rt is the destination register for the loaded value. For stores, rt is the source register
whose value should be stored into memory. (c) Instruction format for branch equal (opcode = 4). The reg
isters rs and rt are the source registers that are compared for equality. The 16-bit address field is sign
extended, shifted, and added to the PC to compute the branch target address.

• The 16-bit offset for branch equal, load , and store tS always ttl positions
15: O•

• The destination register is in one of two places. For a load it is in bit
positions 20: 16 (rt) , while fo r an R-type instruction it is in bit positions
15: II (rd). Thus we will need to add a multiplexor to select which field of
the instruction is used to indicate the register number to be written.

Using this information, we can add the instruction labels and extra multiplexor
(for the Write register number input of the register fil e) to the simple datapath.
Figure 5. 15 shows these additions plus the ALU control block, the write signals fo r
state elements, the read signal fo r the data memory, and the cont rol signals fo r the
multiplexo rs. Since all the multiplexors have two inputs, they each require a single
cont rol line.

Figu re 5.1 5 shows seven single-bit control lines plus the 2-bit ALUOp cont rol
signal. We have alrea dy defined how the ALUOp control signal works, and it is
useful to define what the seven other cont rol signals do informally befo re we
determine how to set these control signals during instruction execution.
Figure 5. 16 describes the function of these seven cont rol lines.
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FIGURE 5.15 The data path of Fig ure 5.12 with all ne cessary multiplexors a nd a ll control lines Ide ntifie d. The control lines are
shown in color. The ALU control block has also been added. The PC does not require a write control, since it is WTitten once at the end of every clock
cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address.

Now that we have looked at the function of each of the cont rol signals, we can
look at how to set them. The control unit can set all but one of the cont rol signals
based solely on the opcode field of the instruction. The PCS rc control line is the
exception. That cont rol line should be set if the in struction is branch on equal (a
decision that the cont rol unit ca n make) and the Zero output of the ALU, which is
used fo r equality compa rison , is true. To generate the PCSrc signal, we will need
to AND together a signal from the cont rol unit , which we call Branch , with the
Zero signal out of the ALU.

These nine control signals (seven from Figure 5. ]6 and two for ALUOp) can now
be set on the basis of six input signals to the control unit, which are the opcade bits.
Figure 5. ]7 shows the datapath with the cont rol unit and the cont rol signals.
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Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the The register destination number for the Write
Write register comes f rom the It f ield (bits register comes f rom the rd field (bits 15 :1 1).
20:16).

Reg'Nrite None. The register on the Write register input is
written with the value on the Write data input.

ALUSrc The se<:ond ALU operand comes from the The se<:ond ALU operand is the sign.extended,
se<:ond register f ile output (Read data 2). lower 16 bits of the instruction.

PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. that computes the branch target.

MemRead None. Data memory contents designated by the
address input are put on the Read data output.

MemWrite None. Data memory contents designated by the
address input are replaced by the value on the
Write data input.

MemtoReg The value fed to the register Write data The value fed to the register Write data input
input comes from the ALU. comes from the data memory.

FIGURE 5.16 The effeef of each of the seven control signals. When the I-bit control to a two
way multiplexor is asserted, the multiplexor selects the input corresponding to I. Otherwise, if the control is
deasserted, the multiplexor selects the 0 input. Remember that the state elements aU have the dock as an
implicit input and that the dock is used in controlling writes . The dock is never ga ted externally to a state
element, since this can create timing problems. (See II Appendix B for further discussion of this problem.)

Before we try to write a set of equations or a truth table for the control unit, it
will be useful to try to define the cont rol fun ction informally. Because the setting
of the cont rol lines depends only on the opcode, we define whether each cont rol
signal should be 0, 1, or don't ca re (X), fo r each of the opcode values. Figure 5.1 8
defines how the cont rol signals should be set for each opcode; this information
follows directly from Figures 5.1 2, 5.1 6, and 5.1 7.

Operation of the Datapath

With the information contained in Figures 5.1 6 and 5.1 8, we ca n design the con 
t rol unit logic, but before we do that, let's look at how each instruction uses the
datapath. In the next few figures, we show the flow of three different instruction
classes th rough the datapath. The asserted cont rol signals and active datapath ele
ments are highlighted in each of these. Note th at a multiplexor whose cont rol is 0
has a definit e action, even if its cont rol line is not highlighted. Multiple-bit cont rol
signals are highlighted if any constituent signal is asserted.

Figure 5.1 9 shows the operation of the datapath for an R-type instruction, SUcll as
add $t l , $t 2 , $t 3. Although everything occurs in 1clock cycle, we can think of four
steps to execute the instruction; these steps are ordered by the flow of information:
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FIGURE 5.17 The simple datapath with the control unit. The input to the control unit is the 6-bit oJKode field from the instruction. The
outputs of the control unit consist of three I-bit signals that are used to control multiplexors (RJ.>gDst,ALUSrc, and MemtoReg), three signals for con
trolling reads and writes in the register file and d.1ta memory (RJ.>gWrite, MemRJ.>ad, and MentWrite), a I-bit signal used in determining whether to
possibly branch (Branch), and a l-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch control signal and the Zero
output from the ALU; the AND gate output controls the selection of the next Pc. Notice that PCSrc is now a derived signal, rather than one conting
directly from the control unit. Thus we drop the signal name in subsequent figures.
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11I11I.Memto-
Instruction RegDst AlUSrc Reg Branch ALUOpl ALUOpO

R.fonnat 1 0 0 1 0 0 0 1 0

1, 0 1 1 1 1 0 0 0 0

" X 1 X 0 0 1 0 0 0

b" X 0 X 0 0 0 1 0 1

FIGURE 5.18 The setting of the control lines Is completely determined by the opcode fields of the Instruction. The first row of
the table corresponds to the R·format instructions ( add, sub, and, 0 r, and 51 t ) . For all these instructions, the source register fields are rs and rt ,
and the destination register field is rd; this defines how the signals ALUSrc and RJ.>gDst are set. Furthermore, an R-type instruction writes a register
(RegWrite = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is lUlconditionally replaced with PC + 4; oth·
erwise, the PC is replaced bylhe branch target jf the Zero outpul of the ALU is also high. The ALUOp field for R-type instructions is set to 10 to indi
cate that the ALU control should be generated from the funct field . The second and third rows of this table give the control signal settings for 1wand
sw. These ALUSrc and ALUOp fields are set to perform the address calculation. The MemRead and MemWrite are set to perform the memory acress .
Finally, RegDst and RegWrite are set for a lo.1d to c.1Use the result to be stored into the rt register. The branch inst ruction is similar to an R-formm
operat ion, since it sends the rs and rt registers to the ALU. The ALUOp field for branch is set for a subt ract (ALU control = 01), which is used to test for
equality. Not ice that the MemtoReg field is irrelevant when the RegWrite signal is 0: since the register is not being written, the value of the data on the
register data WTite port is not used. Thus, the entry MemtoReg in the last two rows of the table is replaced with X for don't care. Don't cares can also be
added to RegDst when RegWrite is O. This type of don't care must be added by the designer, since it depends on knowledge of how the datapath works.

I . The instruction is fetched, and the PC is incremented.

2. Two registers, H2 and H3, are read from the register fil e, and the main
control unit computes the setting of the cont rol lines during this step also.

3. The ALU operates on the data rea d from the register fil e, using the function
code (bits 5:0, which is the funct field, of the instruction) to generate the
ALU function.

4. The result from the ALU is written into the register fil e using bits 15: 11 of
the instruction to select the destination register ($ t 1).

Similarly, we ca n illustrate the execution of a load wo rd , such as

lw $t1 , o f fset($t2)

in a style similar to Figure 5. 19. Figure 5.20 on page 310 shows the active func
tional units and asserted control lines fo r a load. We can think of a load instruc
tion as operating in fi ve steps (similar to the R-type executed in four):

I. An instruction is fetched from the instruction memory, and the PC is incre
mented.

2. A register (HZ) va lue is read from the register fil e.

3. The ALU computes the sum of the value read from the register fil e and the
sign-extended, lower 16 bits of the instruction (offset).

4. The sum from the ALU is used as the address fo r the data memory.
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FIGURE 5.19 The dat apath In operation f or an R·type Instruction such as add St1. St2. St3. The control lines, datapath units, and
connections that are active are highlighted.

5. The data fro m the memory unit is written into the register fil e; the register
destin ation is given by bits 20: 16 of the instruction ($t 1) .

Finally, we can show the operation of the branch-on-equal instruction , such as
beq $t1 . $t2 . offset, in the same fashion. It operates much like an R-format
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FIGURE 5.20 11Ie datapath In operation for a load Instruction. The oontrol lmes, datap.1th WiltS, and connectlons th.1t are actlve are hIgh
Iighted.A store inst ruction mmld operate very similarly. The Jll.1in difference would be that the memory cont rol m>uld indicate a WTite rather than a read,
the second register value read m>uld be U'ied for the data to store, and the operation of writ ing the data memory value to the register fi le m>uld nOi occur.

instruction , but the ALU output is used to determine whether the PC is written with
PC + 4 or the brJ nch target address. Figu re 5.21 shows the four steps in execution:

1. An instruction is fetched from the instruction mem ory, and the PC is incre
mented.

2. Two registers, $t 1 and $t Z, are read from the register fil e.
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FIGURE 5.21 The da t a pa th In operation for a branch equal Instruction. The control hnes, datapath umts, and connectIOns that are
active are highlighted. After using the register file and ALU to perform the compare, the Zero output is used to select the next program counter from
between the two candidmes.

3. The ALU performs a subtra ct on the data va lues read from the register file.
The value of PC + 4 is added to the sign-extended, lower 16 bits of the
instruction (offset ) shifted left by two; the result is the branch target
address.

4. The Zero result from the ALU is used to decide which adder result to store
into the Pc.
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In the next section , we will examine ma chines that are truly sequential, namely,
those in which each of these steps is a distinct clock cycle.

Finalizing the Control

Now that we have seen how the instructions operate in steps, let's continue with
the control implementation. The control function ca n be precisely defined using
the contents of Figure 5. 18 on page 308. The outputs are the control lines, and the
input is the 6-bit apcade field , Op [5:0J, Thus, we ca n create a truth table fo r each
of the outputs based on the binary encoding of the apcades.

Figure 5.22 shows the logic in the control unit as one large truth table that
combines all the outputs and that uses the opcade bits as inputs. It completely
specifies the control function, and we can implement it directly in ga tes in an
automated fashion. We show this final step in Section C.2 in II Appendix C.

Op5 0 1 1 0
Op4 0 0 0 0
Op3 0 0 1 0
Op2 0 0 0 1
Op1 0 1 1 0
OpO 0 1 1 0
RegDst 1 0 X X
ALUSn: 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOp1 1 0 0 0
ALUOpO 0 0 0 1

Input or output

Inputs

Outputs

Signal name R-format

single-cycle
im plementatio n Also called
single dock cycle implementa
tion. An implementation in
which an instruction is executed
in one clock cycle.

FIGURE 5.22 The control function for the simple slngle-eycle Implementation Is com
pletely specified by this truth table. The top half of the table gives the combinations of input signals
that correspond to the four opcodes that determine the control output settings. (~member that Op [5:0 1
corresponds to bits 31:26 of the instruction, which is the op field. ) The bottom portion of the table gives the
outputs. Thus, the output RegWrite is asserted for two different combinations of the inputs. If we consider
only the four opcodes shown in this table, then we can simplify the truth table by using don't cares in the
input portion. For example, we can detect an R·format instruction with the expression OpS • Opl, since
this is sufficient to distinguish the R·forntat instructions from lw, sw, and beq. We do not take advantage
of this simplific.1tion, since the rest of the MIPS opoodes are used in a full implementation.
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Now, let's add the jump instruction to show how the basic datapath and con
t rol ca n be extended to handle other in structions in the instruction set.

Implementing Jumps

Figure 5.1 7 on page 307 shows the implementation of many of the instruc
tions we looked at in Chapter 2. One class of instructions missing is that of
the jump instruction. Extend the datapath and cont rol of Figure 5.1 7 to in 
clude the jump instruction. Describe how to set any new cont rol lines.

The jump instruction looks somewhat like a branch instruction but com
putes the target PC differently and is not conditional. Like a branch, the low
order 2 bits of a jump address are always ootwo. The next lower 26 bits of this
32-bit address come from the 26- bit immediate field in the instruction , as
shown in Figure 5.23. The upper 4 bits of the address that should replace the
PC come from the PC of the jump instruction plus 4. Thus, we can imple
ment a jump by storing into the PC the concatenation of

• the upper 4 bits of the current PC + 4 (these are bits 31:28 of the se
quentially following instruction address)

• the 26-bit immediate fi eld of the jump instruction

• the bits OOtwo

Figure 5.24 shows the addition of the control fo r jump added to Figu re 5.1 7.
An additional multiplexo r is used to select the source for the new PC va lue,
which is either the incremented PC (PC + 4), the branch target PC, or the
jump target Pc. One additional cont rol signal is needed for the additional
multiplexor. This control signal, ca lled jump, is asserted only when the in 
struction is a jump- that is, when the opcade is 2.

EXAMPLE

ANSWER
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Field

Bit positions

000010
3 1:26

add r ess
25 :0

FtGURE 5.23 Instruction format for the jump Instruction (opcode _ 2). The destination
address for a jump instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the
26-bit address field in the jump instruction and adding 00 as the 2 low-order bits.
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~SlrUClion [25-0J S hi ft Jump address [31-01

L.. 026 ~f12 28 0
PC+4(31 28)

) Add
M M

----- " ", ,
4 - V ) t ALU 1 0Add result ~

I RegDsl c-I Shift

~/ \ Jump left 2

Branch
MemRead

Instruction [31-26]
Contro l

MemloReg

ALUO
MemWrite

ALUSrc

\ RegWrite

Instruction [25-21) R~d

PC R~d register 1 e--address Read
Instruction [20-16) R~d

data 1

I register 2 Zero
Instruction 0[31-0)

"
ALU ALU ReadM Read Address data 1

I-- Write result
Instruction " data 2

~f-.
MInstruction [15-11) , register

"memory 1
I-- '

~ ,
Write "--d'fa Registers .L Data

Wrne memory

/ '\ data

/ '\
Instruction [15-01 16 32Sign ALU

extend ,- contro l

\ \
Instruction [5-01

..
FIGURE 5.24 The simple contro l and dat apath are ext ended t o handle the jump Instruction. An addltlonal multIplexor (at the
upper right ) is used to choose between the jump larget and either the branch target or the sequential instruction following this one. This multiplexor
is controlled by the jump control signal. The jmnp target address is obtained by shifting the lower 26 bits of the jump instruction left 2 bits, effectively
adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a 32-bit address.

Why a Single.cycle Implementation Is Not Used Today

Although the single-cycle design will work co rrectly, it would not be used in modern
designs because it is ineffi cient. To see why this is so, notice that the clock cycle must
have the same length for every instruction in this single-cycle design, and the CPI
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(see Chapter 4) will therefore be 1. Of course, the clock cycle is determined by the
longest possible path in the machine. This path is almost certainly a load instruc
tion , which uses five functional units in series: the instruction memory, the register
file, the ALU, the data memory, and the register fil e. Although the CPl is I, the over
all performance of a single-cycle implementation is not likely to be very good, since
several of the instruction classes could fit in a shorter clock cycle.

Performance of Single-Cycle Machines

Assume that the operation times fo r the major functional units in this imple
mentation are the following:

• Memory units: 200 picoseconds (ps)

• ALU and adders: 100 ps

• Register file (read or write) : 50 ps

Assuming th at the multiplexors, cont rol unit, PC accesses, sign extension
unit, and wires have no delay, which of the following implementations would
be faster and by how much?

1. An implementation in which every instruction operates in I clock cycle
of a fixed length.

2. An implementation where every instruction executes in I clock cycle
using a va riable-length clock, which for each instruction is only as long
as it needs to be. (Such an approach is not terribly practica l, but it will
allow us to see what is being sacrificed when all the instructions must
execute in a single clock of the sa me length.)

To compare the performance, assume the following instruction mix: 25%
loads, 10% stores, 45% ALU instructions, 15% branches, and 5% jumps.

Let's start by comparing the CPU execution times. Recall from Chapter 4 that

CPU execution time = Instruction count x CPI x Clock cycle time

Since CPI must be I, we can simplify this to

CPU execution ti me = Inst ruction count x Clock cycle time

EXAMPLE

ANSWER

315
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We need only find the clock cycle time for the two implementations, since the
instruction count and CPI are the same for both implementations. The criti
cal path for the different instruction classes is as follows:

Instruction
class Functional units used by the Instruction class

R·type Instruction fetch Register access ALU Register access

Load word InstnJction fetch Register access ALU Memory access Register access

Store word InstnJction fetch Register access ALU Memory access

Branch Instruction fetch Register access ALU
Jump Instruction fetch

Using these critical paths, we ca n co mpute the required length for each instruc
tion class:

Instruction
class

Instruction
memory

Register
read

ALU
operation

Data
memory

Register
write II

R·type 200 50 100 0 50

Load word 200 50 100 200 50

Store word 200 50 100 200

Branch 200 50 100 0

Jump 200

400 ps

600 ps

550 ps

350 ps

200 ps

The clock cycle for a ma chine with a single clock for all instructions will be
determined by the longest instruction, which is 600 ps. (This timing is ap
proximate, sin ce our timing model is quite simplistic. In reality, the timing of
modern digital systems is complex.)

A machine with a va riable clock will have a clock cycle that va ries between
200 ps and 600 ps. We ca n find the average clock cycle length for a machine
with a va riable-length clock using the information above and the instruction
frequency distribution.

Thus, the average time per instruction with a va riable clock is

CPU clock cycle = 600 x 25% + 550 x 10% + 400 x 45% + 350 x 15% + 200 x 5%

447.5 ps

Since the va riable clock implementation has a shorter average clock cycle, it is
clearly faster. Let's find the performance ratio:
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CPU performancevariabl~dock

CPU performanCesingl~ clod:

CPU execution timesingl~ dock

CPU execution time,.ariabl~ clod:
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(
IC x CPU clock cyclesingl~ dock = CPU clock cyclesin*dock )

IC x CPU clock cyclevari.bl~dock CPU clock cyclevari.bl~dod:

= 600 = 1.34
447.5

The va riable clock implementation would be 1.34 times faster. Unfortunately,
implementing a va riable-speed clock for each instruction class is extremely
difficult, and the overhead for such an approach could be larger than any ad
va ntage gained. As we will see in the next section , an alternative is to use a
sho rter clock cycle that does less wo rk and then vary the number of clock cy
cles fo r the different instruction classes.

The penalty for using the single-cycle design with a fi xed clock cycle is signifi
ca nt, but might be considered acceptable for this small instruction set. Histori
cally, ea rly ma chines with very simple instruction sets did use this
implementation technique. However, if we tried to implement the floating-point
unit or an instruction set with more complex instructions, this single-cycle design
wouldn't work well at all. An exa mple of this is shown in the " For More Practice
Exercise 5.4.

Because we must assume that the clock cycle is equal to the worst-case delay for
all instructions, we ca n't use implementation techniques that red uce the delay of
the common case but do not improve the worst-case cycle time. A single-cycle
implementation thus violates our key design principle of making the comm on
case fast. In addition, in this single-cycle implementation, each functional unit
ca n be used only once per clock; therefore, some functional units must be dupli
cated, raising the cost of the implementation. A single-cycle design is inefficient
both in its performance and in its hardware cost!

We ca n avoid these difficulties by using implementation techniques that have a
shorter clock cycle-derived from the basic functional unit delays-and that
require multiple clock cycles for each in struction. The next section explores this
alternative implementation scheme. In Chapter 6, we'll look at another imple
mentation technique, ca lled pipelining, that u ses a datapath very similar to the
single-cycle datapath , but is much more efficient. Pipelining ga ins efficiency by
overlapping the execution of multiple instructions, increasing hardwa re utiliza 
tion and improving performance. For those readers interested primarily in the
high-level concepts used in processors, the material of this section is sufficient to
read the introductory sections of Chapter 6 and und erstand the basic functional-
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Check
Yourself

Chapter 5 The Processor: Datapath and Control

ity of a pipel ined processo r. For those, who want to understand how the hardwa re
really implements the control, forge ahead!

Look at the cont rol signal in Figure 5.22 on page 312. Can any cont rol signal in
the figure be replaced by the inverse of another? (Hint: Take into account the don't
cares.) If so, ca n you use one signal for the other without adding an inverter?

A Multicycle Implementation

multicyd e
implem entation Also called
multiple dock cyde implem en 
ta tion. An imp lementation in
which an instruction is executed

in multiple dock cydes.

In an earlier example, we broke each instruction into a series of steps corresponding
to the functional unit operations that were needed. We can use these steps to create a
multicyde implementation. In a multicycle implementation, each step in the exe
cution will take I clock cycle. The multicycle implementation allows a functional
unit to be used more than once per instruction, as long as it is used on different
clock cycles. This sharing can help reduce the amount of hardware required. The
ability to allow instructions to take different numbers of clock cycles and the ability
to share functional units within the execution of a single instruction are the major
advantages of a multicycle design. Figu re 5.25 shows the abstract version of the mul-

Instru ction

PC Address
register Data -

~f- A
Register #

-
Instruction

Memory or data Registers ) ALU ALUOut

Register # r-

1/Memory f- B
Data data Register # '---

register

FIGURE 5.25 11Ie high-level view of the multlcycle datapath. This picture shows the key elements of the
datapath: a shared memory unit, a single ALU shared among instructions, and the connections among these shared lUlits . The
use of shared rrUlctionallUlits requires the addition or widening of multiplexors as well as new temporary registers that hold
data between dock cycles of the same instruction. The additional registers are the Instruction register (IR), the Memory data
register (MDR),A, B, and AWOUl.
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ticycle datapath. If we compare Figure 5.25 to the datapath for the single-cycle ver
sion in Figure 5. 11 on page 300, we ca n see the following differences:

• A single memory unit is used for both instructions and data.

• There is a single ALU, rather than an ALU and two adders.

• One or m ore registers are added after every major functional unit to hold
the output of that unit until the value is used in a subsequent clock cycle.

At the end of a clock cycle, all data that is used in subsequent clock cycles must
be stored in a state element. Data used by 5lIbsequent instructions in a later clock
cycle is stored into one of the progra mmer-visible state elements: the register file,
the PC, or the memory. In contrast, data used by the same instruction in a later
cycle must be stored into one of these additional registers.

Thus, the position of the additional registers is determined by the two fa ctors:
what combinational units will fit in one clock cycle and what data are needed in
later cycles implementing the instruction. In this multicycle design, we assume
that the clock cycle ca n accommodate at most one of the following operations: a
memory access, a register fil e access (two reads or one write), or an ALU opera
tion. Hence, any data produced by one of these three functional units (the mem 
ory, the register fil e, or the ALU) must be saved, into a temporary register for use
on a later cycle. If it were not saved then the possibility of a timing race could
occur, leading to the use of an in correct value.

The following temporary registers are added to meet these requirements:

• The Instruction register (I R) and the Memory data register (MDR) are
added to save the output of the memory for an instruction read and a data
read, respectively. Two separate registers are used, since, as will be clear
shortly, both va lues are needed during the same clock cycle.

• The A and B registers are used to hold the register opera nd values read from
the register file.

• The ALUOut register holds the output of the ALU.

All the registers except the IR hold data only between a pair of adjacent clock
cycles and will thus not need a write control signal. The IR needs to hold the
instruction until the end of execution of that instruction, and thus will require a
write control signal. This distinction will become more clear when we show the
individual clock cycles for each instruction.

Because several functional units are shared for different purposes, we need
both to add multiplexors and to expa nd existing multiplexors. For exa mple, since
one memory is used for both instructions and data, we need a multiplexor to
select between the two sources for a memory address, namely, the PC (for in struc
tion access) and ALUOut (for data access).

319
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Replacing the three ALUs of the single-cycle datapath by a single ALU means that
the single ALU must accommodate all the inputs that used to go to the three differ
ent ALUs. Handling the additional inputs requires two changes to the datapath:

I. An additional multiplexor is added for the first ALU input. The multiplexor
chooses between the A register and the Pc.

2. The multiplexo r on the second ALU input is changed from a two-way to a
four-way multiplexor. The two additional inputs to the multiplexor are the
constant 4 (used to increment the PC) and the sign-extended and shifted
offset field (used in the branch address computation).

Figure 5.26 shows the details of the datapath with these additional multiplex
o rs. By introducing a few registers and multiplexors, we are able to reduce the
number of memory units from two to one and eliminate two adders. Sin ce regis
ters and multiplexors are fairly small compared to a memory unit or ALU, this
could yield a substantial red uction in the hardwa re cost.

'0 L.. 'IJ'PC ReadM Instruction

" Address [25-21] register 1
Read _ M ~,

A L- ~r-
"- Instruction Read

data 1
- 1 Zero f--Memo ry [20-16] register 2

MemData 0 "-' ) ALU ALU
Instruction M Registers ALUOut

[15-0] Instruction " Write R d - ,r;::---... resuR
. te ea

4-0 ~ Mt--VWrite (15-11 )
, regis r data 2 B

data Instruct ion 1 -
register ..r Write "r- 0 d.~ 2 ,
Instruction M 3

[15-0] " 1\,
1

I
Memo ry 16

S ign
32

S hi ftc.. data extend left 2
register

\

FIGURE 5.26 Multleycle da t a path for MIPS handles the basic Instructions. Although thIS d.1lapath supports normal incrementing of the
PC, a few more connections and a multiplexor will be needed for branches and jwnps; we will add these shortly. The additions versllS the single-clock
d.1lapath include several registers (IR, MDR, A, B,ALUOut), a multiplexor for the memory address, a multiplexor for the top AW input, and expanding
the multiplexor on the bottomALU input into a four-way selector. These small additions allow lIS to remove tm> adders and a memory unit.



5.5 A Multleyele Implementation

Because the datapath shown in Figure 5.26 takes multiple clock cycles per
instruction , it will require a different set of control signals. The programmer-visible
state units (the PC, the memory, and the registers) as well as the lR will need write
control signals. The memory will also need a read signal. We ca n use the ALU con
trol unit from the single-cycle datapath (see Figure 5. 13 and II Appendix C) to
control the ALU here as well. Finally, each of the two-input multiplexors requires a
single control line, while the four-input multiplexor requires two control lines.
Figure 5.27 shows the datapath of Figure 5.26 with these control lines added.

The multicycle datapath still requires additions to support branches and
jumps; after these additions, we will see how the instructions are sequenced and
then generate the datapath control.

With the jump instruction and branch instruction, there are three possible
sources for the va lue to be written into the PC:

1. The output of the ALU, which is the va lue PC + 4 during instruction fetch.
This value should be stored directly into the pc.

2. The register ALUOut, which is where we will store the address of the branch
target after it is computed.

3. The lower 26 bits of the Instruction register OR) shifted left by two and
concatenated with the upper 4 bits of the incremented PC, which is the
source when the instruction is a jump.

As we observed when we implemented the single-cycle cont rol, the PC is
written both un conditionally and conditionally. During a normal in crement
and for jumps, the PC is written unconditi onally. If the instruction is a condi 
tional branch, the incremented PC is replaced with the va lue in ALUOut only if
th e two designated registers are equa l. Hence, our implementation uses two
sepa rate control signals: PCWrite, which ca uses an unconditio nal write of the
PC, and PCWriteCond, which causes a write of the PC if the branch condition
is also true.

We need to connect these two control signals to the PC write control. Just as we
did in the single-cycle datapath, we will use a few ga tes to derive the PC write con
t rol signal from PCWrite, PCWriteCond , and the Zero signal of the ALU, which is
used to detect if the two register opera nd s of a beq are equal. To determine
whether the PC should be written during a conditional branch, we AND together
the Zero signal of the ALU with the PCWriteCond. The output of this AND ga te is
then ORed with PCWrite, which is the unconditional PC write signal. The output
of this OR gate is connected to the write control signal for the Pc.

Figure 5.28 shows the complete multicycle datapath and control unit, includ
ing the additional control signals and multiplexor for implementing the PC
updating.
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lorD MemRead MemWrite IRWrite RegDst RegWrite ALUSrcA

aPC f- a
M Instruction Read

" Address (25-21) register 1 r M, Rood

~ L. " f-.
r ~ Instruction data 1 ,

Memory Read 1 Z.cof-o-(20-16) register 2
MemData a ALU AInstruction M Registers LU ALUOut

[15-0) Instruction " Wr~e Read r ~ res""Write [15-11)
, register data 2 B

'; ~ Mr-Vd.~ Inst ruction 1 ~

register r'"..r Wrne "data 2,
Instruction M

~[15-0) " ./,
I '\1

Memory 16 32 / '\
Sign Shift

data extend left 2 ALU
reg ister control

"- "- /
Instruction (5-01

MemtoReg ALUSrcB ALUOp

FIGURE 5.27 The multleycle datapath from Figure 5.26 with the control lines shown. The signals ALUOp and ALUSrcB are l·bit
control signals, while all the other control lines are I·bit signals. Neither register A nor B requires a write signal, since their contents are only read on
the cycle immediately after it is WTinen. The memory data register has been added to hold the data from a load when the data returns from memory.
Data from a load returning from memory cannot be WTitten directly into the register file since the clock cycle cannot accommodate the time required
for both the memory access and the register file write. The MemRead signal has b«n moved to the top of the memory unit to simplify the figures. The
full set of datapaths and control lines for branches will be added shortly.

Before exa mining the steps to execute each instruction, let us informally exa m
ine the effect of all the control signals (just as we did for the single-cycle design in
Figure 5. 16 on page 306). Figure 5.29 shows what each control signal does when
asserted and deasserted.

Elaboration: To reduce the number of signal lines interconnecting the functional
units, designers can use shared buses. A shared bus is a set of lines that connect mul·

tiple units; in most cases, they include multiple sources that can place data on the bus
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FtGURE 5.28 The comple t e da t a pa th fo r the multleycle Imple me nta tion togethe r with the ne cessary control lines. The con
trollines of Figure 5.27 are attached to the control unit, and the control and datapath elements needed to effect changes to the PC are included. The
major additions from Figure 5.27 include the multiplexor wed to select the source of a new PC value; g.1tes wed to combine the PC write signals; and
the control signals PCSource, PCWrite, and PCWriteCond. The PCWriteCond signal is used to decide whether a conditional branch should be taken.
Support for jwnps is included.

and multiple readers of the value. Just as we reduced the number of functional units for
the datapath , we can reduce the number of buses interconnecting these units by shar

ing the buses . For example, there are six sources coming to the ALU; however, only two

of them are needed at anyone time . Thus, a pair of buses can be used to hold values
that are being sent to the ALU . Rather than placing a large multiplexor in front of the
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Actions of the l·blt control signals

Signal name Effect when deasserted Effect when asserted

RegDst The register file destination number for the Write The register file destination number for the Write register comes from the
register comes from the It field . rd field .

Regwrite None. The general.purpose register seleded by the Write register number is
written with the value of the Write data input.

ALUSrcA The first ALU operand is the PC. The first ALU operand comes from the A register.

MemRead None. Content of memory at the location specified by the Address input is put
on Memory data output.

MemWrite None. Memory contents at the location specified by the Address input is
replaced by value on Write data input.

MemtoReg The value fed to the register file Write data input The value fed to the register file Write data input comes from the MDR.
comes from ALUOut.

lorD The PC is used to supply the address to the ALUOut is used to supply the address to the memory unit.
memory unit.

IRWrite None. The output of the memory is written into the IR.

PCWrite None. The PC is written; the source is controlled by PCSource.

PCWriteCond None. The PC is written if the Zero output from the ALU is also active.

Actions of the 2·blt control signals

Signal name Value (binary) Effect

ALUOp 00 The ALU perfonns an add operation.

01 The ALU perfonns a subtract operation.

10 The funct field of the instruction determines the ALU operation.

ALUSrcB 00 The second input to the ALU comes from the B register .

01 The second input to the ALU is the constant 4 .

10 The second input to the ALU is the sign.extended, lower 16 bits of the IR.

11 The second input to the ALU is the sign.extended, lower 16 bits of the IR shifted left
2 bits.

PCSource 00 Output of the ALU (PC + 4) is sent to the PC for writing.

01 The contents of ALUOut (the branch target address) are sent to the PC for writing.

10 The jump target address (IR[25 :0) shifted left 2 bits and concatenated with
PC + 4[31 :28]) is sent to the PC for writing.

FIGURE 5.29 The action caused by the setting of each control signal In Figure 5.28 on page 323. The top table describes the I-bit
control signals, while the bottom table describes the l-bit signals. Only those control lines that affect multiplexors h.we an action when they aredeasserted.
This information is similar to that in Figure 5.16 on page 306 for the single-cycle datap.1th, but adds several new control lines (IRWrite, PCWrite,
PCWriteCond, ALUSrcB, and PCSource) and removes control lines that are no longer used or have been repbced (PCSrc, Branch, and Jump).

ALU, a designer can use a shared bus and then ensure that only one of the sources is
driving the bus at any point. Although this saves signal lines, the same number of con
trol lines will be needed to control what goes on the bus. The major drawback to using
such bus structures is a potential performance penalty, since a bus is unlikely to be as
fast as a point-to-point connection .
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Breaking the Instruction Execution into Clock Cycles

Given the datapath in Figu re 5.28, we now need to look at what should happen in
each clock cycle of the multicycle execution, since this will determine what addi
tional cont rol signals may be needed, as well as the setting of the control signals. Our
goal in brea king the execution into clock cycles should be to maximize performance.
We can begin by breaking the execution of any instruction into a series of steps, each
taking one clock cycle, attempting to keep the amount of work per cycle roughly
equal. For example, we will restrict each step to contain at most one ALU operation,
or one register fil e access, or one memory access. With this restriction, the clock
cycle could be as short as the longest of these operations.

Reca ll that at the end of every clock cycle any data values th at will be needed on
a subsequent cycle must be stored into a register, which can be either one of the
major state elements (e.g., the PC, the register file, or the mem ory), a temporary
register written on every clock cycle (e.g., A, B, MDR, or ALUOut), or a tempo
rary register with write control (e.g., lR). Also remember that because our design
is edge- triggered, we ca n continue to read the current value of a register; the new
value does not appea r until the next clock cycle.

In the single-cycle datapath , each instruction uses a set of datapath elements to
ca rry out its execution. Many of the datapath elements operate in series, using the
output of another element as an input. Some datapath elements operate in paral
lel; for example, the PC is incremented and the instruction is read at the sa me
time. A similar situation exists in the multicycle datapath. All the operations listed
in one step occur in parallel within 1 clock cycle, while successive steps operate in
series in different clock cycles. The limitation of one ALU operation, one memory
access, and one register file access determines what can fit in one step.

Notice that we distinguish between rea ding from or writing into the PC o r one
of the stand -a lone registers and reading from o r writing into the register fil e. In
the former case, the read or write is part of a clock cycle, while reading or writing
a result into the register fil e takes an additional clock cycle. The reason for this dis
tinction is that the register fil e has additional cont rol and access overhea d com 
pared to the single stand -alone registers. Thus, keeping the clock cycle short
motiva tes dedica ting separate clock cycles for register fil e accesses.

The potential execution steps and their actions are given below. Each M IPS
instruction needs from three to five of these steps:

1. Instruction fetch step
Fetch the instruction from memo ry and compute the address of the next sequen 
tial instruction:

IR <= Memory[PC) ;
PC <= PC + 4;
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Operation: Send the PC to the mem ory as the address, perform:l read, and write
the instruction into the Instruction register (I R), where it will be stored. Also,
increment the PC by 4. We use the symbol "<=" from Verilog; it indicates that all
right -hand sides are eva luated and then all assignments are made, which is effec
tively how the hardwa re executes during the clock cycle.

To implement this step, we will need to assert the cont rol signals MemRead and
IRWrite, and set lorD to 0 to select the PC as the source of the address. We also
increment the PC by 4, which requires setting the ALUSrcA signal to 0 (sending the
PC to the ALU), the ALU SrcB signal to 0 1 (sending 4 to the ALU), and ALU Op to 00
(to m ake the ALU add). Finally, we will also wa nt to store the incremented instruc
tion address back into the PC, which requires setting PC source to ()() and setting
PCWrite. The increm ent of the PC and the instruction mem ory access ca n occur in
parallel. The new value of the PC is not visible until the next clock cycle. (The incre
mented PC will also be sto red into ALUOut , but this action is benign.)

2. Instruction decode and register fetch step

In the previous step and in this one, we do not yet kn ow what the instruction is, so
we ca n perform only actions that are either applicable to all instructions (such as
fetching the instruction in step 1) o r are not harmful, in case the instruction isn't
what we think it might be. Thus, in this step we ca n read the two registers indi
cated by the rs and rt instruction fi elds, since it isn't harmful to read them even if
it isn't necessa ry. The values read from the register fil e may be needed in later
stages, so we read them from the register file and sto re the values into the tempo
rary registers A and B.

We will also compute the branch target address with the ALU, which also is not
harmful because we ca n ignore the value if the instruction nlfllS out not to be a
branch. The potential branch target is saved in ALUOut.

Perfo rming these "optimistic" actions ea rly has the benefit of decreasing the
number of clock cycles needed to execute an in struction. We ca n do these optimis
tic actions ea rly because of the regula rity of the instruction formats. For
instance, if the instruction has two register inputs, they are always in the rs and rt
fields, and if the instruction is a branch , the offset is always the low-o rder 16 bits:

A <~ Reg[IR[ZS , ZlJJ ,
B <~ Reg[IR[ZO , 16JJ ,
ALUOu t <= PC + (s ign -ext end (IR[15 - 0]) « 2) ;

Operation: Access the register fil e to read registers rs and rt and sto re the results
into the registers A and B. Sin ce A and B are overwritten on every cycle, the regis
ter fil e can be read on every cycle with the values stored into A and B. This step
also computes the branch ta rget address and stores the address in ALUOut, where
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it will be used on the next clock cycle if the instruction is a branch. This requires
setting ALUSrcA to 0 (so that the PC is sent to the ALU), ALUSrcB to the value 11
(so that the sign-extended and shifted offset fi eld is sent to the ALU), and ALUOp
to 00 (so the ALU adds) . The register fil e accesses and computation of branch tar
get occur in parallel.

After this clock cycle, determining the action to take ca n depend on the
instruction contents.

3. Execution, memory address computation, or branch completion

This is the first cycle during which the data path operation is determined by the
instruction class. In all cases, the ALU is operating on the opera nds prepared in
the previous step, performing one of four functions, depending on the instruction
class. We specify the action to be taken depending on the instruction class:

Memory reference:

ALUOut <= A + sign -extend (IR[15 :0) ;

Operation; The ALU is adding the opera nds to form the memory address. This
requires setting ALUSrcA to 1 (so that the first ALU input is register A) and setting
ALUSrcB to 10 (so that the output of the sign extension unit is used for the second
ALU input). The ALUOp signals will need to be set to 00 (causing the ALU to add).

Arithmetic-logical instruction (R-type);

ALUOut <= A op B;

Operation; The ALU is performing the operation specified by the function code
on the two values read from the register fil e in the previous cycle. This requires
setting ALUSrcA = 1 and setting ALUSrcB = 00, which together cause the registers
A and B to be used as the ALU inputs. The ALUOp sigll3ls will need to be set to 10
(so that the funct field is used to determine the ALU control sigll3l settings).

Emnch:

if (A == B) PC <= ALUOut ;

Operation; TIle ALU is used to do the equal comparison between the two registers
read in the previous step. The Zero signal out of the ALU is used to determine whether
or not to branch. This requires setting ALUSrcA = 1and settingALUSrcB = 00 (so that
the register file outputs are the ALU inputs). TIle ALUOp sigll3ls will need to be set to
0 1 (ca using the ALU to subtract) for equality testing. TIle PCWriteCond sigll3l will
need to be asserted to update the PC if the Zero output of the ALU is asserted. By set-
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ting PCSource to 01, the va lue written into the PC will come from ALUOut, which
holds the branch target address computed in the previous cycle. For conditional
branches that are taken, we actually write the PC twice: once from the output of the
ALU (during the Instruction decode/register fetch) and once from ALUOut (during
the Branch completion step). The value written into the PC last is the one used for the
next instruction fetch.

jump:

# lx , y} is the Veri log no tati on f or conca t enation of
bi t fi elds x and y
PC <~ IPC [31 , 28], (lR[2S , OJ],2 ' bOOI} ,

Operation: The PC is replaced by the jump address. PCSource is set to direct the
jump address to the PC, and PCWrite is asserted to write the jump address into
the Pc.

4. Memory access or R-type instruction completion step

During this step, a load or sto re instruction accesses memory and atl arithmetic
logical instruction writes its result. \Vhen a value is retrieved from memory, it is
stored into the memory data register (MDR), where it must be used on the next
clock cycle.

Memory reference:

MOR <= Memory [ALUOut] ;

Memory [ALUOut] <= B;

Operation: If the instruction is a load, a data word is retrieved from memory and
is written into the MDR. If the instruction is a store, then the data is written into
memo ry. In either case, the address used is the one computed during the previous
step and stored in ALUOut. For a store, the source operand is saved in B. (8 is
actually read twice, once in step 2 and once in step 3. Luckily, the sa me value is
read both times, since the register number-which is stored in IR and used to read
from the register file-does not change. ) The signal MemRead (for a load) or
MemWrite (for store) will need to be asserted. In addition, for loads and stores,
the signal lorD is set to 1 to force the memo ry address to come from the ALU,
rather than the Pc. Since MDR is written on every clock cycle, no explicit control
signal need be asserted.
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Arithmetic-logical instruction (R-type);

Reg[IR[15 : 11JJ <= ALUOu t ;

Operation; Place the contents of ALUOut, which corresponds to the output of the
ALU operation in the previous cycle, into the Result register. The signal RegDst
must be set to 1 to force the rd field (bits 15: 11 ) to be used to select the register fil e
entry to write. RegWrite must be asserted, and MemtoReg must be set to 0 so that
the output of the ALU is written, as opposed to the memo ry data output.

5. Memory read completion step

During this step, loads complete by writing back the value from memory.

Load:

Reg[l R[20 : 16]] <= MOR ;

Operation; Write the load data, which was stored into MDR in the previous cycle,
into the register fil e. To do this, we set MemtoReg = 1 (to write the result from
memo ry), assert RegWrite (to cause a write), and we make RegDst = 0 to choose
the rt (bits 20: 16) field as the register number.

This five-step sequence is summarized in Figure 5.30. From this sequence we
ca n determine what the control must do on each clock cycle.
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Action for R·type Action for memory· Action for Action for
Step name Instructions reference Instructions branches jumps

Instruction fetch IR <'" Memory(PCJ
PC <",PC +4

Instruction de<:ode/register fetch A <'" Reg [IR[25 :2111
B <'" Reg [IR[20 :16))

ALUOut <'" PC + (sign.extend (IR[15 :011« 2)

EXe<:ution, address computation, ALUOut <'" A op B ALUOut <_ A + sign.extend if (A __ B) PC <'" (PC [31:28),
branch/jump completion (IR[15 :011 PC <'" ALUOut (IR[25:0)),2'bOO))

Memory access or R.type Reg [IR[15 :11)) <_ Load : MDR <_ Memory[ALUOut)
completion ALUOut 0'

Store: Memory [ALUOutl <'" B

Memory read completion Load: Reg(IR[20 :1611 <'" MDR

FIGURE 5.30 Summary of the steps taken to execute any Instruction class. Instructions take from three to five execution steps. The
first two steps are independent of the instruction class. After these steps, an instruction takes from one to three more cycles to complete, depending on
the instruction class. The empty entries for the Memory access step or the Memory read completion step indicate that the particular instruction class
takes fewer cycles. In a multicycle implementation, a new instruction will be started as soon as the current instruction contpletes, so these cycles are
not idle or wasted. As mentioned earlier, the register file actuaUy reads every cycle, but as long as the IR does not change, the values read from the reg
ister file are identical. In p.uticuiar, the value read into register Bduring the Instruction decode stage, for a branch or R-type instruction, is the same as
the value stored into Bduring the Execution stage and then used in the Memory access stage for a store word instruction.
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microprogram A symbolic
representation of control in the
fann ofinstructions, called
microinstructions, that are exe
cuted on a simple micromachine.

EXAMPLE

ANSWER

Chapter 5 The Processor: Datapath and Control

Defining the Control

Now that we have determined what the control signals are and when they must be
asserted, we ca n implement the control unit. To design the control unit for the
single-cycle data path , we used a set of truth tables that specified the setting of the
cont rol signals based on the instruction class. For the multicycle datapath , the
control is more complex beca use the instruction is executed in a series of steps.
The control for the multicycle datapath must specify both the signals to be set in
any step and the next step in the sequence.

In this subsection and in II Section 5.7, we will look at two different techniques
to specify the control. The first technique is based on finite state machines that are
usually represented graphically. The second technique, called microprogramming,
uses a programming representation for cont rol. Both of these techniques repre
sent the control in a form that allows the detailed implementation- using gates,
ROMs, or PLAs-to be synthesized by a CAD system. In this chapter, we will
focus on the design of the cont rol and its representation in these two forms.

'II Section 5.8 shows how hardwa re design languages are used to design modern
processors with examples of both the multicycle datapath and the finite state control.
In modern digital systems design , the final step of taking a hardware description to
actual gates is handled by logic and datapath synthesis tools. Appendix C shows how
this process operates by translating the multicycle cont rol unit to a detailed hardware
implementation. The key ideas of control can be grasped from this chapter without
examining the material in either 'll Section 5.8 or 'II Appendix C. However, if you
want to actually do some hardware design, Section 5.9 is useful , and II Appendix C
ca n show you what the implementations are likely to look like at the gate level.

Given this implementation , and the knowledge that each state requires 1 clock
cycle, we can find the CPI for a typical instruction mix.

CPI in a Multicycle CPU

Using the SPEC INT2000 instruction mix shown in Figure 3.26, what is the
CPI , assuming that each state in the mult icycle C PU requires 1 clock cycle?

The mix is 25% loads (I % loa d byte + 24% loa d wo rd), 10% stores (i % sto re
byte + 9% store wo rd), 11 % branches (6% beq, 5% bne ), 2% jumps (1 %
j a 1 + 1% j r ) , and 52% ALU (all the rest of the mix, which we assume to be
ALU instructions). From Figure 5.30 on page 329, the number of clock cycles
for each instruction class is the following:
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• Loads: 5

• Stores: 4

• ALU instructio ns: 4

• Bran ches: 3

• Jumps: 3

The CPI is given by the following:
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CPI = CPU clock cycles

Instruction count

LIn struction count . x CPI ;, ,
Instruction count

I
lnstruction count ;
.,---,---,--.,------' x CP I;
Instructio n count

The ratio

Instruction count;
Instruction count

is simply the instructio n frequency for the instructio n class i. We can there
fore substitute to obta in

CP I = 0.25x5+0.lOx 4 +0.52x 4 +0. ll x3+0.02x3 = 4.1 2

This CPI is better than the worst -case CPI of 5.0 when all the instructions
take the sa m e number of clock cycles. Of course, overheads in both designs
may reduce or increase this difference. The muiticycle design is probably also
more cost -effective, since it uses fewer separate components in the datapath.

The first m ethod we use to specify the muiticycle control is a finite state
machine. A finit e state machine consists of a set o f states and directions on how to
change states. The directions are defined by a next-state function , which m aps the
current state and the inputs to a new state. \-Vhen we use a finit e state machine for
control , each state also specifi es a set o f outputs that are asserted when the
machine is in that state. The implem entation of a finite state ma chine usually
assumes that all outputs that are not explicitly asserted are deasserted. Similarly,
the correct operatio n of the datapath depends o n the fa ct that a signal that is not
explicitly asserted is deasserted, rather than acting as a don't care. For example,
the RegWrite signal sho uld be asserted o nly when a register fil e entry is to be writ 
ten; when it is no t explicitly asserted, it must be deasserted.

finite state machine A sequen
tia1logic function consistingof a
set ofinputs and outputs, a next
state fi.mction that maps the cur
rent state and the inputs to a new
state, and an output function
that maps the current state and
possibly the inputs to a set of
asserted outputs.

next-state function A combi
national fi.mction that, given the
inputs and the current state,
determines the next state of a
finite state machine.
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Multiplexo r controls are slightly different, since they select one of the inputs
whether they are 0 or 1. Thus, in the finit e state machine, we always specify the
setting of all the multiplexo r controls that we care about. When we implement the
finite state machine with logic, setting a cont rol to 0 may be the default and thus
may not require any ga tes. A simple exam ple of a finite state machine appea rs in
Appendix B, and if you are unfamiliar with the concept of a finite state machine,
you may want to examine 1£ Appendix B before proceeding.

The finite state cont rol essent ially corresponds to the five steps of execution
shown on pages 325 through 329; each state in the finit e state machine will take 1
clock cycle. The finit e state m achine will consist of several parts. Since the first two
steps of execution are identical fo r every instruction , the initial two states of the
finite state machine will be common for all instructions. Steps 3 through 5 differ,
depending on the opcode. After the execution of the last step for a particular
instruction class, the finite state machine will return to the initial state to begin
fetching the next instruct ion.

Figure 5.31 shows this abstracted representation of the finit e state machine. To
fill in the details of the finite state machine, we will first expand the instruction
fetch and decode portion , and then we will show the states (and actions) for the
different instruction classes.

We show the first two states of the finit e state machine in Figure 5.32 using a
traditional graphic representation. We number the states to simplify the explana
tion , though the numbers are arbitrary. State 0, corresponding to step 1, is the
starting state of the machine.

The signals th at are asserted in each state are shown within the circle represent 
ing the state. The arcs between states define the next state and are labeled with

Sta rt

I I
Instruction fetch/decode and register fetch

(Figure 5.32)

Memory access R-type instructions Branch instruction Jump instruct ion
instruct ions (Figure 5.34) (Rgure 5.35) (Figure 5.36)

(Figure 5.33)

FIGURE 5.31 The high-level view of the finite state machine control. The first steps are inde
pendent of the instruction class; then a series of sequences that depend on the instruction opcode are used
to complete each instruction class. After completing the actions needed for that instruction class, the con
trol returns to fetch a new instruction. Each box in this figure may represent one to several states. The arc
labeled Start m.uks the stale in which to begin when the first instruction is to be fetched .
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o

Start ---~~

Instruction fetch

MemRead
ALUSrcA ",O

lorD '" 0
IRWrite

ALUSrcB ", 01
ALUOp '" 00

PCWrite
PCSource '" 00

Instruction decode!
Register fetch

Memory-reference FSM
(Figure 5.33)

R-type FSM
(Figure 5.34)

Branch FSM
(Figure 5.35)

Jump FSM
(Figure 5.36)

FIGURE 5.32 The Instruction fetch and decode portion of every Instruction Is Identi
cal. These states correspond to the top box in the abstract finite state machine in Figure 5.31 .ln the first
state we assert two signals to cause the memory to read an instruction and write it into the Instruction
register (MemRead and IRWrite), and we set lorD to 0 to choose the PC as the address source. The signals
ALUSrcA, ALUSrcB, ALUOp, PCWrite, and PCSource are set to compute PC + 4 and store it into the Pc.
(It will also be stored into ALUOut, but never used from there. ) In the next state, we compute the branch
target address by setting ALUSrcB to II (causing the shifted and sign-extended lower 16 bits of the IR to
be sent to the ALU), setting ALUSrcA to 0 and ALUOp to 00; we store the result in the ALUOut register,
which is written on every cycle. There are four next states that depend on the class of the instruction,
which is known during this state. The control unit input, called Op, is used to determine which of these
arcs to follow. Remember that all signals not explicitly asserted are deasserted; this is particularly impor
tant for signals that control writes. For multiplexors controls, lack of a specific setting indicates that we
do not care about the setting of the multiplexor.

conditions that select a specific next state when multiple next states are possible.
After state 1, the signals asserted depend on the class of instruction. Thus, the
finite state ma chine has four arcs exiting state 1, corresponding to the four
instruction classes: memo ry reference, R-type, branch on equal, and jump. This
process of branching to different states depending on the instruction is called
decoding, sin ce the choice of the next state, and hence the actions that follow,
depend on the instruction class.
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From sta te 1

(Op = 'LW) o r (Op = 'SW')

RegWrite
MemtoRe g =1

RegDst = 0

/ --'_,Memory address computation

/ --,c.:M::::emory read completion step

To state 0
(Figure 5.32)

FIGURE 5.33 The finite state machine for controlling memory-reference Instructions has
four states. These states correspond to the box labeled "Memory access instructions~ in Figure 5.31.
After performing a memory address calculation, a separate sequence is needed for load and for store. The
sett ing of the control signaIsALUSrcA,ALUSrcB, and ALUOp is U'ied to cause the memory address compu
tation in state 2. Loads require an extra state to WTite the result from the MDR (where the result is written in
state 3) into the register file.

Figure 5.33 shows the portion of the finit e state machine needed to implement
the memo ry- reference instructions. Fo r the memo ry- reference instructions, the
first state after fetching the instruction and registers computes the memory
address (state 2). To compute the mem ory address, the ALV input multiplexors
must be set so th at the first input is the A register, while the second input is the
sign-extended displacement field; the result is written into the ALVOut register.
After the memo ry address calculation, the memo ry should be read or written ; this
requires two different states. If the instruction opcode is 1w, then state 3 (corre-
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sponding to the step Memory access) does the memo ry rea d (MemRea d is
asserted). The output of the memory is always written into MDR. If it is sw, state 5
does a memory write (MemWrite is asserted). In states 3 and 5, the signal lorD is
set to 1 to force the memory address to come from the ALU. After performing a
write, the instruction sw has completed execution , and the next state is state o. If
the instruction is a load , however, another state (state 4) is needed to write the
result from the memory into the register file. Setting the multiplexo r cont rols
MemtoReg = 1 and RegDst = 0 will send the loaded value in the MDR to be writ 
ten into the register fil e, using rt as the register number. After this state, corre
sponding to the Memo ry rea d completion step, the next state is state o.

To implement the R-type instructions requires two states co rresponding to
steps 3 (Execute) and 4 (R-type completion). Figure 5.34 shows this two-state
portion of the finit e state machine. State 6 asserts ALUSrcA and sets the ALUSrcB

From state 1

(Op = R-Type)

~~~ Execution
6

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

~~ R-type completion
7

RegDst = 1
RegWrite

MemtoReg = 0

To state 0
(Figure 5.32)

FtGURE 5.34 R.f:ype Instructions can be Implemented with a simple two-state finite
state machine. These states correspond to the box labeled "R-type instructions" in Figure 5.31. The first
state canses the ALU operation to occur, while the second state causes the ALU result (which is in ALUOnt)
to be written in the register file. The three signals asserted during state 7 canse the contents ofALUOm to be
written into the register file in the entry specified by the rd field of the Instruction register.
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signals to 00; this forces the two registers that were read from the register file to be
used as inputs to the ALU. Setting ALUOp to 10 causes the ALU cont rol unit to
use the function field to set the ALU cont rol signals. In state 7, RegWrite is
asserted to cause the register fil e to write, RegDst is asserted to cause the rd field to
be used as the register number of the destin ation, and MemtoReg is deasserted to
select ALUOut as the source of the value to write into the register fil e.

For branches, only a single additional state is necessa ry because they complete
execution during the third step of instruction execution. During this state, the
control signals that cause the ALU to compare the contents of registers A and B
must be set, and the signals that cause the PC to be written conditionally with the
address in the ALUOut register are also set. To perform the comparison requires
that we assert ALUSrcA and set ALUSrcB to 00, and set the ALUOp va lue to 01
(forcing a subtract). (We use only the Zero output of the ALU, not the result of the
subtraction.) To cont rol the writing of the PC, we assert PCWriteCond and set
PCSource = 01, wh ich will cause the va lue in the ALUOut register (containing the
branch address ca lculated in state 1, Figure 5.32 on page 333) to be written into
the PC if the Zero bit out of the ALU is asserted. Figu re 5.35 shows this single
state.

The last instruction class is jump; like branch , it requires only a single state
(shown in Figure 5.36) to complete its execution. In this state, the signal PCWrite
is asserted to cause the PC to be written. By setting PCSource to 10, the value sup 
plied for writing will be the lower 26 bits of the Instruction register with OO'wo
added as the low-o rder bits concatenated with the upper 4 bits of the Pc.

We ca n now put these pieces of the finite state machine together to form a spec
ification for the cont rol unit, as shown in Figure 5.38. In each state, the signals
that are asserted are shown. The next state depends on the opcode bits of the
instruction, so we label the arcs with a comparison for the corresponding instruc
tion opcodes.

A finit e state machine ca n be implemented with a temporary register that holds
the current state and a block of combinational logic that determines both the datap
ath signals to be asserted as well as the next state. Figure 5.37 shows how such an
implementation might look. II Appendix C describes in detail how the finite state
machine is implemented using this strucnlre. In II Section C.3 , the combinational
control logic for the finite state machine of Figure 5.38 is implemented both with a
ROM (rea d-only memory) and a PLA (programmable logic array) . (Also see .
Appendix B for a description of these logic elements.) In the next section of this
chapter, we consider another way to represent control. Both of these tedliliques are
simply different representations of the sa me cont rol information.

Pipelining, which is the subject of Chapter 6, is almost always used to accelerate
the execution of instructions. For simple instructions, pipelining is capable of
achieving the higher clock rate of a multicycle design and a single-cycle CPI of a
single- clock design. In most pipelined processors, however, some instructions
take longer than a single cycle and require multicycle cont rol. Floating point -
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From state 1

(Op '" 'BEQ')

337

8
~_~~~Branch completion

ALUSrcA '" 1
ALUSrcB", 00
ALUOp", 01
PCWriteCond

PCSource '" 01

-------./-
To state 0

(Figure 5.32)

FIGURE 5.35 The branch Instruction requires a single state. The first thre<> outputs that are
asserted cause the ALU to compare the registers (ALUSrcA, ALUSrcB, and ALUOp), while the signals
PCSource and PCWriteCond perform the conditional write if the branch condition is true. Notice that we
do not use the value written intoALUOut; instead, we U'ie only the Zero output of the ALU. The branch tar
get address is read from ALUOut, where it was saved at the end of state 1.

From state 1

(Op '" 'J')

~..J_,Jump completion
9

PCWrite
PCSource '" 10

To state 0
(Figure 5.32)

FIGURE 5.36 The jump Instruction requires a single state that asserts two control sig
nals to write the PC with the lower 26 bits of the Instruction register shifted left 2 bits
and concatenated to the upper 4 bits of the PC of this Instruction.
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Combinational
control logic Datapath contro l outputs

Outputs

Inputs
A ,,

Next state

Inputs from instruction
State register

register opcode field 1

FIGURE 5.37 Finite state machine controllers are typically Implemented using a block of
combinational logic: and a register to hold the current state. The outputs of the combinational
logic are the next-state nwnber and the control signals to be asserted for the current state. The inputs to the
oombinMionailogic are the current state and any inputs used to determine the next stale. In this case, the inputs
are the instruction register opcooe bits. Notice that in the finite state machine used in this chapter, the outputs
depend only on the current state, not on the inputs. The 8.1boration above explains this in more detail.

instructions are one universal example. There are many examples III the IA-32
architecture that require the use of multicycle control.

Elaboration: The style of finite state machine in Figure 5.37 is called a Moore
machine, after Edward Moore . Its identifying characteristic is that the output depends
only on the current state. For a Moore machine, the box labeled combinational control
logic can be split into two pieces . One piece has the control output and only the state
input, while the other has only the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The
Mealy machine allows both the input and the current state to be used to determine the
output. Moore machines have potential implementation advantages in speed and size
of the control unit. The speed advantages arise because the control outputs, which are
needed early in the clock cycle, do not depend on the inputs, but only on the current
state . In III Appendix C, when the implementation of this finite state machine is taken
down to logic gates, the size advantage can be clearly seen .The potential disadvantage
of a Moore machine is that it may require additional states. For example, in situations
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where there is a one-state difference between two sequences of states, the Mea ly
machine may unify the states by making the outputs depend on the inputs.

For a processor with a given clock rate, the relative performance between two code
segments will be determined by the product of the CPI and the instruction count
to execute each segment. As we have seen here, instructions ca n va ry in their CPI ,
even for a simple processo r. In the next two chapters, we will see that the int ro
duction of pipelining and the use of caches create even larger opportunities for
va riation in the CPI. Although many factors that affect the CPI are cont rolled by
the hardwa re designer, the programmer, the compiler, and soft wa re system dictate
what instructions are executed, and it is this process that determines what the
effective CPI fo r the program will be. Programmers seeking to improve perfor
man ce must understand the role of CPI and the factors that affect it.

I. True or false: Sin ce the jump instruction does not depend on the register
values or on computing the branch target address, it can be completed dur
ing the second state, rather than wa iting until the third.

2. True, false, or maybe: The cont rol signal PCWriteCond ca n be replaced by
PCSource[O) .

Exceptions

exception Also called inter
rupt. An unscheduled event that
disrupts program execution;
lIsed to detect overflow.

interrupt An exception that
comes from outside of the pro
cessor. (Some architectures
use the term inrerrllpr for all
exceptions.)

Cont rol is the most challenging aspect of processor design: it is both the hardest
part to get right and the hardest part to make fast. One of the hardest parts of con 
t rol is implementing exceptions and interrupts-events other than branches or
jumps that change the normal flow of instruction execution. An exception is an
unexpected event from within the p rocesso r; arithmet ic overflow is an example of
an exception. An interrupt is an event that also ca uses an unexpected change in
control flow but comes from outside of the processo r. Interrupts are used by I/O
devices to communicate with the processor, as we will see in Chapter 8.

Many architectures and authors do not distinguish between interrupts and
exceptions, oft en using the older name interrupt to refer to both types of events.
We follow the MIPS convention , using the term exception to refer to any unex
pected change in cont rol flow without distinguishing whether the ca use is internal
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or external; we use the term interrtlpt only when the event is externally caused.
The Intel IA-32 architecture uses the word interrupt for all these events.

Interrupts were initially created to handle unexpected events like arithmetic
overflow and to signal requests for service from I/O devices. The same basic
mechanism was extended to handle internally genera ted exceptions as well. Here
are some exa mples showing whether the situation is generated internally by the
processor o r externally generated:

Type of event From where? MIPS terminology

I/O device request Extemal Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Many of the requirements to support exceptions come from the specific situa 
tion that ca uses an exception to occur. Accordingly, we will return to this topic in
Chapter 7, when we discuss memory hiera rchies, and in Chapter 8, when we dis
cuss l i D, and we better understand the motivation for additional capabilities in
the exception mechanism. In this sect ion, we deal with the control implementa 
tion fo r detecting two types of exceptions that arise from the portions of the
instruction set and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is often on the
critical timing path of a machine, which determines the clock cycle time and thus
performance. Without proper attention to exceptions during design of the control
unit, attempts to add exceptions to a complicated implementation can significantly
reduce performance, as well as complicate the task of getting the design correct.

How Exceptions Are Handled

The two types of exceptions that our current implementation ca n generate are
execution of an undefined instruction and an arithmetic overflow. The basic
action that the machine must perform when an exception occurs is to save the
address of the offending instruction in the exception program counter (EPC) and
then transfer control to the operating system at some specified address.

The opera ting system ca n th en take the approp riate action, which may
involve providing some service to the user program, taking some predefined
action in response to an overflow, o r stopping the executi on o f the program
and repo rting an erro r. After performing whatever action is required because
o f th e excep tion, the opera tin g system ca n terminate the program or may con 
tinue its execution, using the EPC to determine where to restart the execution
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o f the program. In Chapter 7, we will look more closely at the issue of restart 
ing the execution.

For the operating system to handle the exception, it must know the reason for
the exception, in addition to the instruction that caused it. There are two main
methods used to communica te the reason for an exception. The method used in
the MIPS architecture is to include a status register (called the Calise register),
which holds a field that indicates the reason for the exception.

A second method is to use vectored interrupts. In a vectored interrupt, the
address to which cont rol is transferred is determined by the cause of the excep
tion. Fo r example, to accommodate the two exception types listed above, we
might define the following two exception vector addresses:

Exception type Exception vector address (In hex)

Undefined instruction COOO ClOO0/1ex

Arithmetic overfl ow COOO 002 0/1ex

The operating system knows the reason for the exception by the address at which
it is initiated. The addresses are separated by 32 bytes or 8 instructions, and the
operating system must record the reason for the exception and may perform some
limited processing in this sequence. When the exception is not vectored, a single
entry point fo r all exceptions can be used, and the operating system decodes the
status register to find the cause.

We ca n perform the processing required for exceptions by adding a few extra
registers and control signals to our basic implementation and by slightly extend 
ing the finit e state machine. Let's assume that we are implementing the exception
system used in the MIPS architecture. (I mplementing vectored exceptions is no
more difficult.) We will need to add two additional registers to the datapath:

• fPC: A 32-bit register used to hold the address of the affected instruction.
(Such a register is needed even when exceptions are vectored.)

• Cause: A register used to record the cause of the exception. In the M IPS
architecture, this register is 32 bits, although some bits are currently unused.
Assume that the low-o rder bit of this register encodes the two possible
exception sources mentioned above: undefined instruction = 0 and arith 
metic overflow = 1.

We will need to add two cont rol signals to cause the EPC and Ca use registers to be
written; ca ll these fPCWri te and CallseWrite. In addition , we will need a I-bit
control signal to set the low-order bit of the Cause register appropriately; ca ll this
signal IntCallse. Finally, we will need to be able to write the exception address,
which is the operating system entry point fo r exception handling, into the PC; in
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the M IPS architecnlfe, this address is 8000 0 180hex. (The SPIM simulator for
MIPS uses 8000 0080 hex.) Currently, the PC is fed from the output of a three-way
multiplexor, which is controlled by the signal PCSource (see Figure 5.28 on page
323). We ca n change this to a four-way multiplexor, with additional input wired to
the constant value 8000 0 18~ex. Then PCSource ca n be set to 11 1m> to select this
value to be written into the Pc.

Because the PC is incremented during the first cycle of every instruction , we
ca nn ot just write the value of the PC into the EPC, since the value in the PC will
be the instruction address plus 4. However, we ca n use the ALU to subtract 4 from
the PC and write the output into the EPC. This requires no additional control sig
nals or paths , since we ca n use the ALU to subtra ct , and the constant 4 is already a
selectable ALU input. The data write port of the EPC, therefore, is connected to
the ALU output. Figure 5.39 shows the multicycle datapath with these additions
needed for implementing exceptions.

Using the data path of Figure 5.39, the action to be taken for each different type
of exception ca n be handled in one state apiece. In each case, the state sets the
Cause register, computes and saves the original PC into the EPC, and writes the
exception address into the Pc. Thus, to handle the two exception types we are
considering, we will need to add only the two states, but before we add them we
must determine how to check for exceptions, since these checks will control the
arcs to the new states.

How Control Checks for Exceptions

Now we have to design a method to detect these exceptions and to transfer control
to the appropriate state in the exception states. Figure 5.40 shows the two new
states ( 10 and 11 ) as well as their connection to the rest of the finite state control.
Each of the two possible exceptions is detected differently:

• Undefined instrtlction: This is detected when no next state is defined from
state 1 for the op va lue. We handle this exception by defining the next-state
va lue for all op va lues other than 1W, SW, 0 (R-type), j, and beq as state 10.
We show this by symbolically using other to indicate that the op field does
not match any of the opcodes that label arcs out of state 1 to the new state
10, which is used for this exception.

• Arithmetic overflow: The ALU, designed in . Appendix B, included logic to
detect overflow, and a signal called Overflow is provided as an output from the
ALU. This signal is used in the modified finit e state machine to specify an
additional possible next state (state 11 ) for state 7, as shown in Figure 5.40.
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FIGURE 5.39 The multleyele datapath with the addition needed to Implement exceptions. The specIfic additions Include the Cause
and EPC registers, a multiplexor to conlrolthe value sent to the Cause register, an expansion of the multiplexor controlling the value written into the
PC, and control lines for the added multiplexor and registers. For simplicity, this figure does not show the ALU overflow signal , which would need to
be stored in a one-bit register and delivered as an additional inpulto the control unit (see Figure 5.40 to see how it is used).

Figure 5.40 represents a complete specifi ca tion of the control fo r this MIPS
subset with two types of exceptions. Remember that the challenge in designing the
cont rol of a real machine is to handle the variety of different interactions between
instructions and other exception-causing events in such a way that the cont rol
logic remains both small and fast. The complex interactions that are possible are
what make the cont rol unit the most challenging aspect of hardwa re design.
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Elaboration: If you examine the finite state machine in Figure 5.40 closely, you can
see that some problems could occur in the way the exceptions are handled. For exam·
pie, in the case of arithmetic overflow, the instruction causing the overflow completes
writing its result because the overflow branch is in the state when the write completes.
However, it's possible that the architecture defines the instruction as having no effect if
the instruction causes an exception; this is what the MIPS instruction set architecture
specifies. In Chapter 7, we will see that certain classes of exceptions require us to pre
vent the instruction from changing the machine state, and that this aspect of handling
exceptions becomes complex and potentially limits performance .

Is this optimization proposed in the Check Yourself on page 340 concerning
PCSource still valid in the extended control for exceptions shown in Figure 5.40
on page 345? Why or why not?

Microprogramming: Simplifying
Control Design

Microprogramming is a technique for designing complex control units. It uses a
very simple hardware engine that can then be programmed to implement a
more complex instruction set. Microprogramming is used today to implement
some parts of a complex instruction set, such as a Pentium, as well as in special
purpose processors. This section, which appears on the CD, explains the basic
concepts and shows how they can be used to implement the MIPS multicycle
control.

An Introduction to Digital Design Using a
Hardware Design Language

Modern digital design is done using hardware description languages and modern
computer-aided synthesis tools that can create detailed hardware designs from the
descriptions using both libraries and logic synthesis. Entire books are written on
such languages and their use in digital design. This section, which appears on the
CD, gives a brief introduction and shows how a hardware design language, Verilog
in this case,can be used to describe the MIPS multicycle control both behaviorally
and in a form suitable for hardware synthesis.
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Real Stuff: The Organization of Recent
Pentium Implementations

The techniques described in this chapter for building datapaths and control units
are at the heart of every computer. All recent computers, however, go beyond the
techniques of this chapter and use pipelining. Pipelilling, which is the subject of
the next chapter, improves performance by overlapping the execution of multiple
instructions, achieving throughput close to one instruction per clock cycle (like
our single-cycle implementation) with a clock cycle time determined by the delay
of individual functional units rather than the entire execution path of an instruc
tion (like our multicycle design). The last Intel lA- 32 processor without pipelining
was the 80386, introduced in 1985; the very first MIPS processor, the R2000, also
int rod uced in 1985, was pipelined.

Recent Intel IA-32 processors (the Pentium II , III, and 4) employ sophisticated
pipelining approaches. These processors, however, are still faced with the chal
lenge of implementing control for the complex IA-32 instruction set, described in
Chapter 2. The basic functional units and datapaths in use in modern processors,
while significa ntly more complex than those described in this chapter, have the
sa me basic functionality and similar types of control signals. Thus the task of
designing a control unit builds on the sa me principles used in this chapter.

Challenges Implementing More Complex Architectures

Unlike the MIPS architecture, the IA-32 architecture contains instructions that are
very complex and ca n take tens, if not hundreds, of cycles to execute. For exa mple,
the string move instruction (MOVS) requires calculating and updating two different
memory addresses as well as load ing and storing a byte of the string. The larger
number and greater complexity of addressing modes in the IA-32 architecnlfe
complica tes implementation of even simple instructions similar to those on MIPS.
Fortunately, a multicycle datapath is well structured to adapt to variations in the
amount of work required per instruction that are inherent in IA-32 instructions.
This adaptability comes from two capabilities:

1. A multicycle datapath allows instructions to take varying numbers of clock
cycles. Simple IA-32 instructions that are similar to those in the MIPS
architecture ca n execute in 3 or 4 clock cycles, while more complex instruc
tions can take tens of cycles.

2. A multicycle datapath ca n use the datapath components more than once
per instruction. This is critical to handling more complex addressing
modes, as well as implementing more complex operations, both of which
are present in the IA-32 architecture. Without this capability, the datapath
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would need to be extended to handle the demands of the more complex
instructions without reusing components, which would be completely
impractical. For example, a single-cycle datapath , which doesn't reuse com 
ponents, fo r the IA-32 would require several data memories and a very
large number of ALUs.

Usin g the mult icycle datapath and a microprogrammed controller p ro
vid es a framewo rk fo r implementing the IA-32 instru ction set. The challeng
ing task, however, is crea ting a high -performance implementation , which
requires dea ling with the diversity of the requirement s arising fro m different
instructions. Simply put, a high -perfo rm ance implementation needs to ensure
that the simple instructions execute qu ickly, and that th e burden of the com 
plexities of the instruction set penalize primarily the complex, less frequently
used, in structio ns.

To accomplish this goa l, every Intel implementation of the IA-32 architecture
since the 486 has used a combination of hardwired control to handle simple
instructions, and microcoded cont rol to handle the more complex instructions. For
those instructions that can be executed in a single pass th rough the datapath- those
with complexity similar to a MIPS instmction- the hardwired control generates the
cont rol information and executes the instmction in one pass through the datapath
that takes a small number of clock cycles. Those instructions that require multiple
datapath passes and complex sequencing are handled by the microcoded controller
that takes a larger number of cycles and multiple passes throUgil the datapath to
complete the execution of the instmction. The benefit of this app roach is that it
enables the designer to achieve low cycle counts for the simple instmctions without
having to build the enormously complex datapath that would be required to handle
the full generality of the most complex instmctions.

The Structure of the Pentium 4 Implementation

Recent Pentium processors are capable of executing mo re than one instruction
per clock, using an adva nced pipelining technique, ca lled superscalar. We
describe how a supersca lar processor wo rks in the next chapter. The important
thing to understand here is that executing m ore than one instruction per clock
requires duplicating the datapath resources. The simplest way to think about this
is that the p rocessor has multiple datapaths, although these are tailored to handle
one class of instmctions: say, loads and stores, ALU operations, or branches. In
this way, the processor is able to execute a load or store in the sa me clock cycle that
it is also executing a branch and an ALU operation. The Pentium III and 4 allow
up to three IA-32 instmctions to execute in a clock cycle.

The Pentium III and Pentium 4 execute simple microinstructions similar to
MIPS instructions, called micro-operations in Intel terminology. These microin 
structions are full y self-contained operations that are initially about 70 bits wide.
The cont rol of datapath to implement these microinstmctions is completely hard -
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wired. This last level of control expa nd s up to three microinstructions into about
120 control lines for the integer datapaths and 275 to over 400 control lines for the
floating-point datapath-the latter number for the new SSE2 instructions
included in the Pentium 4. This la st step of expa nding the microinstructions into
control lines is very similar to the control generation for the single-cycle datapath
or for the ALU control.

How is the tran slation between IA-32 instructions and microinstructions per
formed? In ea rlier Pentium implementations (i.e., the Pentium Pro, Pentium II ,
and Pentium III ), the instruction decode unit would look at up to three IA-32
instructions at a time and use a set of PLAs to genera te up to six microinstructions
per cycle. With the significantly higher clock rate introduced in the Pentium 4,
this solution was no longer adequate and an enti rely new method of generating
microinstructions was needed.

The solution adopted in the Pentium 4 is to include a trace cache of microin 
structions, which is accessed by the IA-32 program counter. A tra ce cache is a
sophisticated form of instruction cache, which we explain in detail in Chapter 7.
For now, think of it as a buffer that holds the microinstructions that implement a
given IA-32 instruction. When the trace cache is accessed with the address of the
next IA-32 instruction to be executed, one of several events occurs:

• The tra nslation of the IA-32 instruction is in the tra ce cache. In this case, up
to three microinstructions are produced from the trace cache. These three
microinstructions represent from one to three IA-32 instructions. The IA-32
PC is advanced one to three instructions depending on how many fit in the
three microinstruction sequence.

• The translation of the IA-32 instmction is in the trace cache, but it requires
more than four microinstmctions to implement. For SUdl complex IA-32
instmctions, there is a microcode ROM ; the control unit transfers control to the
microprogram residing in the ROM. Microinstmctions are produced from the
microprogram until the more complex IA-32 instmction has been completed.
The microcode ROM provides a total of more than gooO microinstructions,
with a number of sequences being shared among IA-32 instmctions. Control
then transfers back to fetdling instmctions from the trace cadle.

• The translation of the designated IA-32 instruction is not in the tra ce cache.
In this case, an IA-32 instruction decoder is used to decode the IA-32
instruction. If the number of microinstructions is four or less, the decoded
microinstructions are placed in the trace cache, where they may be found on
the next execution of this instmction. Otherwise, the microcode ROM is
used to complete the sequence.

From one to three microinstructions are sent from the trace cache to the Pen
tium 4 microinstruction pipeline, which we describe in detail at the end of Chap
ter 6. The use of simple low-level hardwired control and simple datapaths for
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handling the microinstructions together with the tra ce cache of decoded instruc
tions allows the Pentium 4 to achieve impressive clock rates, similar to those for
microprocessors implementing simpler instruction set architectures. Further
more, the translation process, which combines direct hardwired control for sim
ple instructions with microcoded control for complex instructions, allows the
Pentium 4 to execute the simple, high-frequency instructions in the IA-32 instruc
tion set at a high rate, yielding a low, and very competitive, CP I.

Although most of the Pentium 4 performance, ignoring the memory system,
depends on the efficiency of the pipelined microoperations, the effectiveness of
the front end in decoding IA-32 instructions ca n have a significa nt effect on per
forma nce. In particular, because of the structure of the decoder, using simpler IA
32 instructions that require four or fewer microoperations, and hence, avoiding a
microcode dispatch , is likely to lead to better performance. Because of this imple
mentation strategy (and a similar one on the Pentium 1lI), compiler writers and
assembly language programmers should try to make use of sequences of simple
IA-32 instructions rather than more complex alternatives.

Fallacies and Pitfalls

Pitfall: Adding a complex instrtlction implemented with microprogramming may
not be faster than a sequence using simpler instructions.

Most machines with a large and complex instruction set are implemented, at least
in part, using microcode stored in ROM. Surprisingly, on such ma chines,
sequences of individua I simpler instructions are sometimes as fast as or even faster
than the custom microcode sequence for a particular in struction.

How can this possibly be true? At one time, microcode had the advantage of
being fetched from a much faster memory than instructions in the program. Since
caches came into use in 1968, microcode no longer has such a consistent edge in
fetch time. Microcode does, however, still ha ve the advantage of using internal
temporary registers in the computation , which ca n be helpful on machines with
few general-purpose registers. The disadvantage of microcode is that the
algorithms must be selected before the machine is announced and can't be
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changed until the next model of the architecnlfe. The instructions in a program,
on the other hand , ca n utilize improvements in its algorithms at any time during
the life of the machine. Along the sa me lines, the microcode sequence is probably
not optimal fo r all possible combill3tions of opera nd s.

One example of such an instruction in the lA-32 implementations is the move
string instruction (MOVS) used with a repea t prefix that we discussed in Chapter 2.
This instruction is often slower than a loop that moves words at a time, as we saw
ea rlier in the Fallacies and Pitfalls (see page 350).

Another exa mple involves the LOOP instruction , which decrements a register
and branches to the specified label if the decremented register is not equal to zero.
This instruction is designed to be used as the branch at the bottom of loops that
have a fixed number of iterations (e.g. , many fo r loops). Such an instruction, in
addition to packing in some extra work, has benefits in minimizing the potential
losses from the branch in pipelined ma chines (as we will see when we discuss
branches in the next chapter).

Unfortunately, on all recent IntellA-32 implementations, the LOOP instruction
is always slower than the macrocode sequence consisting of simpler individual
instructions (assuming that the small code size difference is not a factor). Thus,
optimizing compilers focusing on speed never generate the LOOP instruction.
This, in turn, makes it hard to motiva te making LOOP fast in future implementa 
tions, sin ce it is so rarely used!

Fallacy: If there is space in the contralstore, new instructions are free ofcost.

One of the benefit s of a microprogra mmed approach is that control sto re
implemented in ROM is not very expensive, and as transisto r budgets grew,
extra ROM was practically free. The all3logy here is that of building a house
and discovering, nea r completio n, that you have enough land and materials
left to add a room. This room wouldn't be free, however, since th ere would be
the costs of labor and maintenan ce fo r th e life of the home. The temptatio n to
add "free" instructions ca n occur only when th e instruction set is not fi xed, as
is likely to be the case in the first model of a computer. Because upwa rd com 
patibility of binary programs is a highly desirable feature, all future models o f
this machine will be fo rced to include these so-called free instructions , even if
space is later at a premium.

During the design of the 80286, many instructions were added to the instruc
tion set. The ava ilability of more silicon resource and the use of micropro
gra mmed implementation made such additions seem painless. Possibly the largest
addition was a sophisticated protection mechanism, which is largely unused
today, but still must be implemented in newer implementations. This addition
was motiva ted by a perceived need for such a mechanism and the desire to
enhan ce microprocessor architectures to provide functionality equal to that of
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larger computers. Likewise, :I number of decimal instructions were added to pro
vide decimal arithmetic on bytes. Such instructions are rarely used today because
using binary arithmet ic on 32 bits and converting back and forth to decimal rep
resentation is considerably faster. Like the protection mechanisms, the decimal
instructions must be implemented in newer processors even if only rarely used.

Concluding Remarks

The BIG
Picture

As we have seen in this d lapter, both the datapath and control for a processor ca n be
designed starting with the instruction set ard litecture and an understanding of the
basic characteristics of the technology. In Section 5.3, we saw how the datapath for a
MIPS processor could be constructed based on the architecture and the decision to
build a single-cycle implementation. Of course, the underlying technology also
affects many design decisions by dictating what components can be used in the
datapath , as well as whether a single-cycle implementation even makes sense. Along
the same lines, in the fi rst portion of Section 5.5, we saw how the decision to break
the clock cycle into a series of steps led to the revised multicycle datapath. In both
cases, the top -level organization-a single-cycle or multicycle machine-together
with the instruction set , prescribed many characteristics of the datapath design.

Control may be designed using one of several initial representations. The
choice of sequence control, and how logic is represented, can then be deter
mined independently; the control can then be implemented with one of
several methods using a structured logic technique. Figure 5.41 shows the
variety of methods for specifYing the control and moving from the specifi 
cation to an implementation using some form of structured logic.

Similarly, the cont rol is largely defined by the instruction set architecture, the
o rganization , and the datapath design . In the single-cycle orga niza tion , these
three aspects essentially define how the control signals must be set. In the multicy
de design, the exact decomposition of the instruction execution into cycles, which
is based on the instruction set architecture, together with the datapath , defines the
requirements on the cont rol.

Cont rol is one of the most challenging aspects of computer design. A majo r
reason is that designing the cont rol requires an understanding of how all the com -
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Initial Finite state
Microprogram

representation diagram

Sequencing Explicit next- Microprogram counter
control state funct ion + dispatch ROMS

Logic Logic Truth
representation equations tables

Implementation Programmable Read-only
technique logic array memory

FIGURE 5.41 Alternative methods for specifying and Implementing control. The arrows
indicate possible design paths: any path from the initial representation to the final implementation technol
ogy is viable. TraditionaUy, "hardwired control" means that the techniques on the left-hand side are used,
and "microprogrammed control" means that the techniques on the right-hand side are used.

ponents in the processor operate. To help meet this challenge, we examined two
techniques fo r specifying cont rol: finite state diagrams and microp rogramming.
These cont rol representations allow us to abstract the speci fi cation of the cont rol
from the details of how to implement it. Using abstraction in this fashion is the
major method we have to cope with the complexity of computer designs.

Once the cont rol has been specified, we ca n map it to detailed hardwa re. The
exact details of the control implementation will depend on both the structure of
the cont rol and on the underlying technology used to im plement it. Abstracting
the specifi cation of cont rol is also valuable because the decisions of how to imple
ment the cont rol are technology dependent and likely to change over time.
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Historical Perspective and Further
Reading

The rise of microprogramming and its effect on instruction set design and com 
puter development is one of the more interesting interactions in the first few
decades of the electronic computer. This story is the focus of the historica l per
spectives section on the CD.
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Exercises

5.1 (61 <§5.2> Do we need combinational logic, sequential logic, or a combina 
tion of the two to implement each of the fo llowing:

3 . multiplexo r

b. compa rator

c. incrementer/decrementer

d. barrel shifter

e. multiplier with shifters and adders

f. register

g. memory

h. ALU (the ones in single-cycle and multiple-cycle datapaths)

i. ca rry look-ahead adder

j . latch

k. general finit e state machine (FSM )

5.2 ( 10] <§5.4> Describe the effect that a single stllck-a t-O fault (Le. , rega rdless of
what it should be, the signal is always 0) would have for the signals shown below,
in the single-cycle datapath in Figure 5. 17 on page 307. Which instructions, ifany,
will not wo rk co rrectly? Explain why.

Consider each of the fo llowing faults separately:

a. RegWrite = 0

b. ALUopO= 0

c. ALUopl = 0

d. Branch = 0

e. MemRea d = 0

f. Mem Write = 0

5.3 [5 J <§5.4> This exercise is similar to Exercise 5.2, but this time consider
stuck-at - I faults (the signal is always I).

5.4 [5 J <§5.4> .. For More Practice: Single Cycle Datapaths with Floa ting Point.

5.5 [5 J <§5.4> II For More Practice: Single Cycle Datapaths with Floa ting Point.

5.6 [ IO J <§5.4> 18 For More Practice: Single Cycle Datapaths with Floating Point.
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5.7 [2-3 month sJ <§§5 .1-5.4> Using standa rd pa rts, build a ma chine that imple
ments the single-cycle machine in this chapter.

5.8 [ 15J <§5.4> We wish to add the instruction j r Uump register) to the single-cy
cle datapath described in this chapter. Add any necessary datapaths and control sig
nals to the single-cycle datapath of Figure 5. 17 on page 307 and show the necessary
additions to Figure 5. 18 on page 308. You ca n photocopy these figures to make it
faster to show the additions.

5.9 [ IOJ <§5 .4> This question is similar to Exercise 5.8 except that we wish to add
the instruction s 11 (shift left logical), which is described in Section 2.5.

5.10 [ IS) <§5.4> This question is similar to Exercise 5.8 except that we wish to
add the instruction 1ui (load upper immediate), which is described in Section 2.9.

5.11 (20) <§5.4> This question is similar to Exercise 5.8 except that we wish to
add a va riant of the 1w (load word) instruction , which increments the index regis
ter after loading word from memory. This in struction (1_ i ne ) corresponds to the
following two instructions:

1w $rs,l($rt l
addi $rt,$rt,l

5.12 [5 J <§5.4> Explain why it is not possible to modify the single-cycle imple
mentation to implement the load with increment instruction described in Exercise
5. 12 without modifying the register fil e.

5.13 [7J <§5.4> Consider the single-cycle datapath in Figure 5. 17. A friend is pro
posing to modify this single-cycle datapath by eliminating the control signal Mem
toReg. The multiplexor that has MemtoReg as an input will in stead use either the
ALUSrc or the MemRead control signal. Will your fri end's modification work?
Can one of the two signals (MemRead and ALUSrc) substitute for the other? Ex
plain.

5.14 (10 ) <§5 .4> MIPS chooses to simplify the structure of its instructions. The
way we implement complex instructions through the use of MIPS instructions is
to decompose such complex instructions into multiple simpler MIPS ones. Show
how MIPS can implement the instruction swap $r s , $rt, which swaps the con
tents of registers $ r sand $rt. Consider the case in which there is an available reg
ister that may be destroyed as well as the ca re in which no such register exists.

If the implementation of this instruction in hardware will increase the clock period
of a single-instruction implementation by 10%, what percentage of swap operations
in the instruction mix would recommend implementing it in hardware?

5.15 [5J <§5.4> . For More Practice: Effects of Faults in Control Multiplexors
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5.16 [5J <§5.4> 18 For More Practice: Effects of Faults in Cont rol Multiplexors

5.17 [51<§5.S> • For More Practice: Effects of Faults in Cont rol Multiplexors

5.18 [51<§5.S> .. For More Practice: Effects of Faults in Cont rol Multiplexors

5.19 [15) <§5.4> II For Mo re Practice: Adding Instructions to the Datapath

5.20 [15) <§5.4> 15 For Mo re Pra ctice: Adding Instructions to the Datapath

5.21 [81<§5.4> " For More Practice: Adding Instructions to the Datapath

5.22 [81<§5.4> . For More Practice: Adding Instructions to the Datapath

5.23 [51<§5.4> .. For More Practice: Adding Instructions to the Datapath

5.24 (10 ) <§5.4> III For Mo re Pra ctice: Datapath Cont rol Signals

5.25 (10 ) <§5.4> .. For More Pra ctice: Datapath Control Signals

5.26 (15) <§5.4> II For More Practice: Modifying the Datapath and Cont rol

5.27 [8] <§5.4> Repeat Exercise 5.14, but apply your solution to the in struction
load with increment: 1_ i nc r $ rt , Add r es s ( $ r s) .

5.28 [5] <§5.4> The concept of the "crit ical path ," the longest possible path in the
machine, was int roduced in 5.4 on page 315. Based on your understanding of the
single-cycle implementation , show which units can tolerate more delays (Le., are
not on the crit ica l path), and which units can benefit from hardwa re optimization.
Quantify your answers taking the same numbers presented on page 315 (Section
5.4, "Exa mple: Perfo rmance of Single-Cycle Machines").

5.29 [5] <§5.5> This exercise is similar to Exercise 5.2, but this time consider the
effect that the stuck-a t-0 faults would have on the multiple-cycle datapath in Figure
5.27. Consider each of the following faults:

,. RegWrite = 0

b. MemRea d = 0

Co Mem Write = 0

d. IRWrite = 0

e. peWrite = 0

f. PCWriteCond = O.

5.30 [5] <§5.5> This exercise is similar to Exercise 5.29 , but this time consider
stuck-at - I fa ults (the signal is always I).

5.31 [[ 15] <§§5.4, 5.5> This exercise is similar to Exercise 5.1 3 but more general.
Determine whether any of the cont rol signals in the single-cycle implementation
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can be eliminated and replaced by another existing control signal , or its inverse.
Note that such redundancy is there beca use we have a very sm all set of instruc
tions at this point, and it will disappea r (or be harder to find ) when we implement
a larger number of instruct ions.

5.32 15) <§5.5> We wish to add the instruction 1u i (load upper immediate) de
scribed in Chapter 3 to the multicycle datapath described in this chapter. Use the
same strucnlfe of the multicycle datapath of Figu re 5.28 on page 323 and show the
necessary mod ifications to the finite state machine of Figure 5.38 on page 339. You
may find it helpful to exa mine the execution steps shown on pages 325 through 329
and consider the steps that will need to be performed to execute the new instruc
tion. How many cycles are required to implement this instruction?

5.33 (15) <§5.5> You are asked to modify the implementation of lui in Exercise
5.32 in o rder to cut the execution time by 1cycle. Add any necessary datapath s and
control signals to the multicycle datapath of Figure 5.28 on page 323. You ca n pho
tocopy existing figures to m ake it easier to show your modifications. You have to
maintain the assumption th at you don't know what the instruction is before the
end of state 1 (end of second cycle). Please explicitly state how m any cycles it takes
to execute the new instruction on your modified datapath and finit e state machine.

5.34 (20) <§5.5> This question is similar to Exercise 5.32 except that we wish to
implement a new instruction 1d i (load immediate) that loads a 32-bit immediate
value from the memory location following the instruction address.

5.35 (15) <§5.5> Consider a change to the multiple-cycle implementation that
alters the register fil e so that it has only one read port. Describe (via a diagram) any
additional changes that will need to be made to the datapath in order to support
this modifica tion. Modify the finite state machine to indicate how the instructions
will work, given your new datapath.

5.36 (15) <§5.5> Two important parameters control the performance of a pro 
cessor: cycle time and cycles per instruction. There is an enduring trade-off be
tween these two parameters in the design process of microprocessors. While some
designers prefer to increase the processo r frequency at the expense of large CPI ,
other designers follow a different school of thought in which reducing the CPI
comes at the expense oflower p rocessor frequency.

Consider the following machines, and compare their performance using the SPEC
CPUint 2000 data from Figure 3.26 on page 228.

M1: The multicycle datapath of Chapter 5 with a 1 GHz clock.

M2: A machine like the multicycle datapath of Chapter 5, except that register
updates are done in the sa me clock cycle as a memory rea d or ALU operation.
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Thus in Figure 5.38 on page 339, states 6 and 7 and states 3 and 4 are combined.
This machine has an 3.2 GHz clock, sin ce the register update increases the length
of the critical path.

M3: A ma chine like M2 except that effective address calculations are done in the
same clock cycle as a memory access. Thus states 2, 3, and 4 ca n be combined, as
ca n 2 and 5, as well as 6 and 7. This machine has a 2.8 GHz clock because of the
long cycle created by combining address calculation and memory access.

Find out which of the machines is fa stest. Are there instruction mixes that would
make another machine faster, and if so, what are they?

5.37 [20) <§5.S> Your friends at C3 (Crea tive Computer Corporation) ha ve de
termined that the critical path that sets the clock cycle length of the multicycle
datapath is memory access for loads and stores (not for fetching instructions). This
has ca used their newest implementation of the MIPS 30000 to run at a clock rate
of4.8 GHz rather than the target clock rate of 5.6 GHz. However, Clara at C3 has
a solution. If all the cycles that access memory are broken into two clock cycles,
then the machine ca n run at its target clock rate.

Using the SPEC CPUint 2000 mixes shown in Chapter 3 (Figure 3.26 on page
228), determine how much faster the machine with the two-cycle memory
accesses is compared with the 4.8 GHz machine with single-cycle memory access.
Assume that all jumps and branches take the sa me number of cycles and that the
set instructions and arithmetic immediate instructions are implemented as R-type
instructions. Would you consider the further step of splitting instruction fetch
into two cycles if it would raise the clock rate up to 6.4 GHz? Why?

5.38 (20) <§S.5> Suppose there were a MIPS instruction, called bcmp, that com
pares two blocks of words in two memory addresses. Assume that this in struction
requires that the starting address of the first block is in register $tl and the starting
address of the second block is in $t2, and that the number ofwords to compare is
in $t3 (which is $t3:2::0). Assume the instruction ca n leave the result (the address
of the first mismatch or zero if a complete match) in $t1 and/or H2. Further
more, assume that the values of these registers as well as registers $t4 and tS can
be destroyed in executing this instruction (so that the registers ca n be used as tem
poraries to execute the instruction).

Write the MIPS assembly language program to implement (emulate the behavior
on block compare. How many instructions will be executed to compare two 100
word blocks? Using the CPI of the instructions in the multicycle implementation ,
how many cycles are needed for the lOO-word block compare?

5.39 [2-3 months] <§§S.I -S.5> Using standard parts, build a ma chine that im
plements the multicycle ma chine in this chapter.
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5.40 ( IS) <§5.5> 18 For More Practice: Adding Instructions to the Datapath

5.41 ( IS) <§5.5> 1& For More Practice: Adding Instructions to the Datapath

5.42 ( IS) <§5.5> 1& For More Practice: Adding Instructions to the Datapath

5.43 ( IS) <§5.5> 1& For More Practice: Adding Instructions to the Datapath

5.44 ( IS) <§5.5> 1& For More Practice: Adding Instructions to the Datapath

5.45 (20) <§5.5> 15 For More Practice: Adding Instructions to the Datapath

5.46 (10 ) <§5.5> 18 For More Practice: Adding Instructions to the Datapath

5.47 ( IS) <§§5.1 -5.5> II For More Practice: Comparing Processo r Performance

5.48 (20) <§5.5> II For More Practice: Implementing Instructions in MIPS

5.49 (30) <§5.6> We wish to add the instruction ere t (exception return) to the
muiticycle datapath described in this chapter. A primary task of the e ret instruc
tion is to reload the PC with the renInl address at which an exception, or error trap
occurred. Suppose that if the processor is serving an er ror trap, then the PC has to
be loaded from a register Erro rPC. Othen vise the processor is serving an excep 
tion) the PC has to be loaded from EPC. Suppose that there is a bit in the cause reg
ister ca lled trap to encode an er ror trap when it occurs and to save the PC in the
ErrorPC register. Add any necessary datapaths and control signals to the muiticy
cle datapath of Figure 5.39 on page 344 to accommodate the trap/exception call
and renInl , and show the necessary modifica tions to the finit e state machine of
Figure 5.40 on page 345 to implement the ere t instruction. You can photocopy
the fi gu res to make it easier to show your modifications.

5.50 (61 <§5.6> Exceptions occur when a control flow change is required to han 
dle an unexpected event in the processor. How ca n the ca use and the in struction
that caused the exception, be represented by the hardwa re in a MIPS machine?
Give two examples for conditions that a p rocessor can handle by restarting execu 
tion of in stnlctions after handling the exception , and two others for exceptions
that lead to program termination.

5.51 (61 <§5.6> Exception detection is an important aspect of exception han 
dling. Try to identi fy the cycle in which the following exceptions ca n be detected
for the multicycle datapath in Figure 5.28 on page 323.

Consider the following exceptions:

a. Divide by zero exception (suppose we use the same ALU for division in one
cycle, and that it is recognized by the rest of the cont rol)

b. O verflow exception
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c. Invalid in struction

d. External interrupt

e. Invalid instruction m em ory address

f. Invalid data m em or y address

5.52 [ IS) <§5.6> .. For More Pra ctice: Adding Instructions to the Datapa th

5.53 [3D) <§5.7> Microcode has been used to add m ore powerful instructions to
an in struction set; let's explore the potential benefits o f this approach. Devise a
strategy for implem enting the bcmp in struction described in Exercise 5.38 using
the multicycle data path and microcode. You will probably need to make som e
changes to the datapath in order to effici ently implem ent the bcmp instruction.
Provide a description of your proposed changes and describe how the bcmp in 
struction will work. Are there any advantages that ca n be obtained by adding inter
nal registers to the datapath to help support the bcmp in struction? Estimate the
improvem ent in performance that you can achieve by implem enting the instruc
tion in hardwa re (as opposed to the software solution you obta ined in Exercise
5.38) and explain where the performance increase com es from.

5.54 [3D) <§5.7> .. For Mo re Practice: Microcode

5.55 [3D) <§5.7> .. For Mo re Pra ctice: Microcode

5.56 [5] <§5.7> '8 For More Practice: Microcode

5.57 [3D) <§5.8> Using the strategy you developed in Exercise 5.53, m odify the
M IPS microinstruction format described in '8 Figure 5.7. 1 and provide the com 
plete microprogram for the bcmp instruction. Describe in detail how you extended
the microcode so as to support the creation of more complex control structures
(such as a loop) within the microcode. Has support for the bcmp in struction
cha nged the size of the microcode? W ill o ther instructions besides bcmp be affected
by the change in the microin struction format?

5.58 [5] <§5.8> A and B are registers defined through the following Verilog ini
tialization code:

reg A, B
ini ti al begin

A 1 ;
B ~ 2 ;

end
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Analyze the following two segments of Verilog description lines, and compare the
results of variables A and B, and the operation done in each exa mple.

a) always @(negedge clock) begin
A B;
B = A;

end
b) always @(negedge clock) begin

A <= B;
B <= A;

end

5.59 [ IS) <§§5.4, 5.8> Write the ALUControl module in combinational Verilog
using the following form as the basis:

module ALUControl (ALUOp , FuncCode, ALUCtl) ;

input ALUOp[l : O] , FuncCode[5:0] ;

output ALUCtl[3 :0] ;

endmodule

5.60 [ I week) <§§5.3, 5.4, 5.8> Using a hardware simulation language such as
Verilog, implement a functional simulator for the single-cycle version. Build your
simulator using an existing library of parts, if such a library is available. If the parts
contain timing information, determine what the cycle time of your implementa 
tion will be.

5.61 [2-4 hours ] <§§4.7, 55, 5.8, 5.8> Extend the multicycle Verilog description
in II 5.8 by adding an implementation of the unsigned MIPS multiply instruction;
assume it is implemented using the MIPS ALU and a shift and add opera tion.

5.62 [2-4 hours] <§§4.7, 5.5, 5.8, 5.9> Extend the multicycle Verilog description
in II 5.8 by adding an implementation of the unsigned MIPS divide instruction;
assume it is implemented using the MIPS ALU with a one-bit -at-a- time algorithm.

5.63 [ I week] <§§55, 5.8> Using a hardware simulation language such as Ver
ilog, implement a functiona I simulator for a multicycle implementation of the de
sign of a PowerPC processor. Build your simulator using an existing library of
parts, if such a library is available. If the parts contain timing information, deter
mine what the cycle time ofyour implementation will be.
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Like M IPS, the PowerPC instructions are 32 bits ea ch. Assume that your in struc
tion set supports the following instruction formats:

R-type

I op I Rd I Rt I R, 101 Fun' IRq

o 56 1011 15 16 202 1 22 303 1

Load/store & immediate

lop l Rd l Rt l Address

o 56 101115 16 31

Branch conditional

lop lol Bi I BD IAAILKI

o

Jump

56 101115 16 2930 3 1

I op I Address IAAILKI

o 56 101115 16 2930 3 1

RC- reg

I LT IGT I EQ IOV I
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o 1 23

Func field (22:30): Similar to MIPS, identifies function code.

RC bit(3 1): IF set ( 1) , update the RC-reg control bits to reflect the

results of the instruction (all R-type).

AA(30): 1 indicates that the given address is an absolute address;

oindicates relative address.

LK: IF 1, updates LNKR (the link register), which ca n be later used

for subroutine return implementation.

BI: Encodes the branch condition (e.g., beg -> BI = 2, bit -> BI = 0, etc.)

BD: Branch relative destination.

Your simplified PowerPC implementation should be able to implement the

following instructions:

PC( - Addr)(LN KR ( - PC +4 ;

IPC ( - LNKR)

load:

ad d : add $Rd , $Rt, $Rs ($Rd ( - $Rt + $Rs)

addi $Rd , $Rt, Un ($Rd ( - $Rt + Un)

sub $Rd, $Rt, $Rs ($Rd ( - $Rt $Rs)

sub i $Rd , $Rt, Itn ($Rd ( - $Rt Un)

lw $Rd , Addr($Rt) ( $Rd ( - Memory [$Rt + AddrJ)

sw $Rd , Addr($Rt) ( Memory[$Rt + Addr] ( - $Rd)

and/or $Rd , $Rt, $Rs ($Rd ( - $Rt AND/OR $Rs)

andi/ori $Rd, $Rt , #n ($Rd ( - $Rt AND/OR Un)

jmp Addr (PC ( - Addr)

cond itional: Seq Addr (CR[2] ==1? PC( - PC+SD : PC ( -

subtr ac t :

Jump :

Branch
PC+4 )

subrou tine c all : jal Addr

subrou tine re s t ore : Ret

s t ore :

AND , OR :

5.64 IDiscussion J <§§5.7, 5.10, 5.11 > Hypothesis: If the first implementation of
an architecnlre uses microprogra mming, it affects the in stmction set architecnlre.
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im plementation do you think the architect had in mind when designing the in 
struction set architecture?

5.65 [Discussion ] <§§5.7, 5.1 2> Wilkes invented microprogramming in large
part to simplify construction of control. Since 1980, there has been an explosion of
computer-a ided design software whose goal is also to simplify construction of con 
trol. This has made cont rol design much easier. Ca n you find evidence, based ei
ther on the tools o r on real designs, that suppo rts or refutes this hypothesis?

5.66 [Discussion ] <§5.1 2> The MIPS instructions and the MIPS microinstruc
tions have many similarities. What would m ake it difficult for a compiler to pro
duce MIPS microcode rather than macrocode? What changes to the
microa rchitecture would make the microcode more useful for this applica tion.

§5.1 , page 289: 3.
§5.2, page 292: false.
§5.3, page 299: A.
§5.4, page 318: Yes, MemtoReg and RegDst are inverses of one another. Yes, simply
use the other signal and flip the o rder of the inputs to the multiplexor!
§5.5, page 340: 1. False. 2. Maybe: If the signal PCSource (O] is always set to zero
when it is a don't ca re (which is most states), then it is identica l to PCWriteCond.
§5.6, page 346: No, since the value of 11 , which was formerly unused, is now used !
§5.7, page 5.7- 13: 4 tables with 55 entries (don't forget the primary dispatch!)
§5.8, page 5.8-7: 1. 0, 1, 1, X, 0. 2. No, sin ce state is not assigned on every path.





Computers
in the

Real World

Problem to solve: To overcome the obsta

cles faced by disabled people.

Solution: Use robotics, sensors, and com

puter control to replace or supplement dam
aged limbs and organs.

The picture on the right shows a system
developed for a firefighter who was injured
while fighting a fire. Sensors in latex fingers

instantly register hot and cold, and an elec
tronic interface in his artificia l limb stimulates

the nerve endings in his upper arm, which
then pass the information to his brain. The
$3000 system allows his hand to feel pressure
and weight, so for the first time since losing
his arms in a 1986 accident, he can pick up a
can of soda without crushing it or having it

slip through his fingers. The main enabling

device is an electronic interface that can trans

mit signals to nerve endings in Whitten's
upper arm, which then pass this information
to his brain.

Harvey Fishman and Mark Peterman of
Stanford have taken steps towards informa
tion technology that might someday treat
age-related blindness. Their approach is to

Empowering
the Disabled

Firefighter Ken Whitten proudly displays his new

bionic arm.

bypass the photoreceptors of the eye with a
signal from a digital camera that connects
directly to the visua l system. They are devel
oping a neural interface to the visua l system
called the artificia l synapse chip. The chal
lenge is to turn electrical signals into the
chemicals that cells use to communicate. This
chip is attached to ce lls, and from the ce ll 's

perspective the artificial synapse is simply a
hole in the silicon. This hole is connected to a
reservoir of neurotransmitter. When an elec

tric field is app lied to the ch ip, the neu
rotransmitter is pumped through the hole,
stimulating nearby cells. In 2003 they have
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• Rick Smolan and Jennifer Erwitt, Glle DigittJl DrJy:
How the Microchip Is ChrJnging GlIr World, Times
Publishing, 1998

created four artificial synapses on a chip one
centimeter on a side.

Although this work is in its ea rly stages, the
potential is not limited to eye problems.
According to Fishman, "Anywhere there's a
severing of a nerve connection, there 's a
potential for us to reconnect it."

• Peterman et al, "The artificial synapse chip: A flexible
retinal interface based on directed retinal cell growth
and neurotransmitter st imulation," Artificial GrgrJlls:
27(11), November 18,2003

Artificial retina using artificial synapse chips. From

The Sail Francisco Chronicle, January 5, 2004.



Thus times do shift,
each thing his turn does hold;
New things succeed,
asformer thingsgrow old.

Robert Herrlek
Ht5fXTidts; CtTC7lon;t$ jOrChristmas Ew, 1648
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Never waste time.

American proverb An Overview of Pipelining

pipelining An implementa
tion technique in which multi
ple instructions are overlapped
in execution, much like to an
assembly line.

Pipelining is an implementation technique in which multiple in structions are
overlapped in execution. Today, pipelining is key to making processors fast.

This section relies heavily on one analogy to give an overview of the pipelining
terms and issues. If you are interested in just the big picture, you should concen
trate on this section and then skip to Sections 6.9 and 6.10 to see an introduction
to the advanced pipelining techniques used in recent processors such as the Pen
tium III and 4. If you are interested in exploring the anatomy of a pipelined com
puter, this section is a good introduction to Sections 6.2 through 6.8.

Anyone who has done alot of laundry has intuitively used pipelining. The nOfl-

pipelined approach to laundry would be

1. Place one dirty load of clothes in the washer.

2. \Vhen the washer is finished, place the wet load in the dryer.

3. \Vhen the dryer is finished, place the dry load on a table and fold.

4. \Vhen folding is finished, ask your roommate to put the clothes away.

When your roommate is done, then start over with the next dirty load.
The pipelined approach takes much less time, as Figure 6. 1 shows. As soon as

the washer is finished with the first load and placed in the dryer, you load the
washer with the second dirty load. When the first load is dry, you place it on the
table to start folding, move the wet load to the dryer, and the next dirty load into
the washer. Next you have your roommate put the first load away, you start fold
ing the second load, the dryer has the third load, and you put the fourth load into
the washer. At this point all steps-ca lled stages in pipelining-are operating con
currently. As long as we have separate resources for each stage, we ca n pipeline the
tasks.

The pipelining paradox is that the time from placing a single dirty sock in the
washer until it is dried, folded, and put away is not shorter for pipelining; the rea
son pipelining is fa ster for many loads is that everything is working in parallel, so
more loads are finished per hour. Pipelining improves throughput of our laundry
system without improving the time to complete a single load. Hence, pipelining
would not decrease the time to complete one load of laundry, but when we have
many loads of laundry to do, the improvement in throUgilput decreases the total
time to complete the work.

If all the stages take about the sa me amount of time and there is enough work
to do, then the speedup due to pipelining is equal to the number of stages in the
pipeline, in this case four: washing, drying, folding, and putting away. So, pipe
lined laundry is potentially four times faster than nonpipelined: 20 loads would
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6 PM 7 8 9 10 11 12 1 ' AM

D
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Time--,II~-,II~-J1~-l==-;-lI~-1==l~-'·'1=::IIII--
Task
order

c

A

6 PM 7 8 9 10 11 12 1 ' AM

Task
order

~iiii.A

B ~iii.
c ~iii.
D ~iii.

FIGURE 6.1 The laundry analogy for p1pellnlng. Ann, Brian, Cathy, and Don each have dirty
clothes to be washed, dried, folded, and put away. The washer, dryer, ~folder," and "storer" each take 30
minutes for their task. Sequential laundry takes 8 hours for four loads of wash, while pipelined laundry
takes just 3.5 hours. We show the pipeline stage of different loads over time by showing copies of the four
resources on this two-dimensional time line, but we really have just one of each resource.

take about 5 times as long as 1 load, while 20 loads of sequential laundry takes 20
times as long as 1 load. It's only 2.3 times faster in Figure 6.1 because we only
show 4 loads. Notice that at the beginning and end of the workload in the pipe
lined version in Figure 6. 1, the pipeline is not completely full, this start-up and
wind-down affects performance when the number of tasks is not large compa red
to the number of stages in the pipeline. If the number of loads is much larger th an
4, then the stages will be full most of the time and the increase in th roughput will
be very close to 4.

The sa me principles apply to processo rs where we pipeline instruction
execution. MIPS instructions classically take five steps:

1. Fetch instruction fro m mem ory.

2. Read registers while decoding the instruction. The format of M IPS instruc
tions allows reading and decoding to occur simultaneously.
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3. Execute the operation or ca lculate an address.

4. Access an operand in data memory.

5. Write the result into a register.

Hence, the MIPS pipeline we explore in this chapter has five stages. The following
exa mple shows that pipelining speeds up instruction execution just as it speeds up
the laundry.

Single-Cycle versus Pipelined Performance

To make this discussion concrete, let's create a pipeline. In this example, and
in the rest of this chapter, we limit our attention to eight instructions: loa d
wo rd (lw), store word ( sw), add (add ) , subtract (sub), and (and ), or (or ),
set-less- than (s 1t ) , and branch-on -equal ( beq ) .

Compare the average time between instructions of a single-cycle imple
mentation, in wh ich all instruct ions take 1 clock cycle, to a pipelined
implementation. The operation times for the m ajor functional units in this ex
am ple are 200 ps fo r memory access, 200 ps for ALU operation , and 100 ps for
register file read or write. As we sa id in Chapter 5, in the single-cycle model ev
ery instruction takes exactly 1 clock cycle, so the clock cycle must be stretched
to accommodate the slowest instruction .

Figure 6.2 shows the time required fo r each of the eight instructions. The sin 
gle-cycle design must allow for the slowest instruction- in Figure 6.2 it is
1w-so the time requi red fo r every instruction is 800 ps. Similarly to Figure
6. 1, Figure 6.3 compares nonpipelined and pipelined execution of three loa d
wo rd instructions. Thus, the time between the fi rst and fourth instructions in
the nonpipelined design is 3 X800 ns o r 2400 ps.

All the pipeline stages take a single clock cycle, so the clock cycle must be
long enough to accommodate the slowest operation . Just as the single-cycle
design must take the worst-case clock cycle of 800 ps even though some in 
structions ca n be as fast as 500 ps, the pipelined execution clock cycle must
have the worst -case clock cycle of 200 ps even though some stages take only
100 ps. Pipelining still offers a fourfold performance improvement: the time
between the first and fourth instructions is 3 X 200 ps or 600 ps.
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Dl!IIlRl!lIII·liiiillaill ...Instruction ALU
Instruction class fetch operation

Load word (1 w) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps

R.fonnat (add, sub, and, 200 ps 100 ps 200 ps 100 ps 600 ps
or, s 1t)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

FIGURE 6.2 Total time for each Instruction calculated from the time for each compo
nent. This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit
have no delay.

Program
execution 2COO;::-__4CO~O,--_60~O,----,8~OCO_--,'~OOO::.:c_C12~OC0,--,--'4~OO=-_'C6~OO=-_'"8~OO"<.
order Time I •

(in instructions)

Ilnsll\lCllon .., "0
0_1_ ",... ~

, • Insll\lCllon 0_1...
800 ps '" "0 ..,

f~lch ~,~

• • Insll\lCllon
800ps f~lch

• •••

Iw $1, 100($0)

Iw $3, 300($0)

Iw $2, 200($0)

800 ps

Program
execution 2_0rO__4_00,--__6_00,--__8, OO ',OO_O__12, OO__'_400,-__~
order Time •

(in instructions)

)
Inst,uc1lon

"" "0 O_la ",..,," ~

) 200 ps
Instl\lCllon ", "0

O_t_

""lelch ~~

) Instruction .., "0 0•• ",200 ps fetch _o:e...

• • , • • • , • , •

Iw $1, 100($0

Iw $3, 300($0

Iw $2, 200($0

200 ps 200 ps 200 ps 200 ps 200 ps

FIGURE 6.3 Single-eycle, nonplpellned execution In top versus plpellned execution In
bottom. Both U'ie the &1me hardware components, whose time is listed in Figure 6.2. In this case we see a
fourfold speedup on average time between instructions, from BOO ps down to 200 ps. Compare this figure to
Figure 6.1. For the laundry, we assumed aU stages were equal. If the dryer were slowest, then the dryer stage
would set the stage time. The computer pipeline stage times are limited by the slowest resource, either the
ALU operation or the memory access. We assume the write to the register file occurs in the first half of the
clock cycle and the read from the register file occurs in the second half. We use this asswnption throughout
this chapter.
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We can nlfll the pipelining speed up discussion above into a formula. If the
stages are perfectly balanced, then the time between instructions on the pipelined
processor-assuming idea l conditions-is equal to

T· b .. Time between instructionsuoupipeliuwlme etween 11lstruc tlonSpjpdin~d =
Number of pipe stages

Under idea l conditions and with a large number of instructions, the speedup from
pipelining is approximately equal to the number of pipe stages; a fi ve-stage pipe
line is nea rly five times faster.

The formula suggests that a fi ve-stage pipeline should offer nea rly a fivefold
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The
exa mple shows, however, that the stages may be imperfectly balanced. In addition,
pipelining involves some overhead, the source of which will be more clear shortly.
Thus, the time per instruction in the pipelined processor will exceed the mini 
mum possible, and speedup will be less than the number of pipeline stages.

Moreover, even our claim of fourfold improvement for our example is not
reflected in the total execution time for the three instructions: it's 1400 ps versus
2400 ps. Of course, this is because the number of instructions is not large. What
would happen if we increased the number of in structions? We could extend the
previous figures to 1,000,003 instructions. We would add 1,000,000 instructions
in the pipelined exa mple; each instruction adds 200 ps to the total execution time.
The total execution time would be 1,000,000 X 200 ps + 1400 ps, or 200,00 1,400
ps. In the nonpipelined exa mple, we would add 1,0000,000 instructions, each tak
ing 800 ps, so total execution time would be 1,000,000 X 800 ps + 2400 ps, or
800,002,400 ps. Under these ideal conditions, the ratio of total execution times for
real programs on nonpipelined to pipelined processors is close to the ratio of
times between instructions:

800,002,400 ps '" 4.00 '" 800 ps
200,00 1,400 ps 200 ps

Pipelining improves performance by increasing instruction throughput, as
opposed to decreasing the execution time of an individual instruction, but instruc
tion throughput is the important metric because real programs execute billions of
instructions.

Designing Instruction Sets for Pipelining

Even with this simple explanation of pipelining, we ca n get insight into the design
of the M IPS instruction set, which was designed for pipelined execution.

First, all MIPS instructions are the same length. This restriction makes it much
easier to fetch instructions in the first pipeline stage and to decode them in the
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second stage. In an instruction set like the IA-32, where instructions va ry from I
byte to 17 bytes, pipelining is considerably more challenging. As we saw in Chap
ter 5, all recent implementations of the IA- 32 architecture acnlally translate IA-32
instructions into simple microoperations that look like MIPS instructions. As we
will see in Section 6.10, the Pentium 4 actually pipelines the microoperations
rather th an the native IA-32 instructions!

Second , MIPS has only a few instruction formats, with the source register fi eld s
being located in the sa me place in each instruction. This symmetry means that the
second stage ca n begin reading the register fil e at the sa me time that the hardwa re
is determining what type of instruction was fetched. If MIPS instruction formats
were not symmetric, we would need to split stage 2, resulting in six pipeline
stages. We will shortly see the downside of longer pipelines.

Third, memory operands only appea r in loads o r stores in MIPS. This restric
tion mea ns we ca n use the execute stage to calculate the memo ry address and then
access memory in the following stage. If we could operate on the operands in
memory, as in the IA-32, stages 3 and 4 would expand to an address stage, mem
o ry stage, and then execute stage.

Fourth, as discussed in Chapter 2, operands must be aligned in memory.
Hence, we need not wo rry about a single data transfer instruction requiring two
data memory accesses; the requested data ca n be transferred between processor
and memory in a single pipeline stage.

Pipeline Hazards

There are situations in pipelining when the next instruction cannot execute in the
following clock cycle. These events are ca lled hazards, and there are th ree different
types.

Structural Hazards

The first haza rd is called a structural hazard . It mea ns that the hardware ca nnot
support the combination of instructions that we want to execute in the same clock
cycle. A structural haza rd in the laundry room would occur if we used a washer
dryer combination instead of a separate washer and dryer, or if our roommate was
busy doing something else and wouldn't put clothes away. Our ca refully scheduled
pipeline plans would then be foiled.

As we said above, the MIPS instruction set was designed to be pipelined, mak
ing it fairly easy for designers to avoid structural hazards when designing a pipe
line. Suppose, however, that we had a single memory instead of two memories. If
the pipeline in Figure 6.3 had a fourth instruction , we would see that in the sa me
clock cycle that the first instruction is accessing data from memo ry while the
fourth instruction is fetching an instruction from that sa me memory. Without
two memories, our pipeline could have a strucnlfal hazard.

375

structural hazard An occur
rence in which a planned
instruction cannot execute in
the proper clock cycle bemuse
the hardware mnnot support
the combination of instructions
that are set to execute in the
given clock cycle.
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data hazard Also called pipe
line data hazard. An occurrence
in which a planned instruction
cannot execute in the proper
clock cycle because data that is
needed to exeUite the instruc
tion is n ot yet available.

forwarding Also called
bypassing. A m ethod of
resolving a data hazard by
retrieving the missing data
elem ent from internal bu ffers
rather than waiting for it to
arrive from programmer-visible
registers or memory.

EXAMPLE

ANSWER
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Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wa it
for another to complete. Suppose you found a sock at the folding station for
which no match existed. One possible strategy is to run down to your room and
sea rch through your clothes bureau to see if you can find the match. Obviously,
while you are doing the sea rch, loads that have completed drying and are ready to
fold and those that have fini shed washing and are ready to dry must wa it.

In a computer pipeline, data haza rds arise from the dependence of one instruc
tion on an ea rlier one that is still in the pipeline (a relationship that does not rea lly
exist when doing laundry). For exa mple, suppose we have an add instruction fol
lowed immediately by a subtract in struction that uses the sum ($ sO) :

add $sO , $tO , $t1
sub $tZ , $sO , $t3

Without intervention , a data haza rd could severely stall the pipeline. The add
instruction doesn't write its result until the fifth stage, mea ning that we would
have to add three bubbles to the pipeline.

Although we could try to rely on compilers to remove all such haza rds, the
results would not be satisfacto ry. These depend ences happen just too often and
the delay is just too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don't need to wa it for
the instruction to complete befo re trying to resolve the data haza rd. For the code
sequence above, as soon as the ALU creates the sum for the add , we ca n supply it
as an input for the subtract. Adding extra hardware to retrieve the missing item
ea rly from the internal resources is called forwarding or bypassing.

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be con
nected by forwa rding. Use the drawing in Figure 6.4 to represent the datapath
during the five stages of the pipeline. Align a copy of the datapath for each
instruction, similar to the laundry pipeline in Figure 6.1.

Figure 6.5 shows the connection to forwa rd the value in $sO after the execu
tion stage of the add instruction as input to the execution stage of the su b in 
struction.

In this graphica l representation of events, fo rwa rding paths are valid only if the
destination stage is later in time than the source stage. For example, there ca nnot
be a va lid fonva rding path from the output of the memory access stage in the first
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Time
200 400 600 800 1000

, , , , , •.....
s;••[ll--4add $sO, $tO, $1 1 I : I EX MEM

L___ ----....
FtGURE 6.4 Graphical representation of the Instruction pipe line, similar In spirit t o the
laundry pipeline In Figure 6 .1 on page 3 71. Here we use symbols representing the physical
resources with the abbreviations for pipeline stages used throughout the chapter. The symbols for the five
stages: IF for the instruction fetch stage, with the box representing instruction memory; IV for the instruc-
tion decode/register file read stage, with the drawing showing the register file being read; EX for the execu-
tion stage, with the drawing representing the ALU; MEM for the memory access stage, with the box
representing data memory; and WB for the write back stage, with the drawing showing the register file
being written. The shading indicates the element is used by the instruction. Hence, MEM has a white back-
ground because add does not access the data memory. Shading on the rigltthalf of the register file or mem-
ory means the element is read in that stage, and shading of the left half means it is written in that stage.
Hence the right half of ID is shaded in the second stage because the register file is read, and the left half of
WB is shaded in the fifth stage because the register file is WTitten.

P"'9~

execution 200 400 600 800 1000
order Time , , , , , •
(in instructions) ....

r.:'!~ i
r--

i~add $sO, $tO, $t1 1 1 MEM
i ,,;,; u : ,

~ C~
,---

sub $t2, $50, $13 1 ID MEM B
,---- U....

FtGURE 6.5 Graphical representation of forwarding. The connection shows the forwarding path
from the output of the EX stage of add to the input of the EX stage for 5U b, replacing the value from regis-
ter S50 read in the second stage of 5 uh.

instructio n to the input of the executio n stage of the fo llowing, since that would
mean going backwards in time.

Fo rwarding works ver y well and is described in detail in Section 6.4. It ca nnot
prevent all pipeline stalls, however. For exa mple, suppose the first instruction
were a load of $sO instead of an add. As we ca n imagine fro m looking at Figure
6.5, the desired data would be available o nly after the fourth stage of the first load -use data hazard A spe-

instruction in the dependence, which is too late for the input of the third stage of cific form of data hazard in

sub. Hence, even with fo rwarding, we would have to stall one stage for a load-use which the data requested by a

data hazard, as Figure 6.6 shows. This figure shows an important pipeline con-
load instruction has not yet
become available when it is

cept, officially called a pipeline stall , but often given the nickna me bubble. We requested.
shall see stalls elsewhere in the pipeline. Section 6.5 shows how we ca n handle pipeline stall Also called bub-
hard cases like these, using either hardwa re detection and stalls or software that ble. A stall initiated in order to
treats the load delay like a branch delay. resolve a hazard.
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IW $sO, 20($1 1)

Program

execution 200 400 600 800 1000 1200 1400
order Time ---';''-----'T'---'';''-----'T'---''''C''---'T' '-----'C,"-.-.
(in instructions)

sub $12, $sO, $13 MEM

FIGURE 6.6 We need a stall even with forwarding when an R.format Instruction follow
Ing a load tries to use the data. Without the stall, the path from memory access stage outpul to exe·
cution stage input mmld be going backwards in time, which is impossible. This figure is aetu.1Uy a
simplification, since we cannot know wnil after the subtract instruction is fetched and decoded whether or
not a stall will be necessary. Section 6.5 shows the details of what really happens in the case of a hazard.

Reordering Code to Avoid Pipeline Stalls

EXAMPLE
Consider the following code segment in C:

A B + E;
C B + F;

Here is the generated MIPS code for this segment, assuming all va riables are
in memory and are addressable as offsets from $tO:

lw I tl , O(ltO)
lw ItZ, 4(ltO)
add 1t3, Itl , ltZ
sw 1t3, lZ(ltO)
lw 1t4, 8(101)
add ItS, Itl , lt4
sw ItS, 16(ltO)

Find the hazards in the following code segment and reorder the instructions
to avoid any pipeline stalls.
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Both add instruct ions have a haza rd because of their respective dependence
on the immediately preceding 1w instruction. Notice that bypassing elimi
nates several other potential haza rds including the dependence of the first
add on the first 1wa nd any haza rds fo r store instructions. Moving up the
third 1winstruction eliminates both haza rds:

lw I tl , O(ltO)
lw ItZ , 4(lt1)
lw 1t4, 8(101)
add 1t3 , Itl , ltZ
sw 1t3 , lZ(ltO)
add 1t5 , Itl , lt4
sw 1t5 , 16(ltO)

On a pipelined processor with forwa rding, the reo rdered sequence will
complete in two fewer cycles than the o rigin al version.

Forwa rding yields another insight into the MIPS architecnlre, in addition to
the four mentioned on page 374-375. Each M IPS instruction writes at most one
result and does so nea r the end of the pipeline. Forwa rding is harder if there are
multiple results to forwa rd per instruction or they need to write a result ea rly on
in instruction execution.

Elaboration: The name "forwarding" comes from the idea that the result is passed
forward from an ea rlier instruction to a later instruction . "Bypassing" comes from pass
ing the result by the register file to the desired unit.

Control Hazards

The third type of haza rd is ca lled a control hazard , arising from the need to make
a decision based on the results of one instruction while others are executing.

Suppose our laundry crew was given the happy task of clea ning the uniforms of
a football tea m. Given how filthy the laundry is, we need to determine whether the
detergent and water temperature setting we select is st rong enough to get the uni
forms clean but not so st rong that the uniforms wea r out sooner. In our laundry
pipeline, we have to wa it until the second stage to exa mine the dry uniform to see
if we need to change the washer setup or not. What to do?

Here is the first of two solutions to cont rol haza rds in the laundry room and its
computer equivalent.

Stall: Just operate sequentially until the first batch is dry and then repeat until
you have the right formula. This conservative option certainly works, but it is
slow.

379

ANSWER

control hazard Also called
branch h azard. An occurrence
in which the proper instruction
cannot execute in the proper
clock cycle because the instruc
tion that was fetched is not the
one that is needed; that is, the
flow of instruction addresses is
not what the pipeline expected.
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The equivalent decision task in a computer is the branch instruction. Notice that
we must begin fetching the instruction following the branch on the very next
clock cycle. But , the pipeline ca nn ot possibly know what the next instruction
should be, sin ce it only just received the branch instruction from memory! Just as
with laundry, one possible solution is to stall immediately aft er we fetch a branch,
wa iting until the pipeline determines the outcome of the branch and knows what
instruction address to fetch from.

Let's assume that we put in enough extra hardwa re so that we can test registers,
calculate the branch address, and update the PC during the second stage of the
pipeline (see Section 6.6 for details). Even with this extra hardware, the pipeline
involving conditional branches would look like Figure 6.7. The 1w instruction ,
executed if the branch fails, is stalled one extra 200-ps clock cycle before starting.

Performance of "Stall on Branch"

EXAMPLE
Estimate the impa ct on the clock cycles per instruction (CPI) of stalling on
branches. Assume all other in structions have a CPl of I.

ANSWER
Figure 3.26 on page 228 in Chapter 3 shows that branches are 13% of the in 
structions executed in SPECint2000. Since other instructions run have a CP I
of 1 and branches took one extra clock cycle for the stall, then we would see a
CPI of 1.1 3 and hence a slowdown of 1.1 3 versus the idea l case. Notice that
this includes only branches and that jumps might also incur a stall.

8 ALU_.~' I'~-"" I400 ps folch
or $7, $8, $9

Program
200 400 600 800 1000 1200 1400execution

Time •order
(in instructions)

add $4, $5, $6
lns1roct"",

'" "0 Data '0'lelch .=~

beq $ 1, $2, 40
InslNC1"",

'" "0 Oala '0'200 ps felch ~

FIGURE 6.7 Pipeline showing stalling on every conditional branch as solution to control
hazards. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the process of creating a
stall is slightly more complicated, as we will see in Section 6.6. The effect on performance, however, is the
same as would occur if a bubble were inserted.
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If we ca nnot resolve the branch in the second stage, as is often the case for longer
pipelines, then we'd see an even larger slowdown if we stall on branches. The cost of
this option is too high fo r most computers to use and motivates a second solution
to the cont rol haza rd:

Predict: If you're pretty sure you have the right formula to wash uniforms, then
just predict that it wiII wo rk and wash the second load while wa iting for the
first load to dry. This option does not slow down the pipeline when you are
correct. \Vhen you are wrong, however, you need to redo the load that was
washed while guessing the decision.

Computers do indeed use prediction to handle branches. One simple app roach
is to always predict that branches will be untaken . \Vhen you're right , the pipeline
proceeds at full speed. Only when branches are taken does the pipeline stall. Fig
ure 6.8 shows such an example.

untaken branch One that
falls through to the successive
instruction. A taken branch is
one that causes transfer to the
branch target.

Program
execution 2cOO;-:-__4cOO;-:-__6CO~O,--,--8~OOe:-_clOOO::;c,--,--l200::;c,--,--14~Oc0,--_~
order Time •
(in instructions)

add $4, $5, $ 6

beq $ 1, $2, 40

Iw $3, 300($0

InslNC1ion .., ,," om.
""felch ~..

• • InstNC1ion .., ,," Dale. ,.,
200 ps

lelch ~...
) • • Inst,uc1ion Data

200ps ."" ,., ,," ,.,_.

add $4, $5, $ 6 InslNC1ion Reg ALU Dale.
felch access

beq $ 1, $2, 40 ':==:j;,~~,~~~"",;jl~",~,t~,~,~"~-:o~.~"::-f,,~.,J
~ 200 ps lelch """""•

L 0' "" , «sa, '9 . ( ~b~ : ~~bl~J~';;l'b"b='~Yd'".!';-",b",~ [~~bl~
• InstNC1ion 0 ALU I ~a~. r:=J

400 ps lelch U ~ 0

Program
execution C2~OO=--_4COO;-:-__6CO~O,--,--800~,----,lO;OO=-_C12;OO=-_C14~OC0,--__
order Time •
(in instructions)

c--c-;

FIGURE 6.8 Predicting that branches are not taken as a solution to control hazard. The
top drawingshows the pipeline when the branch is not taken. The bottom drawingshows the pipeline when
the branch is taken. As we noted in Figure 6.7, the insertion of a bubble in this fashion simplifies what actu
ally happens, at least during the first clock cycle immediately following the branch. Section 6.6 will reveal
the details.
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branch prediction A method
of resolving a branch hazard
that assumes a given outcome
for the branch and proceeds
from that assumption rather
than waiting to ascertain the
actual outcome.
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A more sophisticated version of branch prediction would have some branches
predicted as taken and some as untaken. In our analogy, the dark or home uni
forms might take one formula while the light or road uniforms might take
another. As a computer example, at the bottom of loops are branches that jump
back to the top of the loop. Since they are likely to be taken and they branch back
wards, we could always predict taken for branches that jump to an earlier address.

Such rigid approaches to branch prediction rely on stereotypical behavior and
don't account for the individuality of a specific branch instruction. Dynamic hard
ware predictors, in stark contrast, make their guesses depending on the behavior
of each branch and may change predictions for a branch over the life of a pro
gram. Following our analogy, in dynamic prediction a person would look at how
dirty the uniform was and guess at the formula , adjusting the next guess depend
ing on the success of recent guesses. One popular approach to dynamic prediction
of branches is keeping a history for each branch as taken or untaken, and then
using the recent past behavior to predict the future. As we will see later, the
amount and type of history kept have become extensive with the result being that
dynamic branch predictors can correctly predict branches with over 90% accuracy
(see Section 6.6). \-¥hen the guess is wrong, the pipeline control must ensure that
the instructions following the wrongly guessed branch have no effect and must
restart the pipeline from the proper branch address. In our laundry analogy, we
must stop taking new loads so that we can restart the load that we incorrectly pre
dicted.

As in the case of all other solutions to control hazards, longer pipelines exacer
bate the problem, in this case by raising the cost of misprediction. Solutions to
control hazards are described in more detail in Section 6.6.

Elaboration: There is a third approach to the control hazard, called delayed decision.
In our analogy, whenever you are going to make such a decision about laundry, just
place a load of nonfootball clothes in the washer while waiting for football uniforms to
dry. As long as you have enough dirty clothes that are not affected by the test, this solu
tion works fine .

Called the delayed branch in computers, this is the solution actually used by the
MIPS architecture . The delayed branch always executes the next sequential instruction,
with the branch taking place after that one instruction delay. It is hidden from the MIPS
assembly language programmer because the assembler can automatically arrange the
instructions to get the branch behavior desired by the programmer. MIPS software will
place an instruction immediately after the delayed branch instruction that is not
affected by the branch , and a taken branch changes the address of the instruction that
follows this safe instruction . In our example, the add instruction before the branch in
Figure 6 .7 does not affect the branch and can be moved after the branch to fully hide
the branch delay. Since delayed branches are useful when the branches are short, no
processor uses a delayed branch of more than 1 cycle. For longer branch delays, hard
ware-based branch prediction is usually used.
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Pipeline Overview Summary

Pipelining is a technique that exploits parallelism among the instructions in a
sequential instruction stream. It has the substantial advantage that, unlike some
speedup techniques (see . Chapter 9), it is fundamentally invisible to the pro
grammer.

In the next sections of this chapter, we cover the concept of pipelining using the
MIPS instruction subset 1W, SW, add, sub, and, or, sl t, and beq (same as Chap
ter 5) and a simplified version of its pipeline. We then look at the problems that
pipelining introduces and the performance attainable under typica l situations.

If you wish to focus more on the software and the performance implications of
pipelining, you now have sufficient background to skip to Section 6.9. Section 6.9
introduces advanced pipelining concepts, such as superscalar and dynamic sched
uling, and Section 6. 10 exa mines the pipeline of the Pentium 4 microprocessor.

Alternatively, if you are interested in understanding how pipelining is imple
mented and the challenges of dealing with hazards, you can proceed to exa mine
the design of a pipelined datapath , explained in Section 6.2, and the basic control ,
explained in Section 6.3. You can then use this understanding to explore the
implementation of forwarding in Section 6.4 , and the implementation of stalls in
Section 6.5. You ca n then read Section 6.6 to lea rn more about solutions to branch
hazards, and then see how exceptions are handled in Section 6.8.

Pipelining increases the number of simultaneously executing instructions
and the rate at which instructions are started and completed. Pipelining
does not reduce the time it takes to complete an individual instruction,
also called the latency. For example, the five-stage pipeline still takes 5
clock cycles for the instruction to complete. In the terms used in Chapter
4, pipelining improves instruction throughput rather than individual
instruction execution time or latency.

Instruction sets can either simplify or make life harder for pipeline
designers, who must already cope with structural, control, and data haz
ards. Branch prediction, forwarding, and stalls help make a computer fast
while still getting the right answers.
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Outside of the memory system, the effective operation of the pipeline is usually
the most impo rtant factor in determining the CPI of the processor and hence its
performance. As we will see in Section 6.9, understanding the performance of a
modern multiple- issue pipelined processor is complex and requires understand 
ing more than just the issues that arise in a simple pipelined processor. Nonethe
less, structural, data , and control hazards remain impo rtant in both simple
pipelines and in more sophisticated ones.

For modern pipelines, structural haza rds usually revolve around the floating
point unit, which may not be fully pipelined, while control hazards are usually
more of a problem in integer programs, which tend to have higher branch fre
quencies as well as less predictable branches. Data hazards ca n be performance
bottlenecks in both integer and floating-point programs. Often it is easier to deal
with data hazards in floating-point programs because the lower branch frequency
and more regular access patterns allow the compiler to try to schedule instruc
tions to avoid haza rds. It is more difficult to perform such optimizations in inte
ger programs that have less regular access involving more use of pointers. As we
will see in Section 6.9, there are more ambitious compiler and hardwa re tech
niques for red ucing data dependences through scheduling.

For each code sequence below, state whether it must stall , ca n avoid stalls using
only forwa rding, or ca n execute without stalling or forwarding:

Sequence 1 Sequence 2 Sequence 3

1. StO.O{StO) ,dd St 1. StO. StO addi St1.StO.#l
,dd St 1. StO. StO addi St2. StO.#5 addi St2.StO.#2

addi St 4. Stl.#5 addi St3.StO.#2

addi St3.StO.#4
addi St5.StO.#5

There is less in this thall
meets the eye.

Tallulah Bankhead, remark to
Alexander Walleatt, 1922

A Pipelined Datapath

Figure 6.9 shows the single-cycle datapath from Chapter 5. The division of an
instruction into five stages mea ns a five-stage pipeline, which in turn mea ns that
up to five instructions will be in execution during any single clock cycle. Thus, we
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FtGURE 6.9 The single-cycle datapath from Chapter 5 (similar to Figure 5.17 on page 307). Each step of the instruction can be
mapped onto the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either
the ALU result or the data from memory to the left to be written into the register file. (Normally we use color lines for control, but these are data lines.)

must sepa rate the datapath into five pieces, with each piece named corresponding
to a stage of in struction execution:

I. IF: Instruction fetch

2. ID: Instruction decode and register fil e read

3. E.X: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

In Figure 6.9, these five components correspond roughly to the way the da ta
path is drawn; instructions and data move generally fro m left to right th rough the
five stages as they complete execution. Going back to our laundry analogy, clothes
get clea ner, drier, and more organized as they move th rough the line, and they
never move backwa rds.
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There are, however, two exceptions to this left -to-right flow of instructions:

• The write-back stage, which places the result back into the register file in the
middle of the datapath

• The selection of the next value of the PC, choosing between the incremented
PC and the branch address from the MEM stage

Data flowing from right to left does not affect the current instruction; only later
instructions in the pipeline are influenced by these reverse data movements. Note
that the first right-to-left arrow ca n lea d to data haza rds and the second lea ds to
control haza rds.

One way to show what happens in pipelined execution is to pretend th at each
instruction has its own datapath , and then to place these datapaths on a time line
to show their relationship. Figure 6.1 0 shows the execution of the instructions in
Figure 6.3 by displaying their private datapaths on a common time line. We use a
stylized version of the datapath in Figure 6.9 to show the relationships in
Figure 6. 10.

Figure 6. 10 seems to suggest that three in structions need three datapaths. In
Chapter 5, we added registers to hold data so that po rtions of the datapath could
be shared during instruction execution; we use the sa me technique here to share
the multiple data paths. For example, as Figure 6. 10 shows, the instruction mem 
o ry is used during only one of the five stages of an instruction, allowing it to be
shared by other instructions during the other four stages.

To retain the va lue of an individual instruction for its other four stages, the
value read from instruction memory must be saved in a register. Similar argu
ments apply to every pipeline stage, so we must place registers wherever there are
dividing lines between stages in Figure 6.9. This change is similar to the registers
added in Chapter 5 when we went from a single-cycle to a multicycle datapath.
Returning to our laundry analogy, we might have a basket between each pair of
stages to hold the clothes for the next step.

Figu re 6.11 shows the pipelined datapath with the pipeline registers high 
lighted. All instructions adva nce during each clock cycle from one pipeline regis
ter to the next. The registers are named for the two stages separated by that
register. For example, the pipel ine register between the IF and ID stages is called
IFIID.

Notice th at there is no pipeline register at the end of the write-back stage. All
instructions must update some state in the processor-the register file, memory,
o r the PC-so a separate pipeline register is redundant to the state that is upd ated.
For example, a load instruction will place its result in 1 of the 32 registers, and any
later instruction that needs that data will simply rea d the appropriate register.

Of course, every instruction upd ates the PC, whether by in crementing it or by
setting it to a branch destination address. The PC can be thought of as a pipeline
register: one that feeds the IF stage of the pipeline. Unlike the shaded pipeline reg-
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Program
e xecution
o rde r
(in instruc tions)

IW $1, 1OO($O)

Iw $2, 200($0)

Iw $3, 300($0)

CC 1 CC 2 CC ' CC' CC S CC ' CC?

FtGURE 6.10 Instructions being executed using the slngl&cycle datapath In Figure 6.9,
assuming p1pellned execution. Similar to Figures 6.4 through 6.6, this figure pretends that each
instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage
is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in
Figure 6.9. 1M represents the instruction memory and the PC in the instruction fetch stage, Reg stands for
the register file and sign extender in the instruction decode/register file read stage (ID), and so on.To main
tain proper time order, this stylized datapath breaks the register file into two logical p.uts: registers read
during register fetch (ID) and registers written during write back (WB). This dual use is represented by
drawing the unshaded left half of the register file using dashed lines in the ID stage, when it is not being
written,and the wlshaded right half in dashed lines in the WB stage, when it is not being read. As before, we
asswne the register file is WTitten in the first half of the clock cycle and the register file is read during the sec
ond half.

isters in Figure 6.11 , however, the PC is part of the visible architectural state; its
contents must be saved when an exception occu rs, while the contents of the pipe
line registers can be disca rded. In the laundry analogy, you could think of the PC
as corresponding to the basket that holds the load of dirty clothes before the wash
step!

To show how the pipelining works, throughout this chapter we show sequences
of figu res to dem onstrate operation over time. These extra pages would seem to
require much more time for you to understand . Fea r not; the sequences take
much less time than it might appea r beca use you ca n compare them to see what
changes occur in each clock cycle. Sections 6.4 and 6.5 describe what happens
when there are data hazards between pipelined instructions; ignore them fo r now.

Figures 6. 12 th rough 6. 14, our first sequence, show the active po rtions of the
datapath highlighted as a load instruction goes th rough the fi ve stages of pipelined
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FIGURE 6.11 The plpellned version of the datapath In Figure 6.9. The plpehne re81sters, In color, separate each plpelme stage. They are
labeled by the stages thaI they separate; for example, the first is labeled IF/lD because it separates the instruction fetch and instruction decooe stages.
The registers must be wide enough to stofe aU the data corresponding to the lines that go through them. For example, the !FlID register must be 64
bits wide because it must hold both the 32-bit inst ruction fetched from memory and the incremented 32·bi, PC address. We will expand these regis
ters over the course of this chapter, but for now the other three pipeline registers contain 128,97, and 64 bits, respectively.

execution. We show a load first because it is active in all five stages. As in Figures
6.4 th rough 6. 11 , we highlight the right halfof registers or memory when they are
being read and highlight the left half when they are being written. We show the
instruction abbreviation 1wwith the name of the pipe stage that is active in each
figure. The fi ve stages are the following:

I . Instruction fetch : The top portion of Figure 6. 12 shows the instruction
being read from memory using the address in the PC and then placed in the
IF/ID pipeline register. The IF/ID pipeline register is similar to the Instruc
tion register in Figure 5.26 on page 320. The PC address is incremented by 4
and then written back into the PC to be ready for the next clock cycle. This
in cremented address is also saved in the IFIID pipeline register in case it is
needed later for an instruction , such as beq. The computer cannot know
which type of in struction is being fetched , so it must prepa re for any
instruction, passing potentially needed information down the pipeline.
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•FtGURE 6.12 IF and ID. first and second pipe stages of an Instruction, with the active portions of the datapath In
Figure 6.11 highlighted. The highlighting convention is the same as that used in Figure 6.4. As in Chapter S, there is no confusion when reading
and WTiting registers because the contents change only on the dock edge. Although the lo.1d needs only the top register in stage 2, the processor doesn't
know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers into the ID/EX pipeline register. We don't need
all three operands, but it simplifies control to keep all three.
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FIGURE 6.13 EX: the third pipe st age of a load Instruction, highlighting the portions of the dat apath In Figure 6.11 used In
this pipe s t age. The register is added to the sign-extended immediate, and the sum is placed in the EXlMEM pipeline register.

2. Instruction decode and register file read: The bottom portion of Figure 6.1 2
shows the instruction portion of the IF/ ID pipeline register supplying the
16-bit immediate fi eld , which is sign -extended to 32 bits, and the register
numbers to read the two registers. All three va lues are stored in the ID/E.X
pipeline register, along with the incremented PC address. We aga in transfer
everything that might be needed by any instruction during a later clock
cycle.

3. Execute or address calculation: Figure 6. 13 shows that the load instruction
rea ds the contents of register 1 and the sign-extended immediate from the
ID/EX pipeline register and adds them using the ALU. Th at sum is placed in
the EXlM EM pipeline register.

4. M emoryaccess: The top po rtion of Figu re 6.14 shows the loa d instruction
rea ding the data memory using the address from the EXlM EM pipeline
register and loading the data into the MEM/WB pipeline register.
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FtGURE 6.14 MEM and WB: the fourth and fifth pipe stages of a load Instruction, highlighting the portions of the
da t a pa th In Figure 6.11 used In this pipe stage. Data memory is read using the address in the EXfMEM pipeline registers, and the
data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB pipeline register and written into the register file in
the middle of the datapath.
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5. Write back: The bottom portion of Figure 6. 14 shows the final step: reading
the data from the MEM/WB pipeline register and writing it into the register
fil e in the middle of the figure.

This walk-through of the load instruction shows th at any information needed
in a later pipe stage must be passed to that stage via a pipeline register. Wa lking
th rough a store instruction shows the similarity of instruction execution, as well
as passing the information for later stages. Here are the five pipe stages of the store
instruction:

I. Instruction fetch: The instruction is read from mem ory using the address in
the PC and then is placed in the IF/ID pipeline register. This stage occurs
before the instruction is identified, so the top portion of Figu re 6. 12 works
for store as well as load.

2. Instruction decode and register file read: The instruction in the IFIID pipe
line register supplies the register numbers for reading two registers and
extends the sign of the 16-bit immediate. These three 32-bit values are all
stored in the ID/EX pipeline register. The bottom portion of Figu re 6. 12 for
load instructions also shows the opera tions of the second stage for stores.
These first two stages are executed by all in structions, sin ce it is too ea rly to
know the type of the instruction.

3. Execute and address calClilation: Figure 6. 15 shows the third step; the effec
tive address is placed in the EXiMEM pipeline register.

4. Memory access: The top portion of Figure 6.1 6 shows the data being writ 
ten to memory. Note that the register containing the data to be stored was
read in an ea rlier stage and stored in ID/EX. The only way to make the data
available during the MEM stage is to place the data into the EXiMEM pipe
line register in the EX stage, just as we stored the effective address into
EX/MEM.

5. Write back: The bottom portion of Figure 6. 16 shows the final step of the
store. For this instruction , nothing happens in the write-back stage. Since
every instruction behind the store is already in progress, we have no way to
accelerate those in structions. Hence, an instruction passes through a stage
even if there is nothing to do because later instructions are already pro
gressing at the maximum rate.

The store instruction aga in illustrates that to pass something from an ea rly pipe
stage to a later pipe stage, the information must be placed in a pipeline register;
otherwise, the information is lost when the next instruction enters that pipeline
stage. For the store instruction we needed to pass one of the registers read in the
ID stage to the MEM stage, where it is stored in memory. The data was first placed
in the ID/E.X pipeline register and then passed to the E.X/MEM pipeline register.
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FIGURE 6.15 EX: the third pipe stage of a store Instruction. Unhke the thIrd stage of the load instructIon In FIgure 6.13, the second reg
ister value is loaded into the EXlMEM pipeline register to be used in the next stage. Although it wouldn't hurt to always write this second register into
the EXlMEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to understand.

Load and store illustrate a second key point: each logical component of the
datapath-such as instruction memory, register rea d ports, ALU, data memory,
and register write port-can be used only within a single pipeline stage. Otherwise
we would have a stmctural hazard (see page 375). Hence these components, and
their cont rol, ca n be associated with a single pipeline stage.

Now we can un cover a bug in the design of the load instruction. Did you see it?
Which register is changed in the final stage of the load? Mo re specifically, which
instruction supplies the write register number? The instruction in the IFII D pipe
line register supplies the write register number, yet this instruction occurs consid
erably after the load instruction!

Hence, we need to preserve the destination register number in the load instruc
tion. Just as store passed the register contents from the ID/EX to the EX/MEM
pipeline registers for use in the MEM stage, load must pass the register number
from the ID/EX th rough EX/M EM to the MEM/W B pipeline register for use in
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FIGURE 6.16 MEM and WB: the fourth and fifth pipe stage of a store Instruction. In the fourth stage , the data is WTil1en into data
memory for the store. Note that the data comes from the EXfMEM pipeline register and that nothing is changed in the MEM/WB pipeline register.
Once the data is written in memory, there is nothing left for the store instruction to do, so nothing happens in stage 5.
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FIGURE 6.17 The corrected p1pellned datapath to properly handle the load Instruction. The write re81ster number now comes from
the MEM/WB pipeline register along with the data . The register number is passed from the ID pipe stage until it reaches the MEM/WB pipeline regis
ter, adding 5 more bits to the last three pipeline registers. This new path is shown in color.

the WB stage. Another way to think about the passing of the register number is
that, in order to share the pipelined data path, we needed to preserve the instruc
tion read during the IF stage, so each pipeline register contains a portion of the
instruction needed for that stage and later stages.

Figure 6. 17 shows the correct version of the datapath, passing the write register
number first to the ID/EX register, then to the EX/MEM register, and finally to the
MEM/WB register. The register number is used during the WB stage to specify the
register to be written. Figure 6. 18 is a single drawing of the corrected datapath ,
highlighting the hardware used in all five stages of the load word instruction in
Figures 6. 12 through 6. 14. See Section 6.6 for an explanation of how to make the
branch instruction work as expected.

Graphically Representing Pipelines

Pipelining ca n be difficult to understand , since many instructions are simulta 
neously executing in a single data path in every clock cycle. To aid understanding,
there are two basic styles of pipeline figures: multiple-clock-cycle pipeline dia
grams, such as Figure 6.10 on page 387, and single-clock-cycle pipeline diagrams,
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FIGURE 6.18 The portion of the datapath In Figure 6.17 that Is used In all five stages of a load Instruction.

such as Figures 6.1 2 th rough 6.1 6. The multiple-clock-cycle diagrams are simpler
but do not contain all the details. For example, consider the following fi ve
instruction sequence:

lw liD . 20(11)
sub $11, $2 , $3
add $12 , $3 , $4
lw 113 . 24 (11)
add $14 , $5 , $6

Figu re 6.1 9 shows the multiple- clock-cycle pipeline diagram fo r these instruc
tions. Time adva nces from left to right across the page in these diagrams, and
instructions adva nce from the top to the bottom of the page, similar to the laun 
dry pipeline in Figure 6.1 on page 37 1. A representation of the pipeline stages is
placed in each portion along the in struction axis, occupying the p roper clock
cycles. These stylized datapaths represent the five stages of our pipeline, but a rect 
angle naming each pipe stage works just as well. Figure 6.20 shows the more tradi
tional version of the multiple- clock-cycle pipeline diagram. Note that Figure 6.1 9
shows the physical resources used at each stage, while Figure 6.20 uses the flame of
each stage. We use multiple- clock-cycle diagrams to give overviews of pipel ining
situations.
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CC3CC2CC 1CCGCCSCC'

Time (in clock cycles) ---------------------_.
CC l CC2 CC3

Program
execution
order
(in instructions)

Iw$10,20($1)

sub$11 ,$2, $3

add $12, $3, $4

IW$13, 24($1)

add $14, $5, $6

FIGURE 6.19 Multlple-eloek·eyele pipeline diagram of five Instructions. This style of pipeline representation shows the complete execu
tion of instructions in a single figure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move from left to
right. Unlike Figure 6.4, here we show the pipeline registers between each stage. Figure 6.20 shows the traditional way to dl1lw this diagram.

CC3CC2CC 1CCGCCSCC'
Time (in clock cycles)----------------------••
CC l CC2 CC3

Program
execution
order
(in instructions)

Iw$10,20($1)

sub$11 ,$2, $3

add $12, $3, $4

Iw $13, 24($1)

add $14, $5, $6

InslNC1ial Inslruction
Execution

Da14
Write backfelen .... ~

InstNC1ial Instruction
ExllCUtion

Data
Write backleten .... -~

Instruction InslNC1ial Execulial Dala Write bad<felch .... ~

InslNC1ial InstNC1ial Execution Da14 Write back
fll1ch ""... ~."

InstNC1ial Instruction Exocutial Data Write back
leten .... _.

FIGURE 6.20 Traditional multlple-eloek<yele pipeline diagram of five Instructions In Figure 6.19.
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Single-clock-cycle pipeline diagrams show the state of the enti re datapath dur
ing a single clock cycle, and usually all five instructions in the pipeline are identi
fied by labels above their respective pipeline stages. We use this type of figure to
show the details of what is happening within the pipeline during each clock cycle;
typica lly, the drawings appear in groups to show pipeline operation over a
sequence of clock cycles. A single-clock-cycle diagram represents a vertical slice
th rough a set of multiple-clock-cycle diagram , showing the usage of the datapath
by each of the instructions in the pipeline at the designated clock cycle. For exam 
ple, Figure 6.21shows the single-clock-cycle diagram corresponding to clock cycle
5 of Figures 6.1 9 and 6.20. Obviously, the single-clock-cycle diagrams have more
deta il and take significa ntly more space to show the sa me number of clock cycles.
The For More Practice section included on the CD includes the corresponding
single- clack-cycle diagrams fo r these two instructions as well as exercises asking
you to create such diagrams for another code sequence.

add $1 4. $5, $6 Iw $13, 24 ($1) add $12. $3, $4, $11 sub$11 ,$2,$3 1w$10, 20($1)

Instruction fetch Instruction docode Execution Memory Write back

'~

'-iV

•
"•o

••
--

" LU "LU _.d -

"IL.r.o_._~----,"•
"•,

+---"'-1sv> 32_.

FIGURE 6.21 The slngle-elock-eycle diagram corresponding to clock cycle 5 of the pipeline In Figures 6.19 and 6.20. As you
can Sff, a single-clock-cycle figure is a vert ical slice through a multiple-clock-cycle diagram.
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A group of students have been debating the efficiency of the fi ve-stage pipeline
when one student pointed out that not all instructions are active in every stage of
the pipeline. After deciding to ignore the effects of hazards, they made the follow
ing fi ve statements. \Vhich ones are correct?

I. Allowing jumps, branches, and ALU instructions to take fewer stages th an
the five required by the load instruction will increase pipeline performance
under all circumstances.

2. Trying to allow some in structions to take fewer cycles does not help, since
the th roughput is determined by the clock cycle; the number of pipe stages
per instruction affects latency, not throughput.

3. Allowing jumps, branches, and ALU operations to take fewer cycles only
helps when no loads or stores are in the pipeline, so the benefits are small.

4. You cannot m ake ALU instructions take fewer cycles because of the write
back of the result, but branches and jumps ca n take fewer cycles, so there is
some oppo rtunity for improvement.

5. Instead of trying to make instructions take fewer cycles, we should explore
making the pipeline longer, so that instructions take more cycles, but the
cycles are shorter. This could improve performance.

Pipelined Control

Just as we added control to the simple datapath in Section 5.4, we now add control
to the pipelined datapath. We sta rt with a simple design that views the problem
through rose-colored glasses; in Sections 6.4 th rough 6.8, we remove these glasses
to reveal the haza rds of the real wo rld.

The first step is to label the control lines on the existing data path. Figure 6.22
shows those lines. We borrow as much as we can from the control for the simple
datapath in Figure 5. 17 on page 307. In particular, we use the same ALU control
logic, branch logic, destination-register-number multiplexor, and cont rol lines.
These functions are defined in Figure 5.1 2 on page 302, Figure 5. 16 on page 306,
and Figure 5. 18 on page 308. We reproduce the key information in Figures 6.23
through 6.25 to make the remaining text easier to follow.

As for the single-cycle implementation discussed in Chapter 5, we assume that
the PC is written on each clock cycle, so there is no separate write signal for the

399

Check
Yourself

In the 6600 Compl/ter, per
haps even more than in any
previol/s compl/ter, the con
trol system is the difference.

James Thornton,
Design ofa Computer:
The Comrol Data 6600, 1970
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FIGURE 6.22 The plpellned datapath of Figure 6.17 with the control signals Identified. ThIs dalapalh borrows the controllogJc for
PC source, register destination number, and ALU control from Chapter 5. Note that we now need the 6-bit funcl field (function code) of the instruc
tion in the EX stage as inpul to ALU control, so these bits must also be included in the ID/EX pipeline register. RJ.>call that these 6 bits are also the 6
least significant bits of the immediate field in the instruction, so the ID/EX pipeline register can supply them from the immediate field since sign
extension leaves these bits lUlchangoo.

Pc. By the sa me argument, there are no separate write signals for the pipeline reg
isters (l FIl D, ID/EX, EXlM EM, and ME M/W B), sin ce the pipeline registers are
also written during each clock cycle.

To specify control for the pipeline, we need only set the cont rol va lues during
each pipeline stage. Beca use each control line is associated with a component
active in only a single pipeline stage, we ca n divide the cont rol lines into fi ve
groups acco rding to the pipeline stage.

I. Instruction fetch: The cont rol signals to read instruction memory and to
write the PC are always asserted, so there is nothing specia l to cont rol III

this pipeline stage.
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•
Instruction Instruction Desired AW control

opcode operation Function code ALU action Input

LW ()() load word )()(J()(J()( ,dd 0010

SW ()() store word )()(J()(J()( ,dd 0010

Branch equal 01 branch equal )()(J()(J()( subtract 0110

R.type 10 ,dd 100000 ,dd 0010

R"pe 10 subtract 100010 subtract 0110

R"pe 10 AND 100100 eo' 0000

R"pe 10 DR 100101 0' 0001

R"pe 10 set on less than 101010 set on less than 0111

FIGURE 6.23 A copy of Figure 5.12 on page 302. This figure shows how the ALU control bits are
set depending on the ALUOp control bits and the different function codes for the R-type instruction.

Signal name Effect when deasserted (0) Effect when asserted (1)

RegDst The register destination number for the Write register The register destination number for the Write register comes from
comes from the rt field (bits 20:16). the rd field (bits 15:11).

Reg'Nrite None. The register on the Write register input is written with the value on
the Write data input.

ALUSrc The second ALU operand comes from the second The second ALU operand is the sign.extended, lower 16 bits of the
register file output (Read data 2). instruction .

PCSrc The PC is replaced by the output of the adder that The PC is replaced by the output of the adder that computes the
computes the value of PC + 4 . branch target .

MemRead None. Data memory contents designated by the address input are put on
the Read data output.

MemWrite None. Data memory contents designated by the address input are
replaced by the value on the Write data input.

MemtoReg The value fed to the register Write data input comes The value fed to the register Write data input comes from the data
from the ALU. memory.

FIGURE 6.24 A copy of Figure 5.16 on page 306. The function of each of seven control signals is defined. The ALU control lines (ALUOp)
are defined in the second column of Figure 6.23. When a I-bit control to a two-way multiplexor is asserted, the multiplexor selects the input corre
sponding to I. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in Figure 6.22.
If the Branch signal and the ALU Zero signal are both set, then PCSrc is I; otherwise, it is o. Control sets the Branch signal only during a beq instruc
tion; otherwise, PCSrc is set to o.

Execution/ address calculation stage
control lines

Memory access stage
control lines

Write-back stage
control lines

Mem to
Reg

Reg
Write

Mem
Write

Mem
ReadBranch

ALU
S"

ALU
OpD

ALU
Opl

Reg
Dst

R·format 1 1 D D 0 0 D 1 0

1w 0 D D 1 0 1 D 1 1

;W X 0 D 1 0 0 1 D X

beq X 0 1 D 1 0 D D X

FIGURE 6.25 The values of the control lines are the same as In Figure 5.18 on page 308, but they have been shuffled Into
three groups corresponding to the last three pipeline stages.
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What do you mean, why's it
got to be built? It's a bypass.
You've got to bl/ild bypasses.

Douglas Adams, Hitchhikers
Guide to the Galaxy, 1979
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2. Instruction decode/register file read: As in the previous stage, the sa me thing
happens at every clock cycle, so there are no optional control lines to set.

3. Execution/address calculation: The signals to be set are RegDst, ALUOp,
and ALUSrc (see Figures 6.23 and 6.24). The signals select the Result regis
ter, the ALU operation, and either Read data 2 or a sign -extended immedi
ate for the ALU.

4. Memory access: The control lines set in this stage are Branch, MemRead,
and MemWrite. These signals are set by the branch equal, load, and sto re
in structions, respectively. Recall that PCSrc in Figure 6.24 selects the next
sequential address unless control asserts Branch and the ALU result was
zero.

5. Write back: The two control lines are MemtoReg, which decides between
sending the ALU result o r the memory value to the register fil e, and Reg
Write, which writes the chosen value.

Since pipelining the datapath leaves the mea ning of the control lines
unchanged, we ca n u se the sa me control values as before. Figure 6.25 has the same
values as in Chapter 5, but now the nine control lines are grouped by pipeline
stage.

Implementing control means setting the nine control lines to these values in
each stage for each instruction. The simplest way to do this is to extend the pipe
line registers to include control information.

Since the control lines start with the EX stage, we ca n create the control infor
mation during instruction decode. Figure 6.26 shows that these control signals are
then used in the appropriate pipeline stage as the in struction moves down the
pipeline, just as the destination register number fo r loads moves down the pipe
line in Figure 6.1 7 on page 395. Figure 6.27 shows the full data path with the
extended pipeline registers and with the control lines connected to the proper
stage.

Data Hazards and Forwarding

The examples in the previous section show the power of pipelined execution and
how the hardwa re performs the task. It's now time to take off the rose-colored
glasses and look at what happens with real programs. The instructions in Figures
6. 19 through 6.2 1 were independent ; none of them used the results calculated by
any of the others. Yet in Section 6. 1we saw that data haza rds are obstacles to pipe
lined execution.

Let's look at a sequence with many dependences, shown in colo r:
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\ WB

Instructi'" - WBControl M

- f--- ~ -
/

EX - M f--- .. WB -- . f--- ..

403

IF/ID IDlEX EXiMEM MEMlWB

FIGURE 6.26 The control lines for the final three stages. Note that four of the nine control
lines are used in the EX phase, with the remaining five control lines passed on to the EXlMEM pipeline reg
ister extended to hold the cont rol lines; three are used during the MEM stage, and the last two are passed to
MEM/WB for use in the WB stage.

sub
and
or
add
sw

$2 , 11 , $3
$12 , $2 , $5
$13 ,$ 6 , $2
$14, $2 , $2
$15 , 1001 $2 1

# Regis t e r $2 writ t en by sub
# 1s t ope r and($2) depends on sub
# 2nd ope ra nd($2) depends on sub
# 1st($2) & 2nd( $2) depend on sub
# Base ($2) depends on sub

The last four instructions are all dependent on the result in register $2 of the first
instruction. If register $2 had the value 10 before the subtract instruction and -20
afterwa rd s, the programmer intend s that -20 will be used in the following
instructions that refer to register $2.

How would this sequence perform with our pipeline? Figure 6.28 illustrates the
execution of these instructions using a multiple-clock-cycle pipeline representa
tion. To demonstrate the execution of this instruction sequence in our current
pipeline, the top of Figure 6.28 shows the value of register $2, which changes dur
ing the middle of clock cycle 5, when the sub instruction writes its result.

One potential hazard ca n be resolved by the design of the register fil e hardwa re:
what happens when a register is rea d and written in the same clock cycle? We
assume that the write is in the first half of the clock cycle and the read is in the sec
ond half, so the read delivers what is written. As is the case for many implementa
tions of register fil es, we have no data haza rd in this case.
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FIGURE 6.27 The plpellned dat apath of Figure 6.22, with the contro l signals connected t o the control portions of the pipe
line regis t e rs . The control values for the last three stages are created during the instruction decooe stage and then placed in the ID{EX pipeline reg
ister. The control lines for each pipe stage are used, and remaining oontrollines are then passed to the next pipeline stage.

Figure 6.28 shows that the values read for register $2 would flot be the result of
the sub instruction unless the read occurred during clock cycle 5 or later. Thus,
the instructions that would get the co rrect value of -20 are add and sw; the and
and or instructions would get the inco rrect value 1O! Using this style of drawing,
such problems become apparent when a dependence line goes backwa rds in time.

But, look ca refully at Figure 6.28: When is the data from the sub instruction
actually produced? The result is ava ilable at the end of the EX stage or clock cycle
3. \Vhen is the data actually needed by the a nd and or instructions? At the begin 
ning of the EX stage, or clock cycles 4 and 5, respectively. Thus, we can execute
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CC g

- 20

cca
- 20

-,
~

CC?

-20

CCS

-20

CC 5

101-20

CC,

10

CC3

10

sW$15, 100($2)

s ub $2, $ 1, $3

and $12 , $2, $5

or $ 13, $6, $2

add $14, $2, $2

Time (in clock cycles) ------------------------_ .

Value of CC 1 CC 2
register $2: 10 10

Program
execution
order
(in instruct ions)

FIGURE 6.28 Plpellned dependences In a five-Instruction sequence using simplified datapaths to show the dependences.
AU the dependent actions are shown in color, and "CC j" at the top of the figure means clock cycle i. The first instruction writes into $ 2, and all the fol·
lowing instructions read $ 2. This register is written in clock cycle 5, so the proper value is unavailable before clock cycle S. (A read of a register during
a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The colored lines from the top datapath to the
lower ones show the dependences. Those that must go backwards in time are pipelille dm<l h<lZ<lrds .

this segment without stalls if we simply forward the data as soon as it is available
to any units that need it before it is ava ilable to read from the register fil e.

How does forwa rding wo rk? For simplicity in the rest of this section , we con
sider only the challenge of forwa rding to an operation in the EX stage, which may
be either an ALU operation or an effective address calculation. This mea ns that
when an instruction tries to use a register in its EX stage that an ea rlier instruction
intends to write in its \V B stage, we actually need the values as inputs to the ALU.

A notation that names the fields of the pipeline registers allows fo r a mo re pre
cise notation of dependences. For example, "ID/EX.RegisterRs" refers to the num 
ber of one register whose value is found in the pipeline register ID/EX; th at is, the
one from the first read po rt of the register fil e. The first part of the name, to the
left of the period, is the name of the pipeline register; the second pa rt is the name
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of the field in that register. Using this notation , the two pairs ofhaza rd conditions

'"
lao E.,X/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a . MEM/W B.RegisterRd = ID/EX.RegisterRs

2b. MEM/W B.RegisterRd = ID/EX.RegisterRt

The first haza rd in the sequence on page 403 is on register $2, between the
result of sub $2 , $1 , $3 and the first read operand of and $12 , $2 , $5. This
haza rd ca n be detected when the a nd instruction is in the EX stage and the prior
instruction is in the MEM stage, so this is haza rd la:

EX/MEM.RegisterRd = ID/EX.RegisterRs = $ 2

Dependence Detection

Classify the dependences in this sequence from page 403:
EXAMPLE

sub
and
or
add
sw

$2 .
$12 .
$13 .
$1 4.
$15 .

11 . $3
$2 . $5
$6 . $2
$2 . $2
100( $2)

# Regis t e r $2 se t by sub
# 1s t ope ra nd($2) se t by sub
# 2nd ope ra nd( $2) se t by sub
# lst($2l & 2nd($2l se t by sub
# Index($2l se t by sub

ANSWER
As mentioned above, the s ub-a nd is a type l a haza rd. The remaining haza rds

'"
• The sub-or is a type 2b haza rd:

MEM/WB.RegisterRd = ID/ EX.RegisterRt = $2

• The two dependences on sub-add are not haza rds because the register
file supplies the proper data during the ID stage of add .

• There is no data haza rd between sub and sw beca use sw rea ds $2 the
clock cycle after sub writes $2.

Because some instructions do not write registers, this policy is inaccurate;
sometimes it would forwa rd when it was unnecessa ry. One solution is simply to
check to see if the RegWrite signal will be active: exa mining the WB control field
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of the pipeline register during the EX and MEM stages determines if RegWrite is
asserted. Also, MIPS requires that every use of $0 as an operand must yield an
opera nd value of zero. In the event that an instruction in the pipeline ha s $0 as its
destination (for example, sll $0, $1, 2), we wa nt to avoid forwarding its possibly
nonzero result value. Not forwarding results destined for $0 frees the assembly
programmer and the compiler of any requ irement to avoid using $0 as a destina
tion. The conditions above thus work properly as long we add EXlMEM.Regis
terRd 01- 0 to the first hazard condition and MEM/WB.RegisterRd "* 0 to the
second.

Now that we ca n detect hazards, half of the problem is resolved-but we must
still forwa rd the proper data.

Figure 6.29 shows the dependences between the pipeline registers and the
inputs to the ALU for the sa me code sequence as in Figure 6.28. The change is that
the dependence begins from a pipeline register rather than wa iting for the WB
stage to write the register fil e. Thus the requi red data exists in time for later
instructions, with the pipeline registers holding the data to be forwarded.

If we ca n take the inputs to the ALU from allY pipeline register rather than just
ID/EX, then we can forward the proper data. By adding multiplexors to the input
of the ALU and with the proper controls, we ca n run the pipeline at full speed in
the presence of these data dependences.

For now, we will assume the only instructions we need to forward are the four
R-format in structions: add, sub, and, and or. Figure 6.30 shows a close-up of
the ALU and pipeline register before and after adding forwarding. Figure 6.3 1
shows the va lues of the control lines for the ALU multiplexors that select either the
register fil e values or one of the forwarded values.

This forwa rding control will be in the EX stage because the ALU forwarding
multiplexors are found in that stage. Thus, we must pass the operand register
numbers from the ID stage via the ID/ EX pipeline register to determine whether
to forward values. We already have the rt field (bits 20- 16). Before forwarding, the
ID/EX register had no need to include space to hold the rs field. Hence, rs (bits
25-2 1) is added to ID/EX.

Let's now write both the conditions for detecting hazards and the control sig
nals to resolve them:

I. E.X ha zard:

407

if ( EX/MEM.RegWrite
and ( EX/MEM . RegisterRd *
and ( EX/MEM . RegisterRd

if ( EX/MEM.RegWrite
and ( EX/MEM . RegisterRd *
and ( EX/MEM . RegisterRd

0)

ID/EX . RegisterRsll

0)

ID/EX . RegisterRtll

ForwardA

ForwardS

10

10
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CC g

- 20
X
X

cc a
-20
X
X

CC?

-20
X
X

CCG

- 20
X
X

CC,

10
- 20

X

CC 3

10
X
X

Time (in clock cycles) -----------------------_.

CC 1 CC 2

10 10
X X
X X

Value of register $2:
Value of EXIMEM:
Value of MEMlWB:

Program
execution
order
(in instruct ions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2 , $2

sw $15, 100($2)

-,
~

FIGURE 6.29 The dependences between the pipeline registers move forward In time, so It Is possible to supply the Inputs
to the ALU needed by the lind Instruction and or Instruction by forwarding the results found In the pipeline registers. The va l·
ues in the pipeline registers show that the desired value is available before it is written into the register file. We aSSlUlIe that the register file forwards
values that are read and written during the same clock cycle, so the ~ dd does not stall, but the values come from the register file instead of a pipeline
register. Register file ~forwarding"-that is, the read gets the value of the write in that clock cycle-is why clock cycle 5 shows register $ 2 having the
value 10 at the beginning and - 20 at the end of the clock cycle. As in the rest of this section, we handle aU forwarding except for the value to be stored
by a store instruction.

This case fo rwa rds the result from the previous instruction to either input of the
ALU. If the previous instruction is going to write to the register fil e and the write
register number matches the rea d register number of ALU inputs A or B, p rovided
it is not register 0, then steer the multiplexor to pick the value instead from the
pipeline register EX/MEM.
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b. With forwarding

FIGURE 6.30 On the top are the ALU and pipeline reg is t e rs be fore a dding forwarding. On the bottom, the multiplexors have b«n
expanded to add the forwarding p.1ths, and we show the forwarding unit. The new hardware is shown in color. This figure is a stylized drawing, how
ever, leaving out details from the full datapath such as the sign extension hardware. Note that the ID/EX.RegisterRt field is shown twice, once to con
nect to the mux and once to the forwarding unit, but it is a single signal. As in the earlier discussion, this ignores forwarding of a store value to a store
instruction.
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Mux control Source Explanation

ForwardA _ 00 IDj EX The first ALU operand comes from the register f ile.

ForwardA _ 10 EXjMEM The f irst ALU operand is forwarded f rom the prior ALU result .

ForwardA _ 0 1 MEMj WS The f irst ALU operand is forwarded from data memory or an earlier
ALU result .

ForwardS _ 00 IDj EX The second ALU operand comes from the register file .

ForwardS _ 10 EXjMEM The second ALU operand is forwarded from the prior ALU result .

ForwardS _ 0 1 MEMj WS The second ALU operand is forwarded from data memory or an
earlier ALU result.

FIGURE 6.31 The control values for the forwarding multiplexors In Figure 6.30. The signed
immediate that is another input to the ALU is described in the elaborat ion at the end of this sect ion.

2. MEM hazard:

ForwardB = 01

i f (M EM/WB . RegW r i t e
and (M EM/WB . Regis t e r Rd *
and (ME M/WB . Regis t e r Rd

i f (M EM/WB . RegW r i t e
and (M EM/WB . Regis t e r Rd *
and (ME M/WB . Regis t e r Rd

0)

ID/ EX. Regis t erRsll

0 )

ID / EX. Regis t erRt ll

ForwardA 01

As mentioned above, there is no haza rd in the WB stage because we assume
that the register fil e supplies the correct result if the instruction in the ID stage
reads the sa me register written by the instruction in the WB stage. Such a register
fil e perfo rm s another form of forwa rding, but it occurs within the register fil e.

One complication is potential data haza rds between the result of the instruc
tion in the WB stage, the result of the instruction in the MEM stage, and the
source operand of the instruction in the ALU stage. For exa mple, when summing
a vector of numbers in a single register, a sequence of instructions will all read and
write to the same register:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

In this case, the result is forwa rded from the MEM stage because the result in
the MEM stage is the more recent result. Thus the cont rol fo r the MEM haza rd
would be (with the additions highlighted)
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if (MEM/WB . RegWrite
and (MEM/WB . RegisterRd *
and ( EX/MEM . RegisterRd *
and (MEM/WB . RegisterRd

if (MEM/WB . RegWrite
and (MEM/WB . RegisterRd *
and ( EX/MEM . RegisterRd *
and (MEM/WB . RegisterRd

0)

IO/EX . RegisterRs)
IO/EX . RegisterRsll

0)

IO/EX . RegisterRt )
IO / EX . RegisterRtll

ForwardA 01
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Figure 6.32 shows the hardware necessary to suppo rt forward ing for operations
that use results during the EX stage.

IDlEX

j\ e- Wi EXlMEM
-

Wi~~ M MEMl'NB

IF/ID
- - _ c;,;;\J '- " M

- - -ן

M

I- - "0
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0 yIg I Registers ".ACO- memory - M,- M

Instruction 0 I- "" - - M e- 'memory
~ " ~,

IF/ID.R9gi618rRs •
IF/ID.R9gi618rAt I"-IF/ID.R9gi618rAt • M

EXlMEM.Rogio191Rd

IF/ID. .~

"- ~ , - '---
FOlWardlog MEMIWB.Rogist••Rd
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FIGURE 6.32 The datapath modifie d to resolve haza rds via forwa rding . Compared WIth the datapath m Figure 6.27 on page 404, the
additions are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however, leaving out details from the fuU datapath such
as the branch hardware and the sign extension hardware.
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Elaboration: Forwarding can also help with hazards when store instructions are
dependent on other instructions. Since they use just one data value during the MEM
stage, forwarding is easy. But consider loads immediately followed by stores . We need
to add more forwarding hardware to make memory-to-memory copies run faster. If we
were to redraw Figure 6 .29 on page 408, replacing the sub and and instructions by 1w
and an SW, we would see that it is possible to avoid a stall, since the data exists in the
MEMj WB register of a load instruction in time for its use in the MEM stage of a store
instruction . We would need to add forwarding into the memory access stage for this
option . We leave this modification as an exercise .

In addition, the signed-immediate input to the ALU, needed by loads and stores, is
missing from the datapath in Figure 6 .32 on page 411. Since central control decides
between register and immediate, and since the forwarding unit chooses the pipeline
register for a register input to the ALU, the easiest solution is to add a 2 :1 multiplexor
that chooses between the ForwardB multiplexor output and the signed immediate .
Figure 6 .33 shows this addition . Note that this solution differs from what we learned in
Chapter 5, where the multiplexor controlled by line ALUSrcB was expanded to include
the immediate input.

IDfEX EXfMEM MEMJVoIB
- ~ - e-

M
I- - ",

I'"Registers ~ AA,rc
~ ALUf-

I- M M ~

V D.~

" " memory M, ,
"- '~

-
I-

M -
" - '---- ,

Forwarding
un~

FIGURE 6.33 A close-up of the dat apath In Figure 6.30 on page 409 shows a 2:1 multi
plexor, which has been added t o select the signed Immediat e as an ALU Input.
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Data Hazards and Stalls

If at first yOIl don't succeed,
redefine sllccess.

Anonymous

As we sa id in Section 6.1 , one case where fo rwarding ca nnot save the day is when
an instruction tries to read a register following a load instruction that writes the
same register. Figure 6.34 illustrates the problem. The data is still being read from
memo ry in clock cycle 4 while the ALU is performing the operation for the fol
lowing instruction. Something must stall the pipeline for the combin ation of load
followed by an instruction that reads its result.

Hence, in addition to a forwa rding unit , we need a hazard detection unit. It
operates during the 10 stage so that it ca n insert the stall between the load and its
use. Checking for load instructions, the control for the haza rd detection unit is
this single condition:

if (ID/ EX. MemRe ad and
((lD/ EX. Regis t erR t = I FIID . Regis t e r Rs) or

(ID/ EX. Regis t erR t = I FIID . Regis t e r Rt )))
s t all the pipeline

The first line tests to see if the instruction is a load: the only instruction that rea ds
data memory is a load. The next two lines check to see if the destination register
field of the load in the EX stage matches either source register of the in struction in
the ID stage. If the condition holds, the in struction stalls I clock cycle. After this
I-cycle stall, the forwa rding logic ca n handle the dependence and execution pro 
ceeds. (I f there were no forwa rding, then the instructions in Figure 6.34 would
need another stall cycle.)

If the instruction in the 10 stage is stalled , then the instruction in the IF stage
must also be stalled; otherwise, we would lose the fetched instruction. Preventing
these two instructions from making progress is accomplished simply by prevent 
ing the PC register and the IF/ID pipeline register from changing. Provided these
registers are preserved, the instruction in the IF stage will continue to be rea d
using the sa me PC, and the registers in the 10 stage will continue to be read using
the same instruction fields in the IFIID pipeline register. Returning to our favorite
analogy, it 's as if you restart the washer with the same clothes and let the dryer
continue nlmbling empty. Of course, like the dryer, the back half of the pipeline
starting with the EX stage must be doing something; what it is doing is executing
instructions that have no effect: nops.

How ca n we insert these nops, which act like bubbles, into the pipeline? In
Figure 6.25 on page 401, we see that deasserting all nine cont rol signals (setting
them to 0) in the EX, MEM , and WB stages will create a "do nothing" o r nop
instruction. By identifying the haza rd in the 10 stage, we ca n insert a bubble into

nap An instruction that does
no operation to change state.
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cc,ccacc,cc ,cc scc,cc,
Time (in clock cycles) -------------------------_.

CC1 CC 2

Program
execution
order
(in instructions)

IW $2, 20($1)

a nd $4 , $2, $5

or $8, $2, $6

add $9, $4 , $2

s it $ 1, $6, $7

FIGURE 6.34 A plpellned sequence of Instructions. Since the dependence between the load and the following instruction (a nd) goes back·
wards in time, this hazard cannol be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit .

the pipeline by changing the EX, MEM , and \V B cont rol fields of the ID/ EX pipe
line register to O. These benign cont rol values are percolated fo rwa rd at each clock
cycle with the p roper effect: no registers or memories are written if the control
values are all o.

Figu re 6.35 shows what rea lly happens in the hardwa re: the pipeline execution
slot associa ted with the a nd instruction is turned into a nop and all instructions
beginning with the a nd instruction are delayed one cycle. The haza rd forces the
and and o r in structions to repeat in clock cycle 4 what they did in clock cycle 3:
and reads registers and decodes, and o r is refetched from instruction memory.
Such repeated work is what a stall looks like, but its effect is to stretch the time of
the and and o r instructions and delay the fetch of the add instruction. Like an air
bubble in a water pipe, a stall bubble delays everything behind it and proceeds
down the instruction pipe one stage each cycle until it exits at the end.

Figure 6.36 highlights the pipeline connections for both the haza rd detection
unit and the forwarding unit. As befo re, the forwarding unit cont rols the ALU
multiplexo rs to replace the value from a general-purpose register with the value
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CC 10CC gccaCC,CCSCC 5cc,
Time (in clock cycles)-------------------------~••

CC 1 CC 2 CC3

Program
execution
order
(in instructions)

Iw $2, 20($1)

a nd becomes nop

add $4, $2, $5

or $8, $2, $6

add $9, $4 , $2

bubble

@

FtGURE 6.35 The way stalls are really Inserted Into the pipeline. A bubble is inserted beginning in dock cycle 4, by changing the and
instruction to a nop. Note that the and instruction is really fetched and decooed in dock cycles 2 and 3, but its EX stage is delayed unt il clock cycle 5
(versus the wlstaUed position in clock cycle 4) . Likewise the 0 r instruction is fetched in clock cycle 3, but its IF stage is delayed unt il dock cyde 5 (ver
sus the unstaUed dock cycle 4 posit ion) . After insert ion of the bubble, all the dependences go forward in t ime and no further hazards occur.

from the proper pipeline register. The haza rd detection unit controls the writing
of the PC and lFIl D registers plus the multiplexor that chooses between the rea l
cont rol values and all Os. The haza rd detection unit stalls and deasserts the cont rol
fields if the load-use haza rd test above is true. We show the single- clack-cycle dia
grams in the II For Mo re Practice section on the CD.

Although the hardware mayor may not rely on the compiler to resolve
haza rd dependences to ensure correct execution, the compi ler must
understand the pipeline to achieve the best performance. Otherwise,
unexpected stalls will reduce the performance of the compiled code.

The BIG
Picture
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HIZ.rd 1 IllIEX.MemRood
de1eC1lon
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FIGURE 6.36 Plpellned control overview, showi ng the two multiplexors f or f orwarding, the hazard det ection unit, and the
f orwarding unit. Although the ID and EX stages have been simplified- the sign-extended immediate and branch logic are missing----this drawing
gives the essence of the forwarding hardware requirements.

Elaboration: Regarding the remark earlier about setting control lines to °to avoid
writing registers or memory: only the signals RegWrite and MemWrite need be 0, while
the other control signals can be don't cares .

There are a thol/sand hack
ing at the branches ofevil to
one who is striking Ilt

the root.

Henry David Thoreau,
Walden, 1854

Branch Hazards

Thus far we have limited our concern to hazards involving arithmetic operations
and data transfers. But as we saw in Section 6. 1, there are also pipeline hazards
involving branches. Figure 6.37 shows a sequence of instructions and indicates
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CC'CC BCC,CC 'CC SCC'CC'CC 2
Time (in clock cycles) ----------------------------_.

CC 1

Program
execution
order
(in instructions)

40 beq $1, $3 , 28

44 a nd $12 , $2, $5

48 o r$13,$6,$2

52 a dd $14, $2, $2

72 Iw $4, 50($7)

-,
",

-,
9,

FIGURE 6.37 The Impact of the pipeline on the branch Instruction. The numbers to the left of the instruction (40, 44, ... ) are the
addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage----clock cycle 4 for the beq instruction
above----the three sequential instructions that follow the branch will be fetched and begin execution. Without intervemion, those three following
instructions will begin execution before beq branches to 1wat location 72. (Figure 6.7 on p.1ge 380 assumed extra hardware to reduce the cont rol haz·
ard to 1 clock cycle; this figure uses the nonoptimized datap.1th.)

when the branch would occur in this pipeline. An instruction must be fetched at
every clock cycle to sustain the pipeline, yet in our design the decision about
whether to branch doesn't occur until the MEM pipeline stage. As mentioned in
Section 6.1 , this delay in determining the proper in struction to fetch is called a
control hazard or branch hazard, in contrast to the data hazards we have just
examined.

This section on cont rol haza rds is shorter than the previous sections on data
haza rds. The reasons are th at control haza rds are relatively simple to understand ,
they occur less frequently than data haza rds, and there is nothing as effective
against cont rol hazards as fo rwarding is for data ha za rds. Hence, we use simpler
schemes. We look at two schemes fo r resolving cont rol haza rds and one optimiza
tion to imp rove these schemes.
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flush (instructions) To dis
card instructions in a pipeline,
usually due to an unexpected
event.
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Assume Branch Not Taken

As we saw in Section 6.1 , stalling until the branch is complete is too slow. A com 
mon imp rovement over branch stalling is to assume that the branch will not be
taken and thus continue execution down the sequent ial instruction stream . If the
branch is taken, the instructions that are being fetched and decoded must be dis
ca rded. Execution continues at the branch target. If branches are untaken half the
time, and if it costs little to disca rd the instructions, this optimization halves the
cost of cont rol haza rds.

To disca rd instructions, we merely change the original control values to Os,
much as we did to stall for a loa d-use data haza rd. The difference is that we must
also change the three instructions in the IF, 10, and EX stages when the branch
reaches the MEM stage; fo r load-use stalls, we just changed cont rol to 0 in the 10
stage and let them percolate th rough the pipeline. Disca rding instructions, then ,
means we must be able to flush instructions in the IF, 10, and EX stages of the
pipeline.

Reducing the Delay of Branches

One way to imp rove branch performance is to reduce the cost of the taken branch.
Thus far we have assumed the next PC for a branch is selected in the MEM stage,
but if we move the branch execution ea rlier in the pipeline, then fewer in struc
tions need be flushed. The M IPS architecture was designed to support fast single
cycle branches that could be pipelined with a small branch penalty. The designers
observed that many branches rely only on simple tests (equality or sign , fo r exa m 
pie) and that such tests do not require a full ALU operation but ca n be done with
at most a few ga tes. When a more complex branch decision is required, a sepa rate
instruction that uses an ALU to perfo rm a comparison is required-a situation
that is similar to the use of condition codes for branches.

Moving the branch decision up requires two actions to occur ea rlier: comput 
ing the branch target address and eva luating the branch decision. The easy part of
this change is to move up the branch address ca lculation. We already have the PC
value and the immediate fi eld in the IFIl O pipeline register, so we just move the
branch adder from the EX stage to the 10 stage; of course, the branch target
address calculation will be performed for all instructions, but only used when
needed.

The harder part is the branch decision itself. For branch equal, we would com 
pare the two registers read during the 10 stage to see if they are equal. Equality can
be tested by first exclusive DRing their respective bits and then DRing all the
results. Moving the branch test to the 1D stage implies additional fo rwa rding and
haza rd detection hardwa re, since a branch dependent on a result still in the pipe
line must still work properly with this optimization. For example, to implement
branch-on-equal (and its inverse), we will need to forwa rd results to the equality
test logic that operates during 10. There are two complicating factors:
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I. During 10, we must decode the instruction , decide whether a bypass to the
equality unit is needed, and complete the equality comparison so that if the
instruction is a branch, we can set the PC to the branch target address. For
warding for the operands of branches was formerly handled by the ALU
forwa rding logic, but the int roduction of the equality test unit in ID wiII
require new fo rwa rding logic. Note that the bypassed source operands of a
branch ca n come from either the ALU/MEM or MEM/WB pipeline latches.

2. Because the va lues in a branch comparison are needed during 10 but may
be produced later in time, it is possible that a data haza rd ca n occur and a
stall will be needed. For example, if an ALU instruction immediately pre
ceding a branch produces one of the operands fo r the comparison in the
branch, a stall will be required, sin ce the EX stage for the ALU instruction
will occur after the ID cycle of the branch.

Despite these difficulties, moving the branch execution to the 10 stage is an
improvement since it reduces the penalty of a branch to only one instruction if the
branch is taken, namely, the one currently being fetched. The exercises explo re the
details of implementing the fo rwa rding path and detecting the haza rd.

To flush instructions in the IF stage, we add a cont rol line, ca lled IEFlush, that
zeros the instruction field of the IFIID pipeline register. Clearing the register
transforms the fetched instruction into a nop, an instruction that has no action
and changes no state.

Pipelined Branch

Show what happens when the branch is taken in this instruction sequence,
assuming the pipeline is optimized for branches th at are not taken and that
we moved the branch execution to the 10 stage:

36 sub $la , $4, $8
40 beq $1 , $3 , 7 # PC - relative branch t o 40 + 4
+ 7 *4 = 72
44 and $12 , $2 , $5
48 or $13 , $2 , $6
52 add $1 4, $4, $2
56 slt $15 , $6 , $7

72 l w 14. 50(171

Figure 6.38 shows what happens when a branch is taken. Unlike Figure 6.37,
there is only one pipeline bubble on a taken branch.

EXAMPLE

ANSWER

419
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on<! f 12, $2, $5

---

,
"•

,,

'''''

b<>q $l , $:l,7

--
,
"•

FIGURE 6.38 The ID stage of clock cycle 3 determines that a branch must be taken, so It selects 72 as the next PC address
and zeros the Instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction allocation 72 being fetched and the single
bubble or nap instruction in the pipeline as a result oflhe taken branch. (Since the nap is really s 11 $0, SO, 0, it's arguable whether or not the ID
stage in clock 4 should be highlighted. )
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Dynamic Branch Prediction

Assuming a branch is not taken is one simple form of branch prediction. In that
case, we predict that branches are untaken, flushing the pipeline when we are
wrong. For the simple five-stage pipeline, such an approach, possibly coupled with
compiler-based prediction, is probably adequate. With deeper pipelines, the
branch penalty increases when measured in clock cycles. Similarly, with multiple
issue, the branch penalty in creases in terms of instructions lost. This combination
mea ns that in an aggressive pipeline, a simple static prediction scheme will proba
bly waste too much performance. As we mentioned in Section 6.1 , with more hard
wa re it is possible to try to predict branch behavior during program execution.

One app roach is to look up the address of the instruction to see if a branch was
taken the last time this instruction was executed, and , if so, to begin fetching new
instructions from the sa me place as the last time. This technique is called dynamic
branch prediction.

One implementation of that approach is a branch prediction buffer or branch
history table. A branch prediction buffer is a small memory indexed by the lower
portion of the address of the branch instruction. The memory contains a bit that
says whether the branch was recently taken or not.

This is the simplest so rt of buffer; we don't kn ow, in fact, if the prediction is the
right one-it may have been put there by another branch th at has the sa me low
order address bits. But this doesn't affect correctness. Prediction is just a hint that
is assumed to be co rrect, so fetching begins in the predicted direction. If the hint
turns out to be wrong, the inco rrectly predicted instructions are deleted, the pre
diction bit is inverted and stored back, and the proper sequence is fetched and
executed.

This simple I-bit prediction scheme has a performance shortcoming: even if a
branch is almost always taken, we will likely predict incorrectly twice, rather than
once, when it is not taken. The following example shows this dilemma.

Loops and Prediction

Consider a loop branch that branches nine times in a row, then is not taken
once. What is the prediction accuracy fo r this branch, assuming the predic
tion bit for this branch remains in the prediction buffer?

421

dynamic branch
prediction Prediction of
branches at runtime using run
time information.

branch prediction buffer
Also called branch history
table. A small memory that is
indexed by the lower portion of
the address of the branch
instruction and that contains
one or more bits indicating
whether the branch was recently
taken or not.

EXAMPLE
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ANSWER
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The steady-state prediction behavior will mispred ict on the first and last loop
iterations. Mispredicting the last itera tion is inevitable since the prediction
bit will say taken: the branch ha s been taken nine times in a row at that point.
The mispred iction on the first iteration happens because the bit is flipped on
prior execution of the last iteration of the loop, since the branch was not tak
en on that exiting itera tion. Thus, the prediction accuracy for this branch that
is taken 90% of the time is only 80% (two in correct predictions and eight
correct ones).

Idea lly, the accuracy of the predictor would match the taken branch frequency
for these highly regular branches. To remedy this weakness, 2-bit prediction
schemes are often used. In a 2-bit scheme, a prediction must be wrong twice
before it is changed. Figure 6.39 shows the finit e state ma chine for a 2-bit predic
tion scheme.

A branch prediction buffer can be implemented as a small, special buffer
accessed with the instruction address during the IF pipe stage. If the instruction is
predicted as taken, fetching begins from the target as soon as the PC is known; as
mentioned on page 418, it ca n be as ea rly as the 10 stage. Otherwise, sequential

Taken

T,keo1

Not taken

Taken

Prwdict taken

Not taken

Not taken

Taken

FIGURE 6.39 The states In a 2-b1t prediction scheme. By using 2 bits rather than l,a branch that
strongly favors taken or not taken-as many branches do---will be mispredicted only once. The 2 bits are
U'ied to encode the four states in the system. The two-bit scheme is a general instance of a counter-based
predictor, which is incremented when the prediction is accurate and decremented otherwise, and U'ies the
midpoint of its range as the division between taken and not taken.
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fetching and executing continue. If the prediction turns out to be wrong, the pre
diction bits are changed as shown in Figure 6.39.

Elaboration: As we described in Section 6 .1, in a five-stage pipeline we can make
the control hazard a feature by redefining the branch . A delayed branch always executes
the following instruction, but the second instruction following the branch will be
affected by the branch .

Compilers and assemblers try to place an instruction that always executes after the
branch in the branch delay slot. The job of the software is to make the successor
instructions valid and useful. Figure 6.40 shows the three ways in which the branch
delay slot can be scheduled .

The limitations on delayed-branch scheduling arise from (1) the restrictions on the
instructions that are scheduled into the delay slots and (2) our ability to predict at com
pile time whether a branch is likely to be taken or not.

Delayed branching was a simple and effective solution for a five-stage pipeline issu
ing one instruction each clock cycle . As processors go to both longer pipelines and
issuing multiple instructions per clock cycle (see Section 6 .9), the branch delay
becomes longer and a single delay slot is insufficient. Hence, delayed branching has
lost popularity compared to more expensive but more flexible dynamic approaches.
Simultaneously, the growth in available transistors per chip has made dynamic predic
tion relatively cheaper.

Elaboration: A branch predictor tells us whether or not a branch is taken , but still
requires the calculation of the branch target. In the five-stage pipeline, this calculation
takes 1 cycle, meaning that taken branches will have a 1-cycle penalty. Delayed
branches are one approach to eliminate that penalty. Another approach is to use a
cache to hold the destination program counter or destination instruction, using a
branch target buffer.

Elaboration: The 2-bit dynamic prediction scheme uses only information about a par
ticular branch . Researchers noticed that using information about both a local branch
and the global behavior of recently executed branches together yields greater prediction
accuracy for the same number of prediction bits. Such predictors are called correlating
predictors. A typical correlating predictor might have two 2-bit predictors for each
branch with the choice between predictors made on the basis of whether the last exe
cuted branch was taken or not taken . Thus. the global branch behavior can be thought
of as adding additional index bits for the prediction lookup.

A more recent innovation in branch prediction is the use of tournament predictors . A
tournament pred ictor uses multiple predictors, tracking, for each branch, which predic
tor yields the best results. A typical tournament predictor might contain two predictions
for each branch index : one based on local information and one based on global branch
behavior. A selector would choose which predictor to use for any given prediction . The
selector can operate similarly to a 1- or 2-bit predictor favoring whichever of the two pre
dictors has been more accurate. Many recent advanced microprocessors make use of
such elaborate predictors .
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bram:h delay slo t The slot
directly after a delayed branch
instruction, which in the MIPS
architecture is filled by an
instruction that does not affect
the branch.

bram:h target buffer A struc
ture that caches the destination
PC or destination instruction
for a branch. It is usually orga
nized as a cache with tags, mak
ing it more costly than a simple
prediction buffer.

correlating predktor A
branch predictor that combines
local behavior of a particular
branch and global information
about the behavior of some
recent number of executed
branches.

tournament brandl
pred ictor A branch predictor
with multiple predictions for
each branch and a selection
mechanism that chooses which
predictor to enable for a given
branch.
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a From before b From target c From fall through

add $s1, $s2, $s3 sub $t4 , $t5, $16_ add $sl , $s2, $s3

if $s2 '" 0 then if $s1 '" 0 then...

I Delay slot I add $s l , $s2, $s3 I Delay slot I
if$sl ",0 then -

I Delay slot I sub $t4, $t5, $t6 ___

Becomes Becomes Becomes

add $s l , $s2, $s3

if $s2 ",Othen - if$sl ",Othen -

Iadd $sl, $s2, Ss3 1
add $s l , $s2, $s3 I sub $t4, $t5, $t6 I
if$sl ",0 then -

I sub $t4, $t5, $t6 I
FIGURE 6.40 Scheduling the branch delay slot. The top box In each paIr shows the cooe before
scheduling; the bottom box shows the scheduled code. In (a), the delay slot is scheduled with an indepen
dem instruction from before the branch. This is the best choice. Strategies (b) and (c ) are used when (a) is
not possible. In the code sequences for (b) and (c), the use of S51 in the branch condition prevents the add
instruction (whose destination is Ss 1) from being moved imo the branch delay slot. In (b) the branch
delay slot is scheduled from the target of the branch; usually the target instruction will need to be copied
because it can be reached by another path. Strategy (b) is preferred when the branch is taken with high
probability, such as a loop branch. Finally, the branch may be scheduled from the not-taken fall-through as
in (c).To make this optimiwtion legal for (b) or (c), it mllSt be OK to execute the 5ub instruction when the
branch goes in the wlexpected direction. By "OK" we mean that the work is wasted, but the program will
still execute correctly. This is the case, for eL1mple, if St4 were an unused temporary register when the
branch goes in the unexpected direction.

Pipeline Summary

Thus far, we have seen th ree models of execution: single cycle, multicycle, and
pipelined. Pipelined control strives for 1 clock cycle per in st ruction, like single
cycle, but also for a fast clock cycle, like multicycle. Let's revisit the exa mple com
parison of single-cycle and multicycle processors.
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Comparing Performance of Several Control Schemes

Compare performance for single-cycle, multicycle, and pipelined control
using the SPECint2000 instruction mix (see exa mples on pages 315 and 330)
and assuming the sa me cycle times per unit as the exa mple on page 315. For
pipelined execution, assume that half of the load instructions are immed i
ately followed by an instruction that uses the result, that the branch delay on
misprediction is 1 clock cycle, and that one-quarter of the branches are
mispredicted. Assume that jumps always pay 1 full clock cycle of delay, so
their average time is 2 clock cycles. Ignore any other hazards.

From the example on page 315 (Performance of Single-Cycle Machines), we
get the following functional unit times:

• 200 ps for memory access

• 100 ps for ALU operation

• 50 ps for register file read or write

For the single-cycle datapath, this leads to a clock cycle of

200+50+ 100+200+50 = 600ps

The exa mple on page 330 (CPI in a Multicycle CPU) has the following in 
struction frequencies:

• 25% loads

• 10% stores

• 11 % branches

• 2% jumps

• 52% ALU instructions

Furthermore, the exa mple on page 330 showed that the CPI for the multiple
design was 4.1 2. The clock cycle for the multicycle datapath and the pipelined
design must be the same as the longest functional unit: 200 ps.

For the pipelined design, loads take 1 clock cycle when there is no load-use
dependence and 2 when there is. Hence, the average clock cycles per load in 
struction is 1.5. Stores take 1clock cycle, as do the ALU instructions. Branches
take 1when predicted correctly and 2 when not, so the average clock cycles per
branch instruction is 1.25. The jump CPI is 2. Hence the average CPI is

1.5 X 25% + 1 X 10%+ 1 x52 % + 1.25 X 11 '/0 +2x2% = 1.1 7

EXAMPLE

ANSWER
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Let's compare the th ree designs by the average instruction time. For the sin 
gle-cycle design , it is fixed at 600 ps. For the lTIulticycle design , it is 200 x
4.1 2 = 824 ps. For the pipelined design , the average instruction time is 1.1 7 x
200 = 234 ps, m aking it almost twice as fast as either approach.

The clever reader will notice that the long cycle time of the memory is a per
formance bottleneck for both the pipelined and lTIulticycle designs. Breaking
memo ry accesses into two clock cycles and thereby allowing the clock cycle to
be 100 ps would improve the performance in both cases. We explore this in the
exercises.

This chapter started in the laundry room , showing principles of pipelining in
an everyday setting. Using that analogy as a guide, we explained instruction pipe
lining step -by-step, starting with the single-cycle data path and then adding pipe
line registers, forwa rding path s, data haza rd detection, branch prediction, and
flushing instructions on exceptions. Figure 6.41 shows the final evolved datapath
and control.

Consider three branch prediction schemes: branch not taken , predict taken , and
dynamic prediction. Assume that they all have zero penalty when they predict cor
rectly and 2 cycles when they are wrong. Assume that the average predict accuracy
of the dyn amic predictor is 90%. Which predictor is the best choice for the follow
ing branches?

1. A branch that is taken with 5% frequency

2. A branch th at is taken with 95% frequency

3. A branch that is taken with 70% frequency

Using a Hardware Description Language to
Describe and Model a Pipeline

This section , which appears on the CD, provides a behaviora l model in Verilog of
the MIPS five-stage pipeline. The initial model igno res haza rds, and additions to
the model highlight the changes fo r fo rwa rding, data haza rd s, and branch haz
ards.
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FtGURE 6.41 The final dat apath and eontro l for this ehapter.

Exceptions

Another fo rm of cont rol hazard involves exceptions. Fo r example, suppose the
following instruction

add $1,$2 , $1

has an arithmetic overflow. We need to transfer cont rol to the exception routine
immediately after this instruction because we wouldn't wa nt this invalid value to
contaminate other registers o r memo ry locations.

Just as we did for the taken branch in the previous section, we must flush the
instructions that follow the add instruction from the pipeline and begin fetching
instructions from the new address. We will use the sa me mechanism we used for
taken branches, but this time the exception causes the deasserting of cont rol lines.

\-¥hen we dea lt with branch mispredict , we saw how to flush the instruction in
the IF stage by turning it into a nop. To flush instructions in the 10 stage, we use
the multiplexo r already in the 10 stage that zeros control signals for stalls. A new

To make a computer with
automatic program-inter
ruption facilities behave
{sequentially} was not an
easy matter, because the
number of instructions in
various stages ofprocessing
when an interrupt signal
occurs may be large.

Fred Brooks Jr., Plmming a
Computer System:
Project Stretch, 1962
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control signal, ca lled ID.Flush, is ORed with the stall signal from the Hazard
Detection Unit to flush during ID. To flush the instruction in the EX phase, we use
a new signal called EX. Flush to ca use new multiplexors to zero the control lines.
To start fetching instructions from location 8000 0180hex, which is the exception
location for an arithmetic overflow, we simply add an additional input to the PC
multiplexor that sends 8000 0180hex to the Pc. Figure 6.42 shows these changes.

This exa mple points out a problem with exceptions: If we do not stop execu
tion in the middle of the instruction, the programmer will not be able to see the
original va lue of register $1 that helped cause the overflow because it will be clob
bered as the destination register of the add instruction. Because of careful plan
ning, the overflow exception is detected during the EX stage; hence, we ca n use the
EX. Flush signa l to prevent the instruction in the EX stage from writing its result in
the WB stage. Many exceptions require that we evennlally complete the in struc
tion that caused the exception as if it executed normally. The easiest way to do this
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FIGURE 6.42 The datapath with controls to handle exceptions. The key additions mclude a new mput, with the value 8<XXl 0180bu, In

the multiplexor that supplies the new PC value; a Cause register to record the cause of the exception; and an Exception PC register to s.we the address
of the instruction that caused the exception. The 8000 018Ot..x input to the multiplexor is the initial address to begin fetching instructions in the event
of an exception. Although not shown, the ALU overflow signal is an input to the control unit.
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is to flush the in struction and restart it from the beginning after the exception is
handled.

The final step is to save the address of the offending instruction in the Excep 
tion Program Counter (EPC), as we did in Chapter 5. In rea lity, we save the
address + 4, so the exception handling routine must first subtract 4 from the saved
value. Figure 6.42 shows a stylized version of the datapath , including the branch
hardwa re and necessa ry accommodations to handle exceptions.

Exception in a Pipelined Computer

Given this instruction sequence,

4 0h.. sub III . 12 . 14
44h.. and 112 . 12 . IS
48h.. or 113 . 12 . 16
4 Ch.. add II . 12 . $I

50h.. sIt liS . 16 . $7
54h.. l w 116 . 50($7)

assume the instructions to be invoked on an exception begin like this:

EXAMPLE

429

4 0000040 h..

4 000004 4h..

sw
sw

125 . 1000( 10)
126 . 1004( 10)

Show what happens in the pipeline if an overflow exception occurs in the add
instruction.

Figure 6.43 shows the events, starting with the add instruction in the EX
stage. The overflow is detected during that phase, and 4000 0040hex is forced
into the Pc. Clock cycle 7 shows that the add and following instructions are
flushed, and the first instruction of the exception code is fetched. Note that
the address of the instruction followillg the add is saved: 4Chex + 4 = SOhex.

Chapter 5 lists some other causes of exceptions:

• I/O device request

• Invoking an operating system service from a user program

• Using an undefined instruction

• Hardwa re malfunction

ANSWER
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FIGURE 6.43 The result of an exception due to arithmetic overflow In the add Instruction. The overflow is detected during the EX
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With five instructions active in any clock cycle, the challenge is to associate an
exception with the appropriate instruction. Moreover, multiple exceptions can
occur simultaneously in a single clock cycle. The normal solution is to prioritize
the exceptions so that it is easy to determine which is serviced first ; this strategy
works for pipelined processors as well. In most MIPS implementations, the hard 
ware sorts exceptions so that the ea rliest instruction is interrupted.

I/O device requests and hardware malfunctions are not associated with a spe
cific instruction , so the implementation has some flexibility as to when to inter
rupt the pipeline. Hence, using the mechanism used for other exceptions works
just fine.

The EPC captures the address of the interrupted instructions, and the MIPS
Cause register records all possible exceptions in a clock cycle, so the exception
software must match the exception to the instruction. An important clue is know
ing in which pipeline stage a type of exception ca n occur. For exa mple, an unde
fined instruction is discovered in the 10 stage, and invoking the operating system
occurs in the EX stage. Exceptions are collected in the Cause register so that the
hardware can interrupt based on later exceptions, once the ea rliest one has been
serviced.

The hardware and the operating system must work in conjunction so that excep
tions behave as you would expect. The hardware contra ct is normally to stop the
offending instruction in midstrea m, let all prior instructions complete, flush all
following instructions, set a register to show the cause of the exception , save the
address of the offending instruction , and then jump to a prearranged address. The
operating system contra ct is to look at the ca use of the exception and act appro
priately. For an undefined instruction , hardwa re failure, or arithmetic overflow
exception , the operating system normally kills the program and returns an indica
tor of the reason. For an I/O device request or an operating system service ca ll, the
operating system saves the state of the program, performs the desired task, and, at
some point in the future, restores the program to continue execution. In the case
of I/O device requests, we may often choose to run another task before resuming
the task that requested the I/O, since that ta sk may often not be able to proceed
until the I/O is complete. This is why the ability to save and restore the state of any
task is critica l. One of the most important and frequent uses of exceptions is han 
dling page faults and TLB exceptions; Chapter 7 describes these exceptions and
their handling in mo re detail.

Hardware
Software
Interface
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imprecise interrupt Also
called imprecise exception.
Interrupts or exceptions in pipe
lined computers that are not
associated with the exact
instruction that was the cause of
the interrupt or exception.

precise interrupt Also called
precise exception. An interrupt
or exception that is alway asso
ciated with the correct instruc
tion in pipelined computers.

Check
Yourself
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The difficulty of always aSSOcl3tmg the correct exception with the correct
instruction in pipelined computers has led some computer designers to relax this
requirement in noncritical cases. Such processors are sa id to have imprecise
interrupts or imprecise exceptions. In the exa mple above, PC would normally
have 58hex at the start of the clock cycle after the exception is detected, even
though the offending instruction is at address 4Cht>x' A processor with imprecise
exceptions might put 58ht'X into EPC and leave it up to the operating system to
determine which instruction caused the problem. MIPS and the vast majority of
computers today support precise interrupts or precise exceptions. (One reason is
to support virtual memory, which we shall see in Chapter 7.)

The MIPS designers wa nted the integer multiply and divide instructions to oper
ate in parallel with other integer instructions. Since multiply and divide take mul
tiple clock cycles, a group of students is arguing over whether it is possible to
implement precise exceptions. \Vhich of the following arguments are completely
accurate?

I. It is impossible to implement precise exceptions, since a multiply or divide
ca n raise an exception after instructions that follow it.

2. It is trivia l to implement precise exceptions since multiply and divide can
not raise an exception once they start, and so the timing of all exceptions is
obviously precise.

3. It does not matter whether multiply or divide can raise an exception. The
fact that they could still be executing and not completed when some other
in struction raised an exception makes it impossible to implement precise
exceptions.

4. Although it is true that a multiply or divide could still be executing, it is
guaranteed to complete shortly, and when it does, any exception raised for
an instruction following a multiply or divide will then be precise.

Advanced Pipelining: Extracting More
Performance

Be forewarned that Sections 6.9 and 6.10 are brief overviews of fascinating but
advanced topics. If you wa nt to learn more details, you should consult our more



6.9 Advanced Plpellnlng: Extracting More Performance

adva nced book, Computer Architecture: A Quantitative Approach, third edition ,
where the material covered in the next 18 pages is expanded to over 200 pages!

Pipelining exploits the potential parallelism among instructions. This parallel
ism is called instruction-level parallelism (I LP). There are two primary methods
for increasing the potential amount of instruction -level parallelism. The first is
increasing the depth of the pipeline to overlap mo re instructions. Using our laun 
dry analogy and assuming that the washer cycle were longer than the others, we
could divide our washer into three machines that perform the wash , rinse, and
spin steps of a traditional washer. We would then move from a four-stage to a six
stage pipeline. To get the full speedup, we need to rebalance the rem aining steps so
they are the sa me length , in p rocessors or in laundry. The am ount of parallelism
being exploited is higher, since there are more operations being overlapped. Per
formance is potentially greater since the clock cycle can be shorter.

Another app roach is to replicate the internal components of the computer so
that it ca n launch multiple instructions in every pipeline stage. The general name
for this technique is multiple issue. A multiple- issue laundry would replace our
household washer and dryer with , say, three washers and three dryers. You would
also have to recruit mo re assistants to fold and put away three times as much laun 
dry in the same amount of time. The downside is the extra work to keep all the
machines busy and transferring the loads to the next pipeline stage.

Laun ching multiple in structions per stage allows the instruction execution rate
to exceed the clock rate or, stated alternatively, for the e PI to be less than 1. It is
sometimes useful to flip the metric, and use IPC, or instructions per clock cycle,
particularly as values become less than I! Hence, a 6 GHz four-way multiple- issue
microprocesso r can execute a pea k rate of 24 billion instructions per second and
have a best case e PI of 0.25, or IPe of 4. Assuming a fi ve-stage pipeline, such a
processo r would have 20 instructions in execution at any given time. Today's high 
end microprocessors attempt to issue from three to eight in structions in every
clock cycle. There are typica lly, however, many constraints on what types of
instructions may be executed simultaneously and what happens when depen
dences arise.

There are two majo r ways to implement a multiple-issue processor, with the
major difference being the division of work between the compiler and the hard 
wa reoBecause the division of work dictates whether decisions are being made stat 
ically (that is, at compile time) or dynamica lly (that is, during execution), the
approaches are sometimes called static multiple issue and dynamic multiple
issue. As we will see, both approaches have other, more commonly used names,
which may be less precise or more restrictive.
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instruction-level
parallelism The parallelism
among instructions.

multiple issue A scheme
whereby multiple instructions
are launched in 1 clock cycle.

static multiple issue An
approach to implementing a
multiple-issue processor where
many decisions are made by the
compiler before execution.

dynamic multiple issue An
approach to implementing a
multiple-issue processor where
many decisions are made during
execution by the processor.
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issue slo ts The positions fro m
which instructions could issue
in a given clock cycle; by analogy
these correspond to positions at
the starting blocks for a sprint.

sp eculation An approach
whereby the compiler or proces
sor guesses the outcome of an
instruction to remove it as a
dependence in executing other
instructions.
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There are two primary and distinct responsibilities that must be dea lt with in a
multiple- issue pipeline:

I. Packaging instructions into issue slots: How does the processo r determine
how many instructions and which instructions ca n be issued in a given
clock cycle? In most static issue p rocessors, this process is at least pa rtially
handled by the compiler; in dynamic issue designs, it is normally dea lt with
at runtime by the processor, although the compiler will oft en have alrea dy
tried to help improve the issue rate by placing the instructions in a benefi 
cial order.

2. Dealing with data and control haza rds: In static issue p rocessors, some or
all of the consequences of data and control haza rds are handled statica lly by
the compiler. In contrast, most dynamic issue processors attempt to allevi
ate at least some classes of haza rds using hardwa re techniques operating at
execution time.

Although we describe these as distinct approaches, in reality techniques from one
approach are often borrowed by the other, and neither approach ca n cla im to be
perfectly pu re.

The Concept of Speculation

One of the most impo rtant meth ods for finding and exploiting mo re ILP is specu
lation. Speculatio n is an approach that allows the compiler or the processor to
"guess" about the p roperties of an instruction, so as to enable execution to begin
for other instructions that may depend on the speculated in struction. For exa m
ple, we might speculate on the outcome of a branch, so that in struct ions aft er the
branch could be executed earlier. Or, we might speculate that a store that precedes
a load does not refer to the sa me address, which would allow the load to be exe
cuted befo re the store. The difficulty with speculation is that it may be wrong. So,
any speculation mechanism must include both a method to check if the guess was
right and a method to unroll or back out the effects of the in structions that were
executed speculatively. The implementation of this back-out capability adds com 
plexity to any p rocesso r supporting speculation.

Speculation may be done in the com piler or by the hardwa re. For example, the
compiler can use speculation to reorder instructions, m oving an instruction
across a branch or a load across a sto re. The processo r hardwa re ca n perform the
sa me transformation at runtime using techniques we discuss later in this section.

The recovery mechanisms used for inco rrect speculation are rather different. In
the case of speculation in so ftwa re, the compiler usually inserts additional in struc
tions that check the accuracy of the speculation and p rovide a fi x- up routine to
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use when the speculation was in correct. In hardwa re speculation , the processo r
usually buffers the speculative results until it knows they are no longer speculative.
If the speculation was co rrect, the instructions are completed by allowing the con
tents of the buffers to be written to the registers or memory. If the speculation was
incorrect, the hardwa re flushes the buffers and reexecutes the correct instruction
sequence.

Speculation int roduces one other possible problem: speculating on certain
instructions m ay introduce exceptions that were formerly not present. For exam
ple, suppose a load instruction is moved in a speculative manner, but the address
it uses is not lega l when the speculation is inco rrect. The result would be th at an
exception th at should not have occurred will occur. The problem is complica ted
by the fact that if the load instruct ion were not speculative, then the exception
must occur! In compiler-based speculation, such problems are avoided by adding
special speculation support that allows such exceptions to be ignored until it is
clea r that they rea lly should occur. In hardware-based speculation , exceptions are
simply buffered until it is clear that the instruction causing them is no longer
speculative and is ready to complete; at that point the exception is raised , and nor
mal exception handling proceeds.

Since speculation can improve performance when done properly and decrease
performance when done ca relessly, significa nt effo rt goes into deciding when it is
appropriate to speculate. Later in this section, we will examine both stat ic and
dynamic techniques for speculation.

Static Multiple Issue

Static multiple- issue processo rs all use the compiler to assist with packaging
instructions and handling haza rds. In a static issue processor, you ca n think of the
set of instructions that issue in a given clock cycle, which is called an issue packet,
as one large instruction with multiple operations. This view is more than an anal
ogy. Since a static multiple-issue processo r usually restricts what mix of instruc
tions can be initiated in a given clock cycle, it is useful to think of the issue packet
as a single instruction allowing several operations in certain predefined fields.
This view led to the original name for this approach: Very Long Instruction Word
(VLI W) . The Intel IA-64 architecture uses this app roach, which it calls by its own
name: Explicitly Parallel In struction Computer (EPI C) . The Itanium and Itanium
2 processors, ava ilable in 2000 and 2002, respectively, are the first implementa
tions of the IA-64 architecture.

Most static issue processo rs also rely on the compiler to take on some respon
sibility for handling data and cont rol haza rds. The compiler's responsibilities
may include static branch prediction and code scheduling to reduce o r prevent
all haza rd s.
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issue packet The set of instruc
tions that issues together in 1
clock cycle; the packet may be
determined statically by the
compiler or dynamically by the
processor.
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Let's look at :1 simple static issue version of :I MIPS processor, before we
describe the use of these techniques in more aggressive processors. After using this
simple exa mple to review the comments, we discuss the highlights of the Intel IA
64 architecture.

An Example: Static Multiple Issue with the MIPS ISA

To give:1 flavor of static multiple issue, we consider a simple two- issue M IPS pro
cessor, where one of the instructions can be an integer ALU operation or branch,
and the other ca n be a load or store. Such a design is like that used in some
embedded MIPS processors. Issuing two instructions per cycle will require fetch 
ing and decoding 64 bits of instructions. In many static multiple- issue processors,
and essentially all VLIW processors, the layout of simultaneously issuing instruc
tions is restricted to simplify the decoding and instruction issue. Hence, we will
require that the in structions be paired and aligned on a 64-bit boundary, with the
ALU or branch portion appea ring first. Furthermore, if one instruction of the pair
ca nn ot be used, we require that it be replaced with a no-op. Thus, the instructions
always issue in pairs, possibly with a nop in one slot. Figure 6.44 shows how the
instructions look as they go into the pipeline in pairs.

Static multiple-issue processors vary in how they deal with potential data and
control hazards. In some designs, the compiler takes full responsibility for remov
ing all hazards, scheduling the code and inserting no-ops so that the code executes
without any need for hazard detection or hardware-generated stalls. In others, the
hardware detects data hazards and generates stalls between two issue packets,
while requiring that the compiler avoid all dependences within an instruction
pair. Even so, a hazard generally forces the entire issue packet containing the
dependent instruction to stall. \Vhether the software must handle all hazards or

Instruction type Pipe stages

ALU or branch instruction IF 10 EX MEM WS
Load or store instruction IF 10 EX MEM WS
ALU or branch instruction IF 10 EX MEM WS
Load or store instruction IF 10 EX MEM WS
ALU or branch instruction IF 10 EX MEM WS
Load or store instruction IF 10 EX MEM WS
ALU or branch instruction IF 10 EX MEM WS
Load or store instruction IF 10 EX MEM WS

FIGURE 6.44 Static two-Issue pipeline In operation. The ALU and data transfer instructions are
issued at the &1me time. Here we have assWTIed the same five-stage structure as used for the single-issue
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the reg
ister writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a precise
exception model, which become more difficult in multiple-issue processors.
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only try to reduce the fraction of hazards between separa te issue packets, the
appeara nce of having a large single instruction with multiple operations is rein
forced. We will assume the second approach for this exa mple.

To issue an ALU and a data transfer operation in parallel, the first need for
additional hardware-beyond the usual hazard detection and stall logic-is extra
ports in the register fil e (see Figure 6.45) . In 1 clock cycle we may need to read two
registers for the ALU opera tion and two more for a store, and also one write port
for an ALU opera tion and one write port for a load. Since the ALU is tied up for
the ALU operation , we also need a separate adder to calculate the effective address
for data transfers. Without these extra resources, our two-issue pipeline would be
hindered by structural hazards.

"-
0

"" M ,--- c-o

" "• / r •
~w f-. e-

M /
M c- Registers "

oo1סס8 80 " "
Ins truction 1= ... .

m"",ory• ~
_.-" "...- " • memory f- f---".. -~ - -"'..

M

"•
-

..
FIGURE 6.45 A static two-lssue datapath. The addltlons needed for double ISSue are hlghhghted: another 32 bIts from mstrnctJOn memory,
tm> more read ports and one more write port on the register file , and another ALU. Assume the bottom ALU handles address calculations for data
transfers and the top ALU handles everything else.
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loop unrolling A technique to
get more performance from
loops that access arrays, in
which multiple copies of the
loop body are made and instruc
tions from different iterations
are scheduled together.
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Clea rly, this two- issue processor ca n improve performance by up to a factor of
2. Doing so, however, requires that twice as many instructions be overlapped in
execution, and this additional overlap increases the relative performance loss from
data and control hazards. For exa mple, in our simple five-stage pipeline, loads
have a use latency of 1 clock cycle, which prevents one instruction from using the
result without stalling. In the two- issue, five-stage pipeline, the result of a load
instruction ca nn ot be used on the next clock cycle. This means that the next two
instructions ca nnot use the load result without stalling. Furthermore, ALU
instructions that had no use latency in the simple five-stage pipeline, now have a
one- in struction use latency, since the results ca nnot be used in the paired load or
store. To effectively exploit the parallelism available in a multiple- issue processor,
more ambitious compiler or hardware scheduling techniques are needed, and
static multiple issue requires that the compiler takes on this role.

Simple Multiple-ls5ue Code Scheduling

How would this loop be sched uled on a static two-issue pipeline for MIPS?

Loop : lw ItO . O($sl) II $tO=array element
addu $t0 , HO ,$ s2 II add scalar in $s2
sw ItO . O($sl) II store result
addi $sl , $sl , - 4 II decrement pointer
bne $sl , $zero,Loop II branch $sl !=O

Reorder the instructions to avoid as many pipeline stalls as possible. Assume
branches are predicted, so that control hazards are handled by the hardware.

The first three in structions have data dependences, and so do the last two.
Figure 6.46 shows the best schedule for these instructions. Notice that just
one pair of in structions has both issue slots used. It takes 4 clocks per loop it
eration ; at 4 clocks to execute 5 instructions, we get the disappointing CP I of
0.8 versus the best case of 0.5., or an IPC of 1.25 versus 2.0. Notice that in
computing CPI or IPC, we do not count any nops executed as useful instruc
tions. Doing so would improve CPI, but not performance!

An important compiler technique to get more performance from loops is loop
unrolling, a technique where multiple copies of the loop body are made. After
unrolling, there is more ILP available by overlapping instructions from different
iterations.
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Data transfer Instruction

loop:

ALU or branch Instruction ,. StD. O{ $sl)

Clock cycle

1

~ddi

~ddLl

$51. $51. - 4

$tO.StO.$s2
$sl. $zero.loop StD. 4 {$sl)

2

3

4

FtGURE 6.46 The scheduled code as It would look on a two-lssue MIPS pipeline. The
empty slots are nops.

Loop Unrolling for Multiple-lssue Pipelines

See how well loop unrolling and scheduling work in the example above.
Assume that the loop index is a multiple of four, for simplicity.

To schedule the loop without any delays, it nirilS out that we need to make
four cop ies of the loop body. After unrolling and eliminating the unnecessa ry
loop overhead instructions, the loop will contain four copies each of 1W, add,
and SW, plus one addi and one bne. Figure 6.47 shows the unrolled and
scheduled code.

During the unrolling process, the compiler introduced additional registers
($t 1, $t2, $t3 ). The goal of this process, ca lled register renaming, is to elim
inate dependences that are not true data dependences, but could either lead to
potential hazard s or prevent the compiler from fl exibly sched uling the code.
Consider how the unrolled code would look using only $tO. There would be
repea ted instances of 1W $tO . 0 ( $$ s1 ) , addLl $tO. $tO . $ s 2 followed by sw
to.4 ($ s1) , but these sequences, despite using $tO, are actually completely
independent- no data values flow between one pair of these instructions and
the next pair. This is what is ca lled an antidependence or name dependence,
which is an ordering forced purely by the reuse of a name, rather than a real
data dependence.

Renaming the registers during the unrolling process allows the compiler to
subsequently move these independent instructions so as to better schedule the
code. The renaming process eliminates the name dependences, while preserv
ing the true dependences.

Notice now that 12 of the 14 instructions in the loop execute as a pair. It
takes 8 clocks for four loop iterations, or 2 clocks per iteration, which yields a
CPI of 8/14 = 0.57. Loop unrolling and scheduling with dual issue gave us a
factor of two improvement, partly from reducing the loop control in structions
and partly from dual issue execution. The cost of this performance improve
ment is using four temporary registers rather than one, as well as a significa nt
in crease in code size.

EXAMPLE

ANSWER

register renaming The renam
ing of registers, by the compiler
or hardware, to remove antide
pendences.

antidependence Also called
name dependence. An order
ing forced by the reuse of a
name, typically a register, rather
then by a true dependence that
carries a value between two
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ALU or branch Instruction Data transfer Instruction Clock cycle

inst ruction group In IA-64, a
sequence of consecutive instruc
tions with no register data
dependences among them.

stop In IA-64, an explicit indi
cator of a break between inde
pendent and dependent
instructions.

Loo p : addi $s l , $s l. 16 1. St O, 0 ($ s 1) 1,. $t l, 12{$ s l) 2

add u St O.StO. Ss2 1. $t 2. 8 ($ s1 ) 3

add u Stl , $t1 . Ss2 1. $t3. 4 ( Ss 1) 4

add u $t2.$t2. $s2 '" $tO. 16 {$ sl) 5

add u St3.St 3 . Ss2 '" $tl. 12( Ss1 ) 6

'" $t 2• B{S s l) 7

boe $sl. $ze r o.Loop '" St3. 4 ($ 51) 8

FIGURE 6.47 The unrolled and scheduled code of Figure 6.46 as It would look on a static
two-lssue MIPS pipeline. The empty slots are naps. Since the first instruction in the loop decrements
$ s 1 by 16, the addresses loaded are the original value of $s 1, then that address minus 4, minus 8, and
minus 12 .

The Intel IA-64 Architecture
The IA-64 architecnlfe is a register-register, RI SC-style instruction set like the 64
bit version of the MIPS architecture (called MIPS-64) , but with several unique
features to support explicit , compiler-driven exploitation of ILP. Intel ca lls the
approach EPI C (Explicitly Parallel Instruction Computer). The major differences
between IA-64 and the M IPS architecture are the following:

I. IA-64 has many more registers than MIPS, including 128 integer and 128
floating-point registers, as well as 8 special registers for branches and 64 1
bit condition registers. In addition, IA-64 supports register windows in a
fashion similar to the original Berkeley RI SC and Sun SPARC architectures.

2. IA-64 places instructions into bundles that have a fi xed format and explicit
designation of dependences.

3. IA-64 includes specia l instructions and capabilities for speculation and for
branch elimination , which increase the amount of ILP that ca n be
exploited.

The IA-64 architecnlfe is designed to achieve the major benefit s of a VLIW
im plicit pa rallelism among operations in an instruction and fixed formatting of
the operation fields-while maintaining greater flexibility th an a VLIW normally
allows. The IA-64 architecture uses two different concepts to achieve this fl exibil
ity: instruction groups and bundles.

An instruction group is a sequence of consecutive instructions with no register
data dependences among them. All the instructions in a group could be executed
in parallel if sufficient hardwa re resources existed and if any dependences through
memo ry were preserved. An instruction group ca n be arbitrarily long, but the
compiler must explicitly indicate the boundary between one instruction group
and another. This boundary is indicated by placing a stop between two instruc
tions th at belong to different groups.
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IA-64 instructions are encoded in bundles, which are 128 bits wide. Each bun
dle consists of a 5-bit template field and three instructions, each 41 bits in length.
To simplify the decoding and instruction issue process, the template fi eld of a
bundle specifies which of five different execution units each instruction in the
bundle requires. The five different execution units are integer ALU, noninteger
ALU (includes shifters and multimedia operations), memory unit, floating-point
unit, and branch unit.

The 5-bit template fi eld within each bundle describes both the presence of any
stops associated with the bundle and the execution unit type required by each
instruction within the bundle. The bundle formats ca n specify only a subset of all
possible combinations of instruction types and stops.

To enhance the amount of ILP that ca n be exploited, IA-64 provides extensive
support for predication and for speculation (see the Elaboration on page 442).
Predication is a technique that ca n be used to eliminate branches by making the
execution of an instruction dependent on a predicate, rather than dependent on a
branch. As we saw ea rlier, branches reduce the opportunity to exploit ILP by
restricting the movement of code. Loop unrolling works well to eliminate loop
branches, but a branch within a loop-arising, for example, from an if-then-else
statement-cannot be eliminated by loop unrolling. Predication, however, pro
vides a method to eliminate the branch, allowing more flexible exploitation of
parallelism.

For example, suppose we had a code sequence like

if (p) {s tatement l} else (statement 2)

Using normal compilation methods, this segment would compile using two
branches: one after the condition branching to the else portion and one after
statement 1 branching to the next sequential statement. With predication, it could
be compiled as

(p) statement 1
(-p) statement 2

where the use of (cond i t i on) indicates that the statement is executed only if
co nd i t i on is true, and otherwise becomes a no-op. Notice that predication can
be used as way to speculate, as well as a method to eliminate branches.

The IA-64 architecture provides comprehensive support for predication: nea rly
every instruction in the IA-64 architecture ca n be predicated by specifying a pred
icate register, whose identity is placed in the lower 6 bits of an instruction field.
One consequence of full predication is that a conditional branch is simply a
branch with a guarding predicate!

IA-64 is the most sophisticated exa mple of an instruction set with support for
compiler-based exploitation of ILP. Intel's Itanium and Itanium 2 processors
implement this architecture. A brief summa ry of the cha racteristics of these pro
cessors is given in Figure 6.48.
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predication A technique to
make instructions dependent on
predicates rather than on
branches.
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III••Maximum Instr. Maximum Max. clock Transistors
Processor Issues / clock Functional units ops. per clock rate (millions)

ltanium 6 4 integer/ media 9 0 .8 GHz 25 130 379 701

2 memory

3 branch

2FP

ltanium 2 6 6 integer/ media 11 1 .5 Ghz 221 130 810 1427

4 memory

3 branch

2FP

FIGURE 6.48 A summary of the characteristics of the Itanlum and ttanlum 2, Intel's first two Implementations of the IA·64
architecture. In addition to higher dock rates and more functional units, the Itanium 2 includes an on-chip level 3 cache, versus an off-chip level 3
cache in the ltanium.

poiso n A result generated
when a speculative load yields
an exception, or an instruction
uses a poisoned operand.

advall(:ed load In IA-64, a
speculative load instruction
with support to check for aliases
that could invalidate the load.

Elaboration: Speculation support in the IA-64 architecture consists of separate sup.
port for control speculation, which deals with deferring exceptions for speculated
instructions, and memory reference speculation, which supports speculation of load
instructions. Deferred exception handling is supported by adding speculative load
instructions, which, when an exception occurs, tag the result as poison. When a poi
soned result is used by an instruction, the result is also poison . The software can then
check for a poisoned result when it knows that the execution is no longer speculative .

In lA-54, we can also speculate on memory references by moving loads earlier than
stores on which they may depend. This is done with an advanced load instruction . An
advanced load executes normally, but uses a special table to track the address that the
processor loaded from . All subsequent stores check that table and generate a flag in
the entry if the store address matches the load address. A subsequent instruction
must be used to check the status of the entry after the load is no longer speculative . If
a store to the same address has intervened, the check instruction specifies a fix-up
routine that reexecutes the load and any other dependent instructions before continu
ing execution; if no such store has occurred, the table entry is simply cleared, indicat
ing that the load is no longer speculative.

Dynamic Multiple-Issue Processors

superscalar An advanced pipe
lining technique that enables the
processor to execute more than
one instruction per clock cycle.

Dynamic multiple-issue processors are also known as superscalar processors, or
simply superscalars. In the simplest superscalar processors, instructions issue in
order, and the processor decides whether zero, one, or more instructions can issue
in a given clock cycle. Obviously, achieving good performance on such a processor
still requires the compiler to try to schedule instructions to move dependences
apart and thereby improve the instruction issue rate. Even with such compiler
scheduling, there is an important difference between this simple superscalar and a
VLIW processor: the code, whether scheduled or not, is guaranteed by the hard
ware to execute correctly. Furthermore, compiled code will always run correctly
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independent of the issue rate or pipeline structure of the processor. In some VLIW
designs, this has not been the case, and recompilation was required when moving
across different processor models; in other static issue processors, code would run
correctly across different implementations, but often so poorly as to make compi
lation effectively required.

Many superscalars extend the basic framework of dynamic issue decisions to
include dynamic pipeline scheduling. Dynamic pipeline scheduling chooses
which instructions to execute in a given clock cycle while trying to avoid hazards
and stalls. Let's start with a simple exa mple of avoiding a data hazard. Consider
the following code sequence:
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dynamk pipeline
5':heduling Hardware support
for reordering the order of
instruction execution so as to
avoid stalls.

lw
add u
sub
slti

Ito . 20($521
Itl, ItO. 1t2
$s4 , $s 4 , $t3
$tS , $s 4, 20

Even though the sub instruction is ready to execute, it must wa it for the lw and
addu to complete first, which might take many clock cycles if memory is slow.
(Chapter 7 expla ins caches, the reason that memory accesses are sometimes very
slow. ) Dynamic pipeline scheduling allows such hazards to be avoided either fully
or partially.

Dynamic Pipeline Scheduling

Dynamic pipeline scheduling chooses which instructions to execute next, possibly
reordering them to avoid stalls. In such processors, the pipeline is divided into
three major units: an in struction fetch and issue unit, multiple functional units
( 10 or more in high -end designs in 2004), and a commit unit. Figure 6.49 shows
the model. The first unit fetches instructions, decodes them, and sends each
instruction to a corresponding functional unit for execution. Each functional unit
has buffers , called reservation stations, that hold the opera nds and the opera tion.
(I n the next section , we will discuss an alternative to reservation stations used by
many recent processors. ) As soon as the buffer contain s all its operands and the
functional unit is ready to execute, the result is calculated. \-¥hen the result is com 
pleted, it is sent to any reservation stations waiting for this particular result as well
as to the commit unit, which buffers the result until it is safe to put the result into
the register file or, for a store, into memory. The buffer in the commit unit, oft en
called the reorder buffer, is also used to supply opera nds, in much the same way
as forwarding logic does in a statically sched uled pipeline. Once a result is com 
mitted to the register fil e, it ca n be fetched directly from there, just as in a normal
pipeline.

The combination of buffering opera nds in the reserva tion stations and results
in the reorder buffer provides a form of register renaming, just like that used by

commit unit The unit in a
dynamic or out-of-order
execution pipeline that decides
when it is safe to release the
result of an operation to pro
grammer-visible registers and
memory.

reservation station A buffer
within a functional unit that
holds the operands and the
operation.

reorder buffer The buffer that
holds results in a dynamically
scheduled processor until it is
safe to store the results to mem
ory or a register.
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Instruction fetch In-order issue
and deccx:le unit

Reservation Reservation Reservation Reservation
station station

...
station station

I I I I

unctional Floating Load! Out-of-order executeunits Integer Integer ...
point Store

I I I I

Commit In-order commit
unit

F

FIGURE 6.49 The three primary units of a dynamically scheduled pipeline. The final step of
upda ting the state is also caUed retirement or graduation.

the compiler in our earlier loop unrolling example on page 439. To see how this
conceptually works, consider the following steps:

I. When an instruction issues, if either of its operands is in the register file or
the reorder buffer, it is copied to the reservation station immediately, where
it is buffered until all the operands and an execution unit are available. For
the issuing instruction , the register copy of the operand is no longer
required , and if a write to that register occurred, the va lue could be over
written.

2. If an operand is not in the register fil e o r reorder buffer, it must be wa iting
to be produced by a functional unit. The name of the functional unit that
will produce the result is tracked. When that unit eventually produces the
result, it is copied directly into the waiting reservation station from the
functional unit bypassing the registers.

These steps effectively use the reo rder buffer and the reserva tion stations to imple
ment register renaming.
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Conceptually, you can think of a dynamically scheduled pipeline as analyzing
the dataflow strucnlfe of a program, as we saw when we discussed dataflow analy
sis within a compiler in Chapter 2. The processor then executes the instructions in
some order that preserves the data flow order of the program. To make programs
behave as if they were running on a simple in-order pipeline, the instruction fetch
and decode unit is required to issue instructions in order, which allows depen
dences to be tracked, and the commit unit is required to write results to registers
and memory in program execution order. This conservative mode is called in
order completion. Hence, if an exception occurs, the computer can point to the
last instruction executed, and the only registers updated will be those written by
instructions before the instruction causing the exception. Although, the front end
(fetch and issue) and the back end (commit) of the pipeline run in order, the
functional units are free to initiate execution whenever the data they need is avail
able. Today, all dynamically scheduled pipelines use in-order completion,
although this was not always true.

Dynamic scheduling is often extended by including hardware-based specula
tion , especially for branch outcomes. By predicting the direction of a branch , a
dynamically scheduled processor can continue to fetch and execute instructions
along the predicted path. Because the instructions are committed in order, we
know whether or not the branch was correctly predicted before any instructions
from the predicted path are committed. A speculative, dynamically scheduled
pipeline can also support speculation on load addresses, allowing load-store reor
dering, and using the commit unit to avoid incorrect speculation. In the next sec
tion we will look at the use of dynamic scheduling with speculation in the
Pentium 4 design.

Elaboration: A commit unit controls updates to the register file and memory. Some
dynamically scheduled processors update the register file immediately during execution
using extra registers to implement the renaming function and preserving the older copy
of a register until the instruction updating the register is no longer speculative . Other
processors buffer the result, typically in a structure called a reorder buffer, and the
actual update to the register file occurs later as part of the commit. Stores to memory
must be buffered until commit time either in a store buffer (see Chapter 7) or in the
reorder buffer. The commit unit allows the store to write to memory from the buffer
when the buffer has a valid address and valid data, and when the store is no longer
dependent on predicted branches .

Elaboration: Memory accesses benefit from nonblocking caches, which continue
servicing cache accesses during a cache miss (see Chapter 7) . Out-of-order execution
processors need nonblocking caches to allow instructions to execute during a miss.
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in-order commit A commit in
which the results of pipelined
execution are written to the pro
grammer-visible state in the
same order that instructions are
fetched.

out-of-ord er execution A sit
uation in pipelined execution
when an instruction blocked
from executing does not cause
the following instructions to
wait.
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Given that compilers ca n also schedule code around data dependences, you might
ask, Why would a supersca lar p rocesso r use dynamic scheduling? There are three
major reasons. First, not all stalls are pred ictable. In part icular, cache misses (see
Chapter 7) cause unpredictable stalls. Dynamic scheduling allows the p rocesso r to
hide some of th ose stalls by continuing to execute instructions while wa iting for
the stall to end.

Second , if the processor speculates on branch outcomes using dynamic branch
prediction , it ca nn ot know the exact order of in struct ions at compile time, since it
depends on the predicted and actual behavior of branches. Incorpo rating
dynam ic speculation to exploit mo re lLP without incorporating dynamic sched 
uling would significa ntly restrict the benefit s of such speculation.
Third, as the pipeline latency and issue width change from one implementation to
another, the best way to compile a code sequence also changes. For example, how
to schedule a sequence of dependent instructions is affected by both issue width
and latency. The pipeline structure affects both the number of times a loop must
be un rolled to avoid stalls as well as the process of compiler-based register renam 
ing. Dynamic scheduling allows the hardwa re to hide most of these deta ils. Thus,
users and softwa re distributors do not need to worry about having multiple ver
sions of a program fo r different implementations of the sa me instruction set. Sim 
ilarly, old legacy code will get much of the benefit of a new implementation
without the need for recompilation.

Both pipelining and multiple- issue execution increase peak instruction
throughput and attempt to exploit ILP. Data and control dependences in
programs, however, offer an upper limit on sustained performance
because the processor must sometimes wait for a dependence to be
resolved. Software-centric approaches to exploiting ILP rely on the ability
of the compiler to find and reduce the effects of such dependences, while
hardware-centric approaches rely on extensions to the pipeline and issue
mechanisms. Speculation, performed by the compiler or the hardware,
can increase the amount of ILP that can be exploited , although care must
be taken since speculating incorrectly is likely to reduce performan ce.
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Modern , high-performance microprocessors are capable of issuing several
instructions per clock; unfortunately, sustaining that issue rate is very difficult.
For exa mple, despite the existence of processors with four to six issues per clock,
very few applications can sustain more than two instructions per clock. There are
two primary reasons for this.

First, within the pipeline, the major performance bottlenecks arise from
dependences that ca nnot be alleviated, thus reducing the pa rallelism among
instructions and the sustained issue rate. Alth ough little ca n be done about true
data dependences, often the compiler or hardwa re does not know precisely
whether a dependence exists o r not , and so must conserva tively assume the
dependence exists. For example, code that makes use of pointers, particularly in
ways that create more aliasing, will lead to more implied potential dependences.
In contrast , the grea ter regularity of array accesses often allows a compiler to
deduce that no dependences exist. Similarly, branches th at ca nnot be accurately
predicted whether at runtime o r compile time will limit the ability to exploit ILP.
Often additional ILP is ava ilable, but the ability of the compiler o r the hardware to
find ILP that may be widely separated (sometimes by the execution of thousa nds
of instructions) is limited.

Second , losses in the memo ry system (the topic of Chapter 7) also limit the
ability to keep the pipeline full. Some memory system stalls ca n be hidden, but
limited amounts of ILP also limit the extent to which such stalls ca n be hidden.

State whether the following techniques or components are associated primarily
with a softwa re- or hardwa re-based app roach to exploiting ILP. In so me cases, the
answer may be both.

I. Branch prediction

2. Multiple issue

3. VLIW

4. Supersca lar

5. Dynamic scheduling

6. Out -of-order execution

7. Speculation

8. EPIC

9. Reo rder buffer

10. Register renaming

II. Predica tion

Understanding
Program
Performance

Check
Yourself
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Real Stuff: The Pentium 4 Pipeline

microarchitecture The orga
nization of the processor,
including the major functional
units, their interconnection, and
control.

architectural registers The
instruction set visible registers
of a processor; for example, in
MIPS, these are the 32 integer
and 16 floating-point registers.

In the last chapter, we discussed how the Pentium 4 fetched and translated IA- 32
instructions into microoperations. The microoperations are then executed by a
sophisticated , dynamically scheduled, speculative pipeline ca pable of sustaining
a tl execution rate of three microoperations per clock cycle. This section focuses on
that microoperation pipeline. The Pentium 4 combines multiple issue with deep
pipelining so as to achieve both a low CPl and a high clock rate.

When we consider the design of sophisticated , dynamica lly scheduled proces
sors, the design of the functional units, the cache and register file, instruction
issue, and overall pipeline control become intermingled, making it difficult to
sepa rate out the datapath from the pipeline. Because of this, many engineers and
resea rchers have adopted the term microarchitecture to refer to the detailed
internal architecture of a processo r. Figure 6.50 shows the microa rchitecture of
the Pentium 4, focusing on the strucnIres fo r executing the microoperations.

Another way to look at the Pentium 4 is to see the pipeline stages that a typica l
instruction goes th rough. Figu re 6.5 1 shows the pipeline structu re and the typica l
number of clock cycles spent in each; of course, the number of clock cycles va ries
due to the nature of dynamic scheduling as well as the requirements of individual
microoperations.

The Pentium 4, and the ea rlier Pentium III and Pentium Pro, all use the tech
nique of decoding IA-32 instructions into microoperations and executing those
microoperations using a speculative pipeline with multiple functional units. In
fact, the basic microa rchitecture is similar, and all these processors can complete
up to three microoperations per cycle. The Pentium 4 gains its performance
adva ntage over the Pentium III th rough several enhancements:

1. A pipeline that is roughly twice as deep (approximately 20 cycles versus 10)
and ca n run almost twice as fast in the sa me technology

2. More functional units (7 versus 5)

3. Support for a larger number of outstanding operations (126 versus 40)

4. The use of a trace cache (see Chapter 7) and a much better branch predictor
(4K entries versus 512)

5. Other enhancements to the memory system, which we discuss in Chapter 7

Elaboration: The Pent ium 4 uses a scheme for resolving ant idependences and incor
rect speculation that uses a reorder buffer together wit h register renaming. Register
renaming explicit ly renames the architectural registers in a processor (8 in the case of
IA-32) to a larger set of physical registers (128 in the Pentium 4). The Pentium 4 uses
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Instruction prefetch

Branch and decode

prediction

Trace cache

Microoperation queue

Dispatch and register remaining
Register file

I Integer and floating-point operation queue I I Memory operation queue

I I I I I I

Complex
Integer Integer

Floating
Load Store

instruction point

I
Commit

unit

Data
cache

FtGURE 6.50 The mlcroarchltecture of the Intel Pentium 4. The extensive queues allow up to 126 microoperations to be outstanding at
any point in time, including 48 loads and 24 stores. There are actually seven functional units, since the FP unit includes a separate dedicated lUlit for
floating-point moves. The load and store units are actually separated into two p.uts, with the first part handling address calculation and the second
part responsible for the actual memory reference. The integer ALUs operate at twice the clock frequency, allowing two integer ALU operations to be
completed by each of the two imeger units in a single clock cycle. As we described in Chapter 5, the Pentium 4 uses a special cache, called the trace
cache, to hold predecoded sequences of microoperations, corresponding to IA-32 instructions. The operation of a trace cache is explained in more
detail in Chapter 7. The FP unit also handles the MMX multimedia and SSE2 instructions. There is an extensive bypass network among the functional
units; since the pipeline is dynamic rather than static, bypassing is done by tagging results and tracking source operands, so as to allow a match when a
result is produced for an instruction in one of the queues that net'ds the result. Intel is expected to release new versions of the Pentium 4 in 2004, which
will probably have changes in the microorchitecture.
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FtGURE 6.51 The Pentium 4 pipeline showing the pipeline flow for a typical Instruction
and the number of clock cycles for the major steps In the pipeline. The major buffers where
instructions wait are also shown.
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register renaming to remove antidependences . Register renaming requires the processor
to maintain a map between the architectural registers and the physica l registers , indicat
ing which physica l register is the most current copy of an architectural register. By keeping
t rack of the renamings that have occurred , register renaming offers another approach to
recovery in the event of incorrect speculation: simply undo the mappings that have
occurred s ince the first incorrectly speculated instruction. This will ca use the state of the
processor to return to the last correctly executed instruction, keeping the correct mapping
between the architectural and phys ica l registers.

The Pentium 4 combines a deep pipeline (averaging 20 or mo re pipe stages per
instruction) and aggressive multiple issue to achieve high perfo rmance. By keep
ing the latencies for back-to-back operations low (0 for ALU operations and 2 for
loads), the impact of data dependences is reduced. What are the most serious
potential perfo rmance bottlenecks fo r programs running on this processo r? The
following list includes some potential performance problems, the last three of
which ca n apply in some fo rm to any high-perfo rmance pipelined processo r.

• The use of IA-32 instructions that do not map to three o r fewer simple mi
crooperations

• Branches that are difficult to predict , causing misprediction stalls and restarts
when speculation fails

• Poor instruction loca lity, which causes the trace cache not to function effec
tively

• Long dependences-typica lly caused by long-running instructions o r data
cache misses-which lead to stalls

Performance delays arising in accessing memory (see Chapter 7) that cause the
processor to stall

Are the following statements true o r false?

1. The Pentium 4 ca n issue mo re instructions per clock then the Pentium III .

2. The Pentium 4 multiple-issue pipeline directly executes IA-32 instructions.

3. The Pentium 4 uses dynamic scheduling but no speculation.

4. The Pentium 4 microa rchitecture has many more registers than IA-32
reqUIres.

5. The Pentium 4 pipeline has fewer stages than the Pentium II I.

6. The trace cache in the Pentium 4 is exactly the sa me as an instruction cache.
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Fallacies and Pitfalls

Fallacy: Pipelining is easy.

Our books testify to the subtlety of correct pipeline execution. Our advanced
book had a pipeline bug in its first edition , despite its being reviewed by more
than 100 people and being class-tested at 18 universities. The bug was uncovered
only when someone tried to build the computer in that book. The fact that the
Verilog to describe a pipeline like that in the Pentium 4 will be thousands of lines
is an indication of the complexity. Beware!

Fallacy: Pipelining ideas can be implemented independent of technology.

When the number of transistors on-chip and speed of transistors made a fi ve
stage pipeline the best solution, then the delayed branch (see the Elaboration on
page 423) was a simple solution to control hazards. With longer pipelines, super
scalar execution , and dynamic branch prediction, it is now red undant. In the ea rly
I990s, dynamic pipeline scheduling took too many resources and was not
required for high performance, but as transistor budgets continued to double and
logic became much faster than memory, then multiple functional units and
dynamic pipelining made more sense. Today, all high-end processors use multiple
issue, and most choose to implement aggressive speculation as well.

Pitfall: Failure to consider instruction set design can adversely impact pipelining.

Many of the difficulties of pipelining arise because of instruction set complica
tions. Here are some exa mples:

• Widely variable instruction lengths and running times ca n lead to imbal
ance among pipeline stages and severely complica te hazard detection in a
design pipelined at the instruction set level. This problem was overcome,
initially in the DEC VAX 8500 in the late 198Ds, using the micropipelined
scheme that the Pentium 4 employs today. Of course, the overhead of trans
lation and maintaining correspondence between the microopera tions and
the actual instructions remains.

• Sophistica ted addressing modes ca n lead to different sorts of problems.
Addressing modes that update registers, such as update addressing (see
Chapter 3), complicate hazard detection. Other addressing modes that
require multiple memory accesses substantially complica te pipeline control
and make it difficult to keep the pipeline flowing smoothly.

Perhaps the best exa mple is the DEC Alpha and the DEC NVAX. In comparable
techn ology, the newer instruction set architecture of the Alpha allowed an imple
mentation whose performance is more than twice as fast as NVAX. In another
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exa mple, Bhandarkar and Clark [199 1) compared the MIPS M/2000 and the DEC
VAX 8700 by counting clock cycles of the SPEC benchmarks; they concluded that,
although the M IPS M/2000 executes mo re in structions, the VAX on average exe
cutes 2.7 times as many clock cycles, so the MIPS is faster.

Nine-tenths ofwisdom con
sists ofbeing wise ill time.

American proverb Concluding Remarks

instruction latency The
inherent execution time for an
instruction.

Pipelining improves the average execution time per instruction. Depending on
whether you start with a single-cycle o r multiple-cycle datapath, this reduction
ca n be thought of as decreasing the clock cycle time or as decreasing the number
of clock cycles per instruction (CPl). We started with the simple single -cycle data 
path, so pipelining was presented as reducing the clock cycle time of the simple
datapath. Multiple issue, in comparison, clearly focuses on reducing CPI (or
increasing IPC). Figure 6.52 shows the effect on CPI and clock rate for each of the
microa rchitectures from Chapters 5 and 6. Performance is increased by moving
up and to the right, since it is the product of IPC and clock rate that determines
performance for a given in struction set.

Pipelining improves throughput, but not the inherent execution time, or
latency, of in structions; the latency is similar in length to the multicycle approach.
Unlike that approach, which uses the same hardwa re repeatedly during in struc
tion execution, pipelining starts an instruction every clock cycle by having dedi
cated hardwa re. Similarly, multiple issue adds additional data path hardware to
allow multiple instructions to begin every clock cycle, but at an increase in effec
tive latency. Figure 6.53 shows the datapaths from Figure 6.52 placed according to
the amount of sharing of hardwa re and instru ction laten cy.

Pipelining and multiple issue both attempt to exploit instruction-level parallel
ism. The presence of data and control dependences, which can become hazards,
are the primary limitations on how much parallelism ca n be exploited. Scheduling
and speculation, both in hardwa re and softwa re, are the primary techniques used
to red uce the performance impa ct of dependences.

The switch to longer pipelines, multiple instruction issue, and dynamic sched
uling in the mid- 1990s has helped sustain the 60% per yea r processor perfor
man ce increase that we have benefited from since the ea rly 1980s. In the past , it
appeared that the choice was between the highest clock rate processors and the
most sophisticated superscalar processors. As we have seen, the Pentium 4 com 
bines both and achieves remarkable performance.
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FtGURE 6.52 The performance consequences of simple (slngl&eycle) datapath and mul·
tlcycle datapath from Chapter 5 and the plpellned execution model In Chapter 6. Remem
ber that CPU performance is a nUlction of IPC times dock rate, and hence moving to the upper right
increases performance. Although the instructions per dock cyde is slightly larger in the simple datapath,
thepipelined datapath is dose, and it uses adock rate as fast as the multicyde datapath.
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FtGURE 6.53 The basic relationship between the datapaths In Figure 6.52. Notice that the
x-axis is use latency in instructions, which is wltat determines theease of keeping tlte pipeline full. The pipe
lined dalap.1th is shown as multiple dock cydes for instruction latency because the execution time of an
instruction is not shorter; it's tlte instruction throughput tltat is improved.



454 Chapter 6 Enhancing Performance with Plpellnlng

With remarkable adva nces in processing, Amdahl's law suggests that another pa rt
of the system will become the bottleneck. That bottleneck is the topic of the next
chapter: the memory system.

An alternative to pushing uniprocessors to automatica lly exploit pa rallelism at
the in struction level is trying multiprocessors, which exploit parallelism at much
coa rser levels. Parallel p rocessing is the topic of II Chapter 9, which appea rs on the
C D.

Historical Perspective and Further
Reading

This section, which appea rs on the CD, discusses the history of the first pipelined
p rocesso rs, the ea rliest superscala rs, the development of ollt -of-order and specula
tive techniques, as well as impo rtant developm ents in the accompanying com piler
technology.

Exercises

6.1 [5] <§6.1 > If the time fo r an ALU operation ca n be sho rtened by 25% (com 
pared to the description in Figure 6.2 on page 373);

a. W ill it affect the speedup obtained from pipelining? If yes, by how much?
Otherwise, why?

b. W hat if the ALU operation now takes 25% m ore time?

6.2 ( 10) <§6.1 > A com puter a rchitect needs to design the pipeline of a new m icro
p rocessor. She has an example workload program co re with 106 instructions. Each
instruction takes 100 ps to fini sh.

a. How long does it take to execute this program co re on a nonpipelined proces
sor?

b. The current state-of-the-a rt microprocessor has about 20 pipeline stages.
Assume it is perfectly pipelined. How much speedup will it achieve com pared
to the nonpipelined p rocessor?

c. Rea l pipelining isn't perfect, since implem enting pipelining int roduces som e
overhead per pipeline stage. Will this overhead affect in struction latency,
instruction throughput, o r both?
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6.3 [5J <§6.1 > Using a drawing similar to Figure 6.5 on page 377, show the for
wa rding paths needed to execute the following four instructions:

add $3 , $4, $6
sub $5 , $3 , $2
lw $7 . 100($5)
add $8 , $7 , $2

6.4 [ IOJ <§6.1 > Idelltify all of the data dependencies in the following code. Which
dependencies are data haza rds that will be resolved via forwa rding? Which depen 
dencies are data haza rds that will cause a stall?

add $3 , $4 , $2
sub $5 , $3 , $1
lw $6 . 200($3)
add $7 , $3 , $6

6.5 [5J <§6.1 > II For More Practice: Delayed Branches

6.6 [IOJ <§6.2> Using Figure 6.22 on page 400 as a guide, use colored pens or
markers to show which portions of the datapath are active and which are inactive
in each of the fi ve stages of the sw instruction. We suggest that you use fi ve pho
tocopies of Figure 6.22 to answer this exercise. (We hereby grant you permission
to violate the Copyright Protection Act in doing the exercises in Chapters 5 and 6!)
Be sure to include a legend to explain your colo r scheme.

6.7 [5J <§6.2> II For More Practice: Understanding Pipelines by Drawing Them

6.8 [5J <§6.2> II For More Practice: Understanding Pipelines by Drawing Them

6.9 [ 15J <§6.2> II For More Practice: Understanding Pipelines by Drawing
Them

6.10 [5J <§6.2> II For More Practice: Pipeline Registers

6.11 [ IS) <§§4.8, 6.2> II For Mo re Pra ctice: Pipelining Floating Point

6.12 [ IS) <§6.3> Figure 6.37 on page 41 7 and Figure 6.35 on page 41 5 are two
styles of drawing pipelines. To make sure you understand the relationship between
these two styles, draw the information in Figures 6.31 th rough 6.35 on pages 4 10
th rough 41 5 using the style of Figure 6.37 on page 41 7. Highlight the active po r
tions of the data paths in the figure.

6.13 (20) <§6.3> Figure 6.14. 10 is similar to Figure 6.14.7 on page 6.14-9 in the
II For More Practice section , but the in structions are unidentified. Determine as
much as you ca n about the fi ve in structions in the five pipeline stages. If you can 
not fill in a field of an instruction , state why. For some fields it will be easier to
decode the machine instructions into assembly language, using Figure 3.1 8 on

455
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page 205 and Figure A.I D.l on page A-50 as references. For o ther fi eld s it will be eas
ier to look at the va lues of the cont rol signals, using Figures 6.26 th rough 6.28 on
pages 403 and 405 as references. You may need to ca refully examine Figures 6.14.5
th rough 6.14.9 to understand how collections of cont rol va lues are presented (i.e.,
the leftmost bit in one cycle will become the uppermost bit in another cycle) . For
example, the EX cont rol value for the subtract instruction, 1100, computed during
the ID stage of cycle 3 in Figu re 6.14.6, becomes three separate va lues specifying
RegDst ( I), ALUOp ( 10), and ALUSrc (0) in cycle 4.

6.14 (40) <§6.3> The fo llowing piece of code is executed using the pipeline shown
in Figure 6.30 on page 409:

lw 15 . 40(12 )
add 16 . 13 . 12
or 17 . 12. 11
and 18 . 14. 13
su b 19 . 12 . 11

At cycle 5, right before the instructions are executed , the processor state is as fo llows:

a. The PC has the va lue 1OOten' the address of the sub_ ins t r uc t ion .

b. Every register has the initial value IOten plus the register number (e.g., register
$8 has the initial value 18ten).

c. Every memory wo rd accessed as data has the initial va lue WOOten plus the byte
address of the wo rd (e.g., Memory(8 J has the initial va lue 1008ten).

Determine the value of every fi eld in the four pipeline registers in cycle 5.

6.15 (20) <§6.3> II For More Practice: Labeling Pipeline Diagrams with Control

6.16 (20) <§6.4> II For Mo re Practice: Illustrating Diagrams with Fo rwa rding

6.17 (5 J <§§6.4, 6.5> Consider executing the fo llowing code on the pipelined data
path of Figure 6.36 on page 41 6:

add 12 . 13 . 11
su b 14. 13 . 15
add 15 . 13 . 17
add 17 . 16 . 11
add 18 . 12 . 16

At the end of the fifth cycle of execution , which registers are being read and which
register will be written?

6.18 (5 J <§§6.4, 6.5> With rega rd to the program in Exercise 6.1 7, explain what the
forwa rding unit is doing during the fifth cycle of execution. If any comparisons a re
being made, mention them.
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6.19 [5] <§§6.4, 6.5> With regard to the program in Exercise 6.17, explain what the
hazard detection unit is doing during the fifth cycle of execution. If any comparisons
are being made, mention them.

6.20 [20) <§§6.4, 6.5> II For More Practice: Forwarding in Memory

6.21 [5] <§6.5> We ha ve a program of 103 instructions in the format of"1 W, add,
1w, add, ..." The add instruction depends (and only depends) on the 1W instruction
right before it. The 1w instruction also depends (and only depends) on the add
instruction right before it. If the program is executed on the pipelined datapath of
Figure 6.36 on page 41 6:

a. What would be the acnlal CPI?

b. Without forwarding, what would be the actual CPI?

6.22 [5] <§§6.4 , 6.5> Consider executing the following code on the pipelined data
path of Figure 6.36 on page 41 6:

1w $4. 1001 $2)
sub $6, $4 , $3
add $2, $3 , $5

How many cycles will it take to execute this code? Draw a diagram like that of Figure
6.34 on page 414 that illustrates the dependencies that need to be resolved , and pro
vide another diagram like that of Figure 6.35 on page 41 5 that illustrates how the
code will actually be executed (incorporating any stalls or forwa rding) so as to
resolve the identified problems.

6.23 [ IS) <§6.5> List all the inputs and outputs of the fonvarding unit in Figure
6.36 on page 41 6. Give the names, the number of bits, and brief usage for each input
and output.

6.24 [20) <§6.5> .. For More Practice: Illustrating Diagram s with Forwarding and
Stalls

6.25 [20) <§6.5> (II For More Practice: Impact on Fonva rding of Moving It to ID
Stage

6.26 [ IS) <§§6.2-6.5> II For More Practice: Impact of Memory Addressing Mode
on Pipeline

6.27 ( 10) <§§6.2-6.5> II For More Practice: Impact of Arithmetic Operations
with Memory Operands on Pipeline

6.28 [30) <§6.5, Appendix C> II For More Practice: Fonvarding Unit Hardware
Design
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6.29 (1 week ) <§§6.4, 6.5> Using the simulator provided with this book, collect sta
tistics on data hazards for a C program (supplied by either the instructor or with the
softwa re). You will write a sub routine th at is passed the instruction to be executed ,
and this routine must model the five-stage pipeline in this chapter. Have your pro
gram collect the following statistics:

• Number of instructions executed.

• Number of data haza rds not resolved by forwa rding and number resolved by
forwa rding.

• If the MIPS C compiler that you are using issues nop instructions to avoid
haza rds, count the number of n0 p in structions as well.

Assuming that the memory accesses always take 1 clock cycle, calculate the average
number of clock cycles per instruction. Classify nop instructions as stalls inserted by
softwa re, then subtract them from the number of instructions executed in the CPI
calculation.

6.30 [71 <§§6.4, 6.5> In the example on page 425, we saw that the performance
adva ntage of the multicycle design was limited by the longer time required to access
memory versus use the ALU. Suppose the memory access beca me 2 clock cycles long.
Find the relative perform ance of the single-cycle and multicycle designs. In the next
few exercises, we extend this to the pipelined design , which requires lots more wo rk!

6.31 (10 ) <§6.6> Ii For Mo re Practice: Coding with Conditional Moves

6.32 (10 ) <§6.6> III For More Practice: Performance Advantage of Conditional
Move

6.33 [20 ) <§§6.2-6.6> In the example on page 425, we saw that the performance
adva ntage of both the multicycle and the pipelined designs was limited by the longer
time required to access memory versus u se the ALU. Suppose the memory access
became 2 clock cycles long. Draw the modified pipeline. List all the possible new for
wa rding situations and all possible new haza rds and their length.

6.34 [20 ) <§§6.2-6.6> Redo the example on page 425 using the restructured pipe
line of Exercise 6.33 to compare the single-cycle and multicycle. For bran ches,
assume the sa me prediction accuracy, but increase the penalty as appropriate. For
loads, assume that the subsequent instructions depend on the load with a probability
of 1/2, 1/4, 1/8, 1/16, and so on. That is, the instruction following a load by two has
a 25% probability of using the loa d result as one of its sources. Ignoring any other
data haza rds, find the relative performance of the pipelined design to the single-cycle
design with the restrucnlfed pipeline.

6.35 [10 ) <§§6.4-6.6> As pointed out on page 41 8, moving the branch comparison
up to the ID stage introduces an opportunity for both forwa rding and haza rds that
cann ot be resolved by forwa rding. Give a set of code sequences th at show the possible
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forwa rding paths required and hazard cases that must be detected , considering only
one of the two operands. The number of cases should equal the maximum length of
the hazard if no forwa rding existed.

6.36 ( 15) <§6.6> We have a program core consisting of five conditional branches.
The program core will be executed thousa nds of times. Below are the outcomes of
each branch for one execution of the program core (T fo r taken, N for not taken).

Branch I: T-T-T
Branch 2: N-N-N-N
Branch 3: T-N-T-N-T-N
Branch 4: T-T-T-N-T
Branch 5: T-T-N-T-T-N-T

Assume the behavior of each branch remains the same for each program core execu 
tion. For dynamic schemes, assume each branch has its own prediction buffer and
each buffer initialized to the same state before each execution. List the predictions
for the following branch prediction schemes:

a. Always taken

b. Always not taken

c. I -bit predictor, initialized to predict taken

d. 2-bit predictor, initialized to weakly predict taken

What are the prediction accuracies?

6.37 ( 10) <§§6.4-6.6> Sketch all the forwa rding paths for the branch inputs and
show when they must be enabled (as we did on page 407).

6.38 ( 10) <§§6.4-6.6> Write the logic to detect any haza rds on the branch sources,
aswe did on page410.

6.39 ( 10) <§§6.4-6.6> The example on page 378 shows how to maximize perfor
mance on our pipelined data path with forwa rding and stalls on a use following a
load. Rewrite the following code to minimize performance on this datapath- that is,
reorder the instructions so that this sequence takes the most clock cycles to execute
while still obtaining the sa me result.

lw 12. 100(16)
lw 13. 200(17)
add $4, $2 , $3
add $6, $3 , $5
sub $8, $4 , $6
lw 17. 300(18)
beq $7, $8 , Loop
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6.40 (20) <§6.6> Consider the pipelined datapath in Figure 6.54 on page 46 1. Ca n
an attempt to flush and an attempt to stall occur simultaneously? If so, do they result
in conflicting actions and/or cooperating actions? If there are any cooperating
actions, how do they wo rk together?!fthere are any conflicting actions, which should
take priority? Is there a simple change you can make to the datapath to ensure the
necessary prio rity? You may want to consider the following code sequence to help
you answer this question:

beq II , 12 , TARG ET
1w 13 , 40( 14 )
add 12 , 13 , $4
sw 12 , 40( 14 )

TARGET: or II , II , $2

# assume t ha t t he br anch is t aken

6.41 (15) <§§ 6.4 , 6.7> The Verilog for implementing forwa rding in Figure 6.7.2 on
page 6.7-4-6.7-5 did not consider fo rwa rding of a result as the value to be stored by
a SW instruction. Add this to the Verilog code.

6.42 [5] <§§6.5, 6.7> The Verilog for implementing stalls in Figure 6.7.3 on page
6.7-6-6.7-7 did not consider fon varding of a result to use in an address calculation.
Make this simple addition to the Verilog code.

6.43 [ IS) <§§6.6, 6.7> The Verilog code for implementing branch haza rd detection
and stalls in Figure 6.7.3 on page 6.7-6-6.7-7 does not detect the possibility of data
hazards for the two source registers of a BEQinstruction. Extend the Verilog in Figure
6.7.3 on page 6.7 -6-6.7-7 to handle all data hazards for branch opera nds. Write both
the fon varding and stall logic needed fo r completing branches during !D.

6.44 (10 ) <§§6.6, 6.7> Rewrite theVerilog code in 6.7.3 on page 6.7-6-6.7-7 to
implement a delayed branch strategy.

6.45 [20) <§§6.6, 6.7> Rewrite the verilogcode in Figure 6.7.3 on page 6.7-6-6.7-7
to implement a branch target buffer. Assume the buffer is implemented with a mod 
ule with the following definition:

module Predic t PC (cur r en t PC , ne xt PC, miss , update , des ti na ti on) ;
i npu t cu rren tPC,

upda t e , II t rue if pr ev i ous predicti on was un ava i lable or i ncorrec t
des t in at ion ; I used wit h update t o correc t a pred i ct ion

ou t pu t nex t PC , II r et urn s t he ne xt PC if predicti on i s accurat e
mlSS ; II t rue means no pred i ct ion i n bu f fe r

endmodule ;

Make sure you accomodate all three possibilities: a correct prediction , a miss in the
buffer (that is, miss = true), and an incorrect prediction. In the last two cases, you
must also update the prediction.
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6.46 ( I month ) <§§5.4, 6.3-6.8> If you have access to a simulation system such
as Verilog or ViewLogic, first design the single-cycle datapath and cont rol from
Chapter 5. Then evolve this design into a pipelined orga nization, as we did in this
chapter. Be sure to run MIPS progra ms at each step to ensure that your refined
design continues to operate correctly.

6.47 (10) <§6.9> The following code has been un rolled once but not yet sched 
uled. Assume the loop index is a multiple of two (i.e., $10 is a multiple of eight):

Loop : 1w 12 . 0(110)
sub 14 . 12 . $3
sw 14 . 0(110)
1w 15 . 4 (110)
sub 16 . 15 . $3
sw 16 . 4 (110)
addi 110 . 11 0 . 8
bne 110 . $30 . Loop

Schedule this code for fast execution on the stand ard MIPS pipeline (assume that
it supports addi instruction ). Assume initia lly $10 is 0 and $30 is 400 and that
branches are resolved in the M EM stage. How does the scheduled code compa re
aga inst the original unscheduled code?

6.48 (20) <§6.9> This exercise is similar to Exercise 6.47, except this time the
code should be unrolled twice (creating three copies of the code). However, it is
not known that the loop index is a multiple of three, and thus you will need to
invent a mea ns of ensuring that the code still executes p roperly. (Hint : Consider
adding some code to the beginning or end of the loop that takes ca re of the cases
not handled by the loop.)

6.49 (20) <§6.9> Using the code in Exercise 6.47, unroll the code four times and
schedule it fo r the static multiple-issue version of the MIPS processo r described on
pages 436-439. You may assume that the loop executes fora multiple offour times.

6.50 (10) <§§6. 1-6.9> As technology leads to sm aller feature sizes, the wires
become relatively slower (as compa red to the logic). As logic becomes faster with
the shrinking fea ture size and clock rates increase, wire delays consume more clock
cycles. That is why the Pentium 4 has several pipeline stages dedica ted to transfer
ring data along wires from one pa rt of the pipeline to another. What are the draw
backs to having to add pipe stages fo r wire delays?

6.51 (30) <§6.1O> New processors are int roduced more quickly than new ver
sions of textbooks. To keep your textbook current, investigate some of the latest
developments in this area and write a one-page elabo ration to insert at the end of
Section 6.10. Use the World- Wide Web to explore the characteristics of the lastest
processors from Intel or AM D as a starting point.
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§6. ! , page 384: 1. Stall on the LW result. 2. Bypass the ADD result. 3. No stall or
bypass required.
§6.2, page 399: Statements 2 and 5 are correct; the rest are incorrect.
§6.6, page 426: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction.
§6.7, " page 6.7-3: Statements ! and 3 are both true.
§6.7, " page 6.7-7: Only statement #3 is completely accurate.
§6.8, page 432: Only #4 is totally accurate. #2 is partially accurate.
§6.9, page 447: Speculation: both; reorder buffer: hardwa re; register renaming:
both; out -of-o rder execution: hardwa re; predication: softwa re; branch prediction:
both; VLI W: softwa re; superscalar: hardwa re; EPI C: both, since there is substantial
hardwa re support; multiple issue: both; dynamic scheduling: hardwa re.
§6. !0, page 450: All the statements are false.

Answers to
Check Yourself
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Mass Communication
without Gatekeepers

Computers
in the

Real World

Problem to solve: Offer society sources of
news and opinion beyond those found in the
traditional mass media.

Solution: Use the Internet and World Wide
Web to se lect and publish nontraditional and
non10ca1 news sources.

The Internet holds the promise of allowing
citizens to communicate without the informa

tion first being interpreted by traditional mass
media like television, newspapers, and maga
zines. To see what the future might be, we
could look at countries that have widespread,
high-speed Internet access.

One place is South Korea. In 2002, 68% of
South Korean households had broadband access,

compared to 15% in the United States and 8% in

Western Europe. (Broadband is generally digital

subscriber loop or cable speeds, about 300 to

WOO Kbps.) The main reason for the greater pen

etration is that 70% of households are in large cit

ies and almost half are found in apartments.

Hence, the Korean telecommunications industry

could afford to quickly offer broadband to 90%

of the households.

What was the impact of widespread high

speed access on Korean society? Internet news

sites became extremely popular. One example

is OhMyNews, which publishes articles from

anyone after first checking that the facts in the

article are correct.

Many believe that Internet news services

influenced the outcome of the 2002 Korean

presidential election. First, they encouraged

more young people to vote. Second, the win

ning candidate advocated politics that were
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closer to those popular on the Internet news

services. Together they overcame the disad 

vantage that most major media organizations

endo rsed his opponent.

Google News is another example of nontra

ditional access to news that goes beyond the

mass media of one country. It searches inter
national news se rvices for topics, and then

summarizes and displays them by populari ty.
Rather than leaving the decision o f what arti 

cles should be on the front page to local news

paper editors, the worldwide media decides.

In addition, by providing links to stories from

many countries, the reader ge ts an interna

tional perspective rather than a local one. It

also is updated many times a day unlike a daily

newspaper. The figure below compares the

New York Times front page to the Google News

Web site on the same day.

The widespread impact of these technolo

gies reminds us that computer engineers have

responsibilities to their communities . We

must be aware of societal values concerning
privacy, security, free speech, and so on to

ensure that new technological innovations
enhance those va lues rather than inadvertently

compromising them.

To learn more see these references on

the II library

D "Seriously wired:' The Economist, April 17,2003.

D OhMyNews, www.ohmynews.com

D Coogle News, www. news.google.co lTl

JUdge Rules Out a Death Penalty lor 9/11
Suspect
Rebuke for Justice Dept.

Poll Shows Drop In COnndence on Bush
Skillin Handling Crises
Country on Wrong Track, SaY5 Solid
Major~y
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big stories with natio nal news, local news, and sports. Google News has many stories per headline from around the world, with links the reader

can follow. Google stories vary by time of d.1 y and hence are mo re recent.
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Ideally one wonld desire an indefinitely large memory
capacity such that any particular word would be
immediately available. ... We are forced to
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Introduction

temporal locality The princi
ple stating that if a data location
is referenced then it will tend to
be referenced again soon.

spatial locality The locality
principle stating that if a data
location is referenced, data loca
tions with nearby addresses will
tend to be referenced soon.

From the ea rliest days of computing, programmers have wa nted unlimited
amounts of fast memory. The topics we will look at in this chapter aid program 
mers by creating the illusion of unlimited fast memo ry. Before we look at how the
illusion is actually created , let's consider a simple analogy th at illustrates the key
principles and mechanisms that we lise.

Suppose you were a student writing a term paper on important historica l
developments in computer hardwa re. You are sitting at a desk in a library with a
collection of books that you have pulled from the shelves and are exa mining. You
find that several of the important computers that you need to write about are
described in the books you have, but there is nothing about the EDSAC. There
fore, you go back to the shelves and look for an additional book. You find a book
on ea rly British computers that covers EDSAC. Once you have a good selection of
books on the desk in front of you, there is a good p robability that many of the top
ics you need can be found in them , and you may spend most of your time just
using the books on the desk without going back to the shelves. Having several
books on the desk in front of you saves time compared to having only one book
there and constantly having to go back to the shelves to return it and take out
another.

The sa me principle allows us to crea te the illusion of a large memo ry that we
ca n access as fast as a very small memory. Just as you did not need to access all the
books in the library at once with equal probability, a program does not access all
of its code or data at once with equal probability. Otherwise, it would be impossi
ble to make most memory accesses fast and still have large memory in computers,
just as it would be impossible for you to fit all the library books on your desk and
still find what you wa nted quickly.

This principle of locality underlies both the way in which you did your work in
the library and the way th at p rograms operate. The principle of loca lity states that
programs access a relatively small portion of their address space at any instant of
time, just as you accessed a very small po rtion of the library's collection. There are
two different types of locality:

• Temporal locality (locality in time): If an item is referenced , it will tend to
be referenced again soon. If you recently brought a book to your desk to
look at, you will probably need to look at it again soon.

• Spatial locality (loca lity in space): If an item is referenced , items whose
addresses are close by will tend to be referenced soon. For exa mple, when
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you brought out the book on ea rly English computers to find out about
EDSAC, you also noticed that there was another book shelved next to it
about ea rly mechanical computers, so you also brought back that book too
and , later on , found something useful in that book. Books on the sa me topic
are shelved together in the library to increase spatial locality. We'll see how
spa tial locality is used in memory hiera rchies a little later in this chapter.

Just as accesses to books on the desk naturally exhibit locality, loca lity in pro
gra ms arises from simple and natural program structures. For example, most pro
gra ms contain loops, so instructions and data are likely to be accessed repeatedly,
showing high amounts of temporal locality. Since instructions are normally
accessed sequentially, programs show high spa tial locality. Accesses to data also
exhibit a natural spatial locality. For exa mple, accesses to elements of an array or a
record will naturally have high degrees of spatial locality.

We take advantage of the principle of loca lity by implementing the memory of
a computer as a memory hierarchy. A memory hierarchy consists of multiple lev
els of memory with different speeds and sizes. The faster memories are more
expensive per bit than the slower memories and thus smaller.

Today, there are three primary techn ologies used in building memory hierar
chies. Main memory is implemented from DRAM (dynamic random access
memory), while levels closer to the processor (caches) use SRAM (static random
access memory). DRAM is less costly per bit than SRAM, although it is substan 
tially slower. The price difference arises because DRAM uses significa ntly less
area per bit of memory, and DRAMs thus have larger capacity for the same
amount of silicon; the speed difference arises from several factors described in
Section B.8 of Appendix B. The third technology, used to implement the largest
and slowest level in the hierarchy, is magnetic disk. The access time and price
per bit va ry widely among these technologies, as the table below shows, using
typ ica l va lues for 2004:

Memory technology typical access time $ per GB In 2004

SRAM 0.5--5 ns $4000-.$10,000
DRAM 50- 70 ns $100-$200

Magnetic disk 5,OOO,CX>O-20,()(X),OOO ns $0.5Q-.$2

Because of these differences in cost and access time, it is advantageous to build
memory as a hiera rchy of levels. Figure 7. 1 shows the faster memory is close to the
processor and the slower, less expensive memory is below it. The goal is to present
the user with as much memory as is ava ilable in the cheapest technology, while
providing access at the speed offered by the fastest memory.

469

m emor y hierarchy A struc
ture that uses multiple levels of
memories; as the distance from
the CPU increases, the size of
the memories and the access
time both increase.
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S peed

Fastest

Slowest

CPU Size

Smallest

Biggest

Cost (Sib il)

Highest

Lowest

Current

Technology

SRAM

DRAM

Magnetic Disk

blo(;k The minimum unit of
information that can be either
present or not present in the
t\Vo-level hierarchy.

hit rate The fraction ofmem
ory accesses found in a cache.

FIGURE 7.1 The basic structure of a memory hierarchy. By implementing the memory system
as a hierarchy, the user has the iUusion of a memory that is as large as the largest level of the hierarchy, but
can be accessed as jf it were aU buill from the fastest memory.

The memory system is orga nized as a hierarchy: a level closer to the processor
is generally a subset of any level further away, and all the data is stored at the low
est level. By analogy, the books on your desk fo rm a subset of the library you are
working in, which is in turn a subset of all the libraries on ca mpus. Furthermore,
as we move away from the processo r, the levels take progressively longer to access,
just as we might encounter in a hierarchy of ca mpus libraries.

A memory hierarchy can consist of multiple levels, but data is copied between
only two adjacent levels at a time, so we can focus our attention on just two levels.
The upper level- the one closer to the processor-is smaller and faster (since it
uses more expensive technology) than the lower level. Figure 7.2 shows that the
minimum unit of inform ation that ca n be either present or not present in the
two- level hierarchy is called a block or a line; in our library analogy, a block of
information is one book.

If the data requested by the processor appea rs in some block in the upper level,
this is called a hit (analogous to your finding the information in one of the books
on your desk). If the data is not found in the upper level, the request is called a
miss. The lower level in the hierarchy is then accessed to retrieve the block con
taining the requested data. (Continuing our analogy, you go from your desk to the
shelves to find the desired book.) The hit rate, or hit ratio, is the fraction of mem
o ry accesses found in the upper level; it is often used as a measure of the perfor-
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Processor

~

Data a re translerred

FtGURE 7.2 Every pair of levels In the memory hierarchy can be thought of as having an
upper and lower level. Within each level, the unit of information that is present or not is called a block.
Usually we transfer an emire block when we copy something between levels .

mance of the memory hiera rchy. The miss rate (I - hit rate) is the fraction of
memo ry accesses not found in the upper level.

Since perfo rmance is the majo r reason for having a memo ry hierarchy, the time
to service hits and misses is important. Hit time is the time to access the upper
level of the memory hiera rchy, which includes the time needed to determine
whether the access is a hit or a miss (that is, the time needed to look th rough the
books on the desk). The miss penalty is the time to replace a block in the upper
level with the corresponding block from the lower level, plus the time to deliver
this block to the processor (or, the time to get another book from the shelves and
place it on the desk). Because the upper level is smaller and built using faster
memo ry pa rts, the hit time will be much smaller than the time to access the next
level in the hiera rchy, which is the major component of the miss penalty. (The
time to examine the books on the desk is much smaller than the time to get up
and get a new book from the shelves. )

As we will see in this chapter, the concepts used to build memory systems
affect many other aspects of a co mputer, in cluding how th e operating system
manages memo ry and 110, how com pilers generate code, and eve n how appli 
cations use th e co mputer. Of course, because all programs spend much of
th eir time access ing memo ry, th e memo ry system is necessa rily a majo r fac to r
in determinin g perfo rm ance. The reliance on memo ry hierarchies to achieve
performance has mea nt that programmers, who used to be able to think of
memory as a flat , rand om access sto rage device, now need to understand

miss rate The fraction of
memory accesses not found in a
level of the memory hierarchy.

hit time The time required to
access a level of the memory
hierarchy, including the time
needed to determine whether
the access is a hit or a miss.

miss penalty The time
required to fetch a block into a
level of the memory hierarchy
from the lower level, including
the time to access the block,
transmit it from one level to the
other, and insert it in the level
that experienced the miss.
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mem ory hierarchies to get good performance. We sh ow how imp ortant this
understand ing is with two exa mples.

Since memory systems are so critical to performance, computer designers have
devoted :I lot of attention to these system s and developed sophistica ted mecha
nisms for improving the performance of the memo ry system. In this chapter, we
will see the major conceptual ideas, although many simplifications and abst rac
tions have been used to keep the material manageable in length and complexity.
We cou ld easily have written hundreds of pages on memory systems, as dozens of
recent doctoral theses have demonst rated.

Wh ich of the following statements are generally t rue?

I . Caches take advantage of tem po ral locality.

2. On a read , the value returned depends on wh ich blocks are in the cache.

3. Most of the cost of the memory hierarchy is at the highest level.

Programs exhibit both temporal locality, the tendency to reuse recently
accessed data items, and spatial locality, the tendency to reference data
items that are close to other recently accessed items. Memory hierarchies
take adva ntage of temporal locality by keeping more recently accessed
data item s closer to the processor. Memory hierarchies take advantage of
spatial locality by moving blocks consisting of multiple contiguous words
in memory to upper levels of the hierarchy.

Figure 7.3 shows that a memory hierarchy uses smaller and faster
mem ory technologies close to the processor. Thus, accesses that hit in the
highest level of the hierarchy can be processed quickly. Accesses that miss
go to lower levels of the hierarchy, which are larger but slower. If the hit
rate is high enough, the memory hierarchy has an effective access time
close to that of the highest (and fastest ) level and a size equal to that of
the lowest (and largest) level.

In most systems, the memo ry is a true hierarchy, meaning that data
cannot be present in level i unless it is also present in level i + I.
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CPU

1
Increasing distance

from the CPU in

access time

Level 2Levels in the

memory hierarchy~ ""

Level n

• •
Size of the memory at each level

FIGURE 7.3 This diagram shows the structure of a memory hierarchy: as the distance
from the processor Increases, so does the size. This structure with the appropriate operating
mechanisms allows the processor to have an access time that is determined prim.1rily by level I of the hier
archy and yet have a memory as large as levell!. Maintaining this illusion is the subject of this chapter.
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a
local area network as the next levels of the hier.1rchy.

The Basics of Caches

In our library exa mple, the desk acted as a cache-a sa fe place to store things
(books) that we needed to exa mine. Cache was the name chosen to represent the
level of the mem ory hierarchy between the processor and main memory in the
first commercial computer to have this extra level. Today, although this remains
the dominant use of the wo rd cache, the term is also used to refer to any sto rage
managed to take advantage of locality of access. Caches first appea red in resea rch
computers in the ea rly 1960s and in production computers later in that sa me
decade; every general-purpose computer built today, from servers to low-power
embedded processors, includes caches.

In this section , we begin by looking at a very simple cache in which the p rocessor
requests are each one word and the blocks also consist of a single word. (Readers
already familiar with cadle basics may wa nt to skip to Section 7.3 on page 492. )

Cache: a safe place for hid
ing or storing things.

Webster's New Wo rld D iction
ary of the American Langllage,
Third College Edition ( 1988)



474 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

x,
X,

X
n

_
2

X
n

_
1

X,

X,

a. Before the reference to x"

X,

X,
X

n
_

2

X
n

_
1

X,

Xo

X,

b. After the reference to Xn

direct-mapped cache A cache
structure in which each memory
location is mapped to exactly
one location in the cache.

FIGURE 7.4 The cache just before and just after a reference to a word Xn that Is not
Initially In the cache. This reference causes a miss that forces the cache to fetch x" from memory and
insert it into the cache.

Figu re 7.4 shows such a simple cache, before and aft er requesting a data item that is
not initially in the cache. Before the request, the cache contains a collection of recent
references X I> X2>••• , Xn - 1' and the processor requests a word XII that is not in the
cache. This request results in a miss, and the wo rd Xn is b rought from memory into
cache.

In looking at the scenario in Figure 7.4, there are two questions to
answer: How do we know if a data item is in the cache? Moreover, if it is, how do
we find it? The answers to these two questions are related. If each wo rd can go in
exactly one place in the cache, then it is straightforwa rd to find the wo rd if it is in
the cache. The simplest way to assign a location in the cache for each word in
memo ry is to assign the cache location based on the address of the word in mem 
o ry. This cache structure is called direct mapped , sin ce each memory loca tion is
mapped directly to exactly one loca tion in the cache. The typical mapping
between addresses and cache locations for a direct-mapped cache is usually sim 
ple. For example, almost all direct-mapped caches use the mapping

(Block address) modulo (Number of cache blocks in the cache)

This mapping is attractive beca use if the number of entries in the cache is a power
of two, then modulo ca n be computed simply by using the low-order log2 (cache
size in blocks) bits of the address; hence the cache may be accessed directly with
the low-o rder bits. For example, Figure 7.5 shows how the memo ry addresses



7.2 The Basics of Caches

Cache
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oo1סס 00101 01001 10001

Memory

11 001 111 01

FIGURE 7.5 A dlrec:t-mapped cache with eight entries showing the addresses of memory
words between 0 and 31 that map to the same cache locations. Because there are eight words in
the cache, an address X maps to the cache mJrd X mooulo 8. That is, the low-order log2(8) = 3 bits are used as
the cache index. Thus, addresses <XXXl1 1wo> 01OO1two> HXXl11wo> and ll001m.., all map to ent ry 00lm", of the
cache, while addresses 001011wo> 011011wo> 101011wo> and 11101m.., all map to ent ry 101m.., of the cache.

between I ten (OOoo l two) and 29ten (I I 10 I two) map to loca tions I ten (OO l two ) and
Sten ( I O l tmJ) in a direct-mapped cache of eight words.

Because each cache location ca n contain the contents of a number of different
memo ry locations, how do we know whether the data in the cache corresponds to
a requested word? That is, how do we know whether a requested word is in the
cache or not? We answer this question by adding a set of tags to the cache. The
tags contain the address information required to identify whether a word in the
cache corresponds to the requested word. The tag needs only to contain the upper
portion of the address, co rresponding to the bits th at are not used as an index into
the cache. For example, in Figure 7.5 we need only have the upper 2 of the S
address bits in the tag, since the lower 3-bit index field of the address selects the
block. We exclude the index bits beca use they are redundant, since by definition
the index field of every address must have the sa me value.

We also need a way to recognize that a cache block does not have va lid infor
mation. For instance, when a processor starts up, the cache does not have good

tag A field in a table used for a
mem ory hierarchy that contains
the address information required
to identify whether the associated
block in the hierarchy corre
sponds to a requested word.
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valid bit Afield in the tables of a
m emory hierarchy that indicates
that the associated block in the
hierarchy contains valid data.
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data, and the tag fi elds will be mea ningless. Even after executing many instruc
tions, some of the cache entries may still be empty, as in Figure 7.4. Thus, we need
to know that the tag should be ignored for such entries. The most common
method is to add a valid bit to ind icate whether an entry contains a va lid address.
If the bit is not set , there ca nnot be a match for this block.

For the rest of this section , we will focus on explaining how reads work in a
cache and how the cache control works for reads. In general, handling reads is a
little simpler than handling writes, since reads do not have to change the contents
of the cache. After seeing the basics of how rea ds wo rk and how cache misses can
be handled , we'll exa mine the cache designs for rea l computers and detail how
these caches handle writes.

Accessing a Cache

Figure 7.6 shows the contents of an eight -word direct-mapped cache as it
respond s to a series of requests from the p rocesso r. Since there are eight blocks in
the cache, the low-o rder 3 bits of an address give the block number. Here is the
action for each reference:

Decimal address Binary address Hit or miss Assigned cache block
of reference of reference In cache (where found or placed)

22 10110r..., miss (7 .6b) (10110_ mod 8) - 11Ot-

26 11010""" miss (7.&) (11010_ mod 8) _ 010_

22 10110""" hit (10 110_ mod 8) - 110_

26 11010""" hit (11010_ mod 8) " 010_

16 1()(XlO_ miss (7 .6d) (1()(X)Q_ mod 8) " 000_

3 00011.,.,., miss (7 .6e) (00011""" mod 8) _ 011_

16 1()()()()_ hit (1()(X)Q_ mod 8) " 000_

18 10010""" miss (7 .6f) (10010""" mod 8)" 010_

When the word at address 18 (1001O,wo) is b rought into cache block 2
(O IO,wo)' the word at address 26 (i IOlO two)' which was in cache block 2
(0101\,.0)' must be replaced by th e newly requested data. This behavio r allows a
cache to take adva ntage of tempo ral loca lity: recently accessed words replace
less recently referenced words. This situation is directly analogous to needing a
book from the shelves and having no more space on your desk-some book
alrea dy on your desk must be returned to the shelves. In a direct-mapped cache,
there is only one place to put the newly requested item and hence only one
choice of what to replace.
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FIGURE 7.6 The cache contents are shown after each reference request that misses. with the Index and tag fields shown In
binary. The cache is initially empty, with all valid bits (V entry in cache) turned off (N). The processor requests the following addresses: 10110lwo
(miss), 1l01Oty,"O (miss ), 1011Otv."O (hit), 1101Oty,"O (hit ), HXXXlty,"O (miss), OOOlltwo (miss), HXXXlty,"O (hit), and l00lOty,"O (miss). The figures show the
cache contents after each miss in the sequence has been handled. When address l00lOtwo (18) is referenced, the entry for address llOlOtwo (26) must
be replaced, and a reference to 1101Otv."O wiU cause a subsequent miss. The tag field wiU contain only the upper portion of the address. The full address
of a word contained in cache block i with tag field j for this cache is j x 8 + ;, or equivalently the concatenation of the tag field j and the index;. For
example, in cache f above, index 010 has tag 10 and corresponds to address 10010.
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We know where to look in the cache fo r each possible address: the low-o rder
bits of an address ca n be used to find the unique cache entry to which the address
could map. Figure 7.7 shows how a referenced address is divided into

• a cache index, which is used to select the block

• a tag field , which is used to compare with the value of the tag fi eld of the
cache

,

• • • •••

Byt.
offset

Hit 20 10
T, g

Index Dot

Index Valid Tag D' fa
0
1
2

•••

•••

•••

1021
1022
1023

20 32

-0
Y

Address (showing bit positions)

3130 13 1211 21 0

FIGURE 7.7 For this cache, the lower portion of the address Is used to select a cache
entry consisting of a data word and a tag. The tag from the cache is compared against the upper
portion of the address to determine whether the entry in the cache corresponds to the requested address.
Because the cache has 210 (or 1024) words and a block size of I word, 10 bits are used to index the cache,
leaving 32 - 10 - 2 = 20 bits to be compared against the tag. If the tag and upper 20 bits of the address are
equal and the valid bit is on, then the request hits in the cache, and the word is supplied to the processor.
Otherwise, a miss occurs.
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The index of a cache block, together with the tag contents of that block, uniquely
specifies the memory address of the word contained in the cache block. Because
the index field is used as an address to access the cache and because an n-bit field
has 2" values, the total number of entries in a direct-mapped cache must be a
power of two. In the M IPS architecnlfe, since words are aligned to multiples of 4
bytes , the least significa nt 2 bits of every address specify a byte within a word and
hence are ignored when selecting the word in the block.

The total number of bits needed for a cache is a function of the cache size and
the address size because the cache includes both the storage for the data and the
tags. The size of the block above was one word, but normally it is severa l. Assuming
the 32-bit byte address, a direct-mapped cache of size 2~ blocks with 2m-word
(2m+2_byte) blocks will require a tag field whose size is 32 - (n + m + 2) bits
because n bits are used for the index, m bits are used for the word within the block,
and 2 bits are used for the byte part of the address. The total number of bits in a
direct-mapped cache is 2" X (block size + tag size + valid fi eld size). Since the block
size is 2m words (2m+S bits) and the address size is 32 bits, the number of bits in
such a cache is 2~ X (m X 32 + (32 - 11 - /1l - 2) + 1) = 2" X (m X 32 + 31- 11 - /1l).
However, the naming convention is to excludes the size of the tag and valid field
and to count only the size of the data.

Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KB of
data and 4-word blocks, assuming a 32-bit address?

We know that 16 KB is 4K words, which is 212 words, and, with a block size of
4 words (22

) , 210 blocks. Each block has 4x 32 or 128 bits of data plus a tag,
which is 32 - 10 - 2 - 2 bits, plus a valid bit. Thus, the total cache size is

210 X(128+(32-1O-2-2)+ 1) = 2 lO x 147 = 147 Kbits

or 18.4 KB for a 16 KB cache. For this cache, the total number of bits in the
cache is about 1.1 5 times as many as needed just for the storage of the data.

EXAMPLE

ANSWER

479
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Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. What block
number does byte address 1200 map to?

We saw the formula on page 474. The block is given by

( Block address) modulo (Number of cache blocks)

where the address of the block is

Byte address
Bytes per block

Notice that this block address is the block containing all addresses between

l Byte address jX Bytes per block
Bytes per block

and

l Byte address jX Bytes per block + ( Bytes per block - 1)
Bytes per block

Thus, with 16 bytes per block, byte address 1200 is block address

l l~~J = 75

which maps to cache block number (75 modulo 64) = 11. In fact, this block
maps all addresses between 1200 and 12 15.

Larger blocks exploit spatial locality to lower miss rates. Ai; Figure 7.8 shows,
increasing the block size usually decreases the miss rate. The miss rate may go up
eventually if the block size becomes a significa nt fraction of the cache size because
the number of blocks that ca n be held in the cache will become small , and there
will be a great deal of competition for those blocks. Ai; a result, a block will be
bumped out of the cache before many of its words are accessed. Stated alterna
tively, spatial locality among the words in a block decreases with a very large
block; consequently, the benefits in the miss rate become smaller.
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FIGURE 7.8 Miss rate versus block size. Note that miss rate actually goes up if the block size is too
large relative to the cache size. Each line represents a cache of different size. (This figure is independent of
associativity, discussed soon.) Unfortunately, SPEC2000 traces would take too long if block size were
included, so these data are based on SPEC92.

A more serious problem associa ted with just increasing the block size is that the
cost of a miss increases. The miss penalty is determined by the time requi red to
fetch the block from the next lower level of the hiera rchy and load it into the
cache. The time to fetch the block has two parts: the latency to the first word and
the transfer time fo r the rest of the block. Clea rly, unless we change the memory
system , the transfer time-and hence the miss penalty-will increase as the block
size grows. Furthermore, the imp rovement in the miss rate starts to decrease as
the blocks become larger. The result is that the increase in the miss penalty over
whelms the decrease in the miss rate for large blocks, and cache performance thus
decreases. Of course, if we design the memory to transfer larger blocks more effi 
ciently, we ca n increase the block size and obtain further improvements in cache
performance. We discuss this topic in the next section .

Elaboration: The major disadvantage of increasing the block s ize is that the cache
miss penalty increases . Although it is hard to do anyth ing about the latency component
of the miss penalty, we may be able to hide some of the transfer ti me so that the miss
penalty is effectively sma ller. The simplest method for doing this, ca lled early restart , is
s imply to resume execution as soon as the requested word of the block is returned,
rather than wait for the ent ire block. Many processors use this technique for instruction



482

(;ache miss A request for data
from the cache that cannot be
filled because the data is not
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access, where it works best. Instruction accesses are largely sequential, so if the memo
ory system can deliver a word every clock cycle, the processor may be able to restart
operation when the requested word is returned, with the memory system delivering new
instruction words just in time. This technique is usually less effective for data caches
because it is likely that the words will be requested from the block in a less predictable
way, and the probability that the processor will need another word from a different
cache block before the transfer completes is high . If the processor cannot access the
data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the
requested word is transferred from the memory to the cache first . The remainder of the
block is then transferred, starting with the address after the requested word and wrap
ping around to the beginning of the block. This technique, called requested word first, or
critical word first, can be slightly faster than early restart, but it is limited by the same
properties that limit early restart.

Handling Cache Misses

Before we look at the cache of a real system, let's see how the control unit deals
with cache misses. The control unit must detect a miss and process the miss by
fetching the requested data from memory (or, as we shall see, a lower-level cache).
If the cache reports a hit , the computer continues using the data as if nothing had
happened. Consequently, we can use the same basic control that we developed in
Chapter 5 and enhanced to accommodate pipelining in Chapter 6. The memories
in the datapath in Chapters 5 and 6 are simply replaced by caches.

Modifying the control of a processor to handle a hit is trivial; misses, however,
require some extra work. The cache miss handling is done with the processor con
trol unit and with a separate controller that initiates the memory access and refills
the cadle. The processing of a cache miss creates a stall, similar to the pipeline stalls
discussed in Chapter 6, as opposed to an interrupt, which would require saving the
state of all registers. For a cache miss, we can stall the entire processor, essentially
freezing the contents of the temporary and programmer-visible registers, while we
wait for memory. In contrast, pipeline stalls, discussed in Chapter 6, are more com
plex because we must continue executing some instructions while we stall others.

Let's look a little more closely at how instruction misses are handled for either
the multicycle or pipelined datapath; the same approach can be easily extended to
handle data misses. If an instruction access results in a miss, then the content of
the Instruction register is invalid. To get the proper instruction into the cache, we
must be able to instruct the lower level in the memory hierarchy to perform a
read. Since the program counter is incremented in the first clock cycle of execu
tion in both the pipelined and multicycle processors, the address of the instruc
tion that generates an instruction cache miss is equal to the value of the program
counter minus 4. Once we have the address, we need to instruct the main memory
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to perform a read. We wa it for the memory to respond (since the access will take
multiple cycles), and then write the words into the cache.

We ca n now define the steps to be taken on an instruction cache miss:

I. Send the original PC va lue (current PC - 4) to the memory.

2. Instruct main memory to perform a read and wa it for the memory to com 
plete its access.

3. Write the cache entry, putting the data from memory in the data portion of
the entry, writing the upper bits of the address (from the ALU ) into the tag
fi eld, and turning the valid bit on.

4. Restart the instruction execution at the first step, which will refetch the
instruction, this time finding it in the cache.

The control of the cache on a data access is essentially identical: on a miSS, we
simply stall the processor until the memory responds with the data.

Handling Writes

Writes work somewhat differently. Suppose on a sto re instruction, we wrote the
data into only the data cache (without changing main mem ory); then, after the
write into the cache, memory would have a different value from that in the cache.
In such a case, the cache and memo ry are sa id to be inconsistent. The simplest way
to keep the main memory and the cache consistent is to always write the data into
both the memo ry and the cache. This scheme is called write-through.

The other key aspect of writes is what occurs on a write miss. We first fetch the
words of the block from memory. After the block is fetched and placed into the
cache, we can overwrite the word that caused the miss into the cache block. \Ve
also write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide very good
performance. With a write-through scheme, every write causes the data to be written
to main memory. These writes will take a long time, likely at least 100 processor clock
cycles, and could slow down the processor considerably. For the SPEC2000 integer
benchmarks, for example, 10% of the instructions are stores. If the CPI without
caclle misses was 1.0, spending 100 extra cycles on every write would lead to a C PI of
1.0 + 100 x 10% = II , reducing performance by more than a factor of 10.

One solution to this problem is to use a write buffer. A write buffer stores the
data while it is waiting to be written to memory. After writing the data into the
cache and into the write buffer, the processor can continue execution. When a
write to main memory completes, the entry in the write buffer is freed. If the write
buffer is full when the processor reaches a write, the processor must stall until
there is an empty position in the write buffer. Of course, if the rate at which the
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write-through A scheme in
which writes always update both
the cache and the memory,
ensuring that data is always con
sistent between the two.

write buffer A queue that holds
data while the data are waiting to
be written to memory.
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memory can complete writes is less than the rate at which the processor is gener
ating writes, no amount of buffering can help because writes are being generated
faster than the memory system can accept them.

The rate at which writes are generated may also be less than the rate at which
the memory can accept them , and yet stalls may still occur. This can happen when
the writes occur in bursts. To reduce the occurrence of such stalls, processors usu
ally increase the depth of the write buffer beyond a single entry.

The alternative to a write-through scheme is a scheme called write-back. In a
write-back scheme, when a write occurs, the new value is written only to the block
in the cache. The modified block is written to the lower level of the hierarchy
when it is replaced. Write-back schemes can improve performance, especially
when processors can generate writes as fast or faster than the writes can be han
dled by main memory; a write-back scheme is, however, more complex to imple
ment than write-through.

In the rest of this section, we describe caches from real processors, and we
examine how they handle both reads and writes. In Section 7.5, we will describe
the handling of writes in more detail.

Elaboration: Writes introduce several complications into caches that are not present
for reads . Here we discuss two of them : the policy on write misses and efficient imple
mentation of writes in write-back caches .

Consider a miss in a write-through cache . The strategy followed in most write
through cache designs, called fetch<!n-miss, fetch<m-write, or sometimes aliocate<Jn
miss, allocates a cache block to the address that missed and fetches the rest of the
block into the cache before writing the data and continuing execution . Alternatively, we
could either allocate the block in the cache but not fetch the data (called no-fetch<!n
write), or even not allocate the block (called no-aliocate<Jn-write). Another name for
these strategies that do not place the written data into the cache is write-around, since
the data is written around the cache to get to memory. The motivation for these
schemes is the observation that sometimes programs write entire blocks of data
before reading them . In such cases, the fetch associated with the initial write miss may
be unnecessary. There are a number of subtle issues involved in implementing these
schemes in multiword blocks, including complicating the handling of write hits by requir
ing mechanisms similar to those used for write-back caches.

Actually implementing stores efficiently in a cache that uses a write-back strategy is
more complex than in a write-through cache . In a write-back cache, we must write the
block back to memory if the data in the cache is dirty and we have a cache miss. If we
simply overwrote the block on a store instruction before we knew whether the store had
hit in the cache (as we could for a write-through cache), we would destroy the contents
of the block, which is not backed up in memory. A write-through cache can write the
data into the cache and read the tag; if the tag mismatches, then a miss occurs.
Because the cache is write-through, the overwriting of the block in the cache is not cat
astrophic since memory has the correct value .
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In a write-back cache, because we cannot overwrite the block, stores either require
two cycles (a cycle to check for a hit follo'Ned by a cycle to actually perform the write) or
require an extra buffer, called a store buffer, to hold that data-effectively allowing the
store to take only one cycle by pipelining it. When a store buffer is used, the processor
does the cache lookup and places the data in the store buffer during the normal cache
access cycle . Assuming a cache hit, the new data is written from the store buffer into
the cache on the next unused cache access cycle.

By comparison, in a write-through cache, writes can always be done in one cycle.
There are some extra complications with multiword blocks, however, since we cannot
simply overwrite the tag when we write the data . Instead, we read the tag and write the
data portion of the selected block. If the tag matches the address of the block being
written, the processor can continue normally, since the correct block has been updated.
If the tag does not match, the processor generates a write miss to fetch the rest of the
block corresponding to that address. Because it is always safe to overwrite the data,
write hits still take one cycle.

Many write-back caches also include write buffers that are used to reduce the miss
penalty when a miss replaces a dirty block. In such a case, the dirty block is moved to
a write-back buffer associated with the cache while the requested block is read from
memory. The write-back buffer is later written back to memory. Assuming another miss
does not occur immediately, this technique halves the miss penalty when a dirty block
must be replaced .

An Example Cache: The Intrinsity FastMATH processor

The Intrinsity FastMATH is a fast embedded microprocessor that uses the MIPS
architecture and a simple cache implementation. Near the end of the chapter, we
will examine the more complex cache design of the Intel Pentium 4, but we start
with this simple, yet real, example for pedagogical reasons. Figure 7.9 shows the
orga nization of the Intrinsity FastMATH data cache.

This processor has 12-stage pipeline, similar to that discussed in Chapter 6.
When operating at peak speed, the processor can request both an instruction
word and a data word on every clock. To satisfy the demands of the pipeline with
out stalling, separate instruction and data caches are used. Each cache is 16 KB, or
4K words, with 16-word blocks.

Read requests for the cache are straightforward. Because there are separate data
and instruction caches, separate control signals will be needed to read and write
each cache. (Remember that we need to update the instruction cache when a miss
occurs.) Thus, the steps for a read request to either cache are as follows:

I. Send the address to the appropriate cache. The address comes either from
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines.
Since there are 16 words in the desired block, we need to select the right
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Address (showing bit positions)
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FIGURE 7.9 11Ie 16 KB caches In the Intrinslty FastMATH each contain 256 blocks with 16 words per block. The tag field IS 18 bIts
wide and the index field is 8 bits wide, while a 4-bit field (bits 5- 2) is used to index the block and select the mJrd from the block using a 16-to-1 multi
plexor. In practice, to elimin.1le the multiplexor, caches U'ie a separate large RAM for the data and a smaller RAM for the tags, with the block offset supply
ing the extra address bits for the large data RAM. In this case, the large RAM is 32 bits wide and mU'it have 16 tinles as many words as blocks in the cache.

one. A block index field is used to control the multiplexor (shown at the
bottom of the figure), which selects the requested word from the 16 words
in the indexed block.

3. If the cache signals miss, we send the address to the main memory. When
the memo ry returns with the data, we write it into the cache and then read
it to fulfill the request.

For writes, the Intrinsity FastM ATH offers both write-through and write-back,
leaving it up to the operating system to decide which strategy to use for an appli
cation. It has a one-entry write buffer.
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Instruction miss rate

0.496

Data miss rate

11.496

Effective combined miss rate

3 .2%
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FtGURE 7.10 Approximate Instruction and data miss rates for the Intrlnslty FastMATH
processor for SPEC2000 benchmarks. The combined miss rate is the effective miss rate seen for the
combination of the 16 KB instruction cache and 16 KB data cache. It is obtained by weighting the instruc
tion and data individual miss rates by the frequency of instruction and data references.

\-¥hat cache miss rates are attained with a cache strucnlre like that used by the
lntrinsity FastMATH? Figure 7.10 shows the miss rates for the instruction and
data caches for the SPEC2000 integer benchmarks. The combined miss rate is the
effective miss rate per reference for each program after accounting for the differ
ing frequency of instruction and data accesses.

Although miss rate is an important characteristic of cache designs, the ultimate
measure will be the effect of the memory system on program execution time; we'll
see how miss rate and execution time are related shortly.

Elaboration: A combined cache with a total size equal to the sum of the two split
caches will usually have a better hit rate . This higher rate occurs because the combined
cache does not rigidly divide the number of entries that may be used by instructions
from those that may be used by data . Nonetheless, many processors use a split
instruction and data cache to increase cache bandwidth.

Here are miss rates for caches the size of those found in the Intrinsity FastMATH
processor, and for a combined cache whose size is equal to the total of the two caches:

• Total cache size : 32 KB

• Split cache effective miss rate: 3 .24%

• Combined cache miss rate: 3 .18%

The miss rate of the split cache is only slightly worse .
The advantage of doubling the cache bandwidth , by supporting both an instruction

and data access simultaneously, easily overcomes the disadvantage of a slightly
increased miss rate . This observation is another reminder that we cannot use miss rate
as the sole measure of cache performance, as Section 7.3 shows .

Designing the Memory System to Support Caches

Cache misses are satisfied from main memory, which is constructed from
DRAMs. In Section 7.1, we saw that DRAMs are designed with the primary
emphasis on density rather than access time. Although it is difficult to reduce the
latency to fetch the first word from memory, we can reduce the miss penalty if we
increase the bandwidth from the memory to the cache. This reduction allows

split cache A scheme in which
a level of the memory hierarchy
is composed oftwo independent
caches that operate in parallel
with each other with one

handling instructions and one
handling data.
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larger block sizes to be used while still maintaining alow miss penalty, similar to
that for a smaller block.

The processor is typica lly connected to memory over a bus. The clock rate of
the bus is usually much slower than the processor, by as much as a fa ctor of 10.
The speed of this bus affects the miss penalty.

To understand the impact of different organizations of memory, let's define a
set of hypothetical memory access times. Assume

• 1 memory bus clock cycle to send the address

• 15 memory bus clock cycles for each DRAM access initiated

• 1 memory bus clock cycle to send a word of data

If we have a cache block of four words and a one-word-wide bank of DRAMs,
the miss penalty would be 1+ 4 X 15 + 4 X 1= 65 memory bus clock cycles. Thus,
the number of bytes transferred per bus clock cycle for a single miss would be

4 x 4 = 0.25
65

Figure 7.11 shows three options for designing the memory system. The first
option follows what we have been assuming: memory is one word wide, and all
accesses are made sequentially. The second option in creases the bandwidth to
memory by widening the memory and the buses between the processor and mem
ory; this allows parallel access to all the words of the block. The third option
increases the bandwidth by widening the memory but not the interconnection
bus. Thus, we still pay a cost to transmit each word, but we ca n avoid paying the
cost of the access latency more than once. Let's look at how much these other two
options improve the 65-cycle miss penalty that we would see for the first option
(Figure 7. 11 a).

Increasing the width of the memory and the bus will increase the memory
bandwidth proportionally, decreasing both the access time and transfer time por
tions of the miss penalty. With a main memory width of two words, the miss pen
alty drops from 65 memory bus clock cycles to 1+ 2 X 15 + 2 X 1 = 33 memory
bus clock cycles. With a four-word-wide memory, the miss penalty is just 17
memory bus clock cycles. The bandwidth for a single miss is then 0.48 (almost
twice as high) bytes per bus clock cycle for a memory that is two words wide, and
0.94 bytes per bus clock cycle when the memory is four words wide (almost four
times higher). The major costs of this enhancement are the wider bus and the
potential increase in cache access time due to the multiplexor and control logic
between the processor and cache.

Instead of making the entire path between the memory and cache wider, the
memory chips can be orga nized in banks to read or write multiple words in one
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FtGURE 7.11 The primary method of achieving higher memory bandwidth Is to Increase the physical or logical width of the
memory system. In this figure, memory bandwidth is improved two ways. The simplest design, (a), uses a memory where all components are one
word wide; (b) shows a wider memory, bus, and cache; while (c) shows a narrow bus and cache with an interleaved memory. In (b), the logic between
the cache and processor consists of a multiplexor used on reads and control logic to update the appropriate words of the cache on writes.

access time rather than reading or writing a single word each time. Each ba nk
could be one wo rd wide so th at the width of the bus and the cache need not
change, but sending an address to several banks permits them all to read simulta
neously. This scheme, which is ca lled interleaving, retains the adva ntage of incur
ring the full memory latency only once. For example, with four ba nks, the time to
get a four-word block would consist of 1 cycle to transmit the address and read
request to the banks, 15 cycles fo r all four banks to access memory, and 4 cycles to
send the four words back to the cache. This yields a miss penalty of 1 + 1 X 15 + 4
X I = 20 memory bus clock cycles. This is an effective bandwidth per miss of 0.80
bytes per clock, or about three times the bandwidth for the one-wa rd-wide mem-
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ory and bus. Banks are also valuable on writes. Each bank can write indepen
dently, quadrupling the write bandwidth and leading to fewer stalls in a write
through cache. As we will see, an alternative strategy for writes makes interleaving
even more attractive.

Elaboration: Memory chips are organized to produce a number of output bits, usu
ally 4 to 32, with 8 or 16 being the most popular in 2004. We describe the organization
of a RAM as d x w, where d is the number of addressable locations (the depth) and w is
the output (or width of each location). One path to improving the rate at which we trans
fer data from the memory to the caches is to take advantage of the structure of
DRAMs. DRAMs are logically organized as rectangular arrays, and access time is
divided into row access and column access . DRAMs buffer a row of bits inside the
DRAM for column access . They also come with optional timing signals that allow
repeated accesses to the buffer without a row access time. This capability, originally
called page mode, has gone through a series of enhancements. In page mode, the
buffer acts like an SRAM; by changing column address, random bits can be accessed in
the buffer until the next row access. This capability changes the access time signifi
cantly, since the access time to bits in the row is much lower. Figure 7.12 shows how
the density, cost, and access time of DRAMS have changed over the years.

The newest development is DDR SDRAMs (double data rate synchronous DRAMs).
SDRAMs provide for a burst access to data from a series of sequential locations in the
DRAM. An SDRAM is supplied with a starting address and a burst length . The data in
the burst is transferred under control of a clock signal, which in 2004 can run at up to

Total access time to Column access
Year Introduced Chip size $ per MB a new row/ column time to existing row

1980 64 Kbit $1500 250 ns 150 ns

1983 256 Kbit $500 185 ns 100 ns

1985 1 Mbit $200 135 ns 40 ns

1989 4 Mbit $50 110 ns 40 ns

1992 16 Mbit $15 90 ns 30 ns

1996 64 Mbit $10 60 ns 12 ns

1998 128 Mbit $4 60ns 10 ns

2000 256 Mbit $1 55ns 7"
2002 512 Mbit $0.25 50", 5 "'
2004 1024 Mbit $0.10 45ns

3 "'

FIGURE 7.12 DRAM size Increased by multiples of four approximately once every three
years until 1996, and thereafter doubling approximately every two years. The improve
ments in access time have been slower but continuous, and cost almost tracks density improvements,
although cost is often affected by other issues, such as availability and demand. The cost per meg.1byte is not
adjusted for inflation.
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300 MHz. The two key advantages of SDRAMs are t he use of a clock that eliminates
the need to synchron ize and the elimination of the need to supply successive
addresses in the burst. The DDR part of the name means data transfers on both t he
leading and falling edge of the clock, thereby getting twice as much bandwidth as you
might expect based on the c lock rate and the data width. To de liver such high band
width, the internal DRAM is organized as interleaved memory ba nks.

The advantage of these optimizations is that they use the c ircuitry already large ly on
the DRAMs, add ing little cost to the system wh ile achieving a sign ificant improvement
in ba ndwidth . The internal architecture of DRAMs and how these opt imizations are
implemented are described in Section 8 .8 of II Appendix 8.

Summary

We began the previous section by examining the simplest of caches: a direct -mapped
cadle with a one-word block. In such a cadle, both hits and misses are simple, since a
word ca n go in exactly one location and there is a separate tag for every word. To keep
the cache and memory consistent, a write-through scheme can be used, so that every
write into the cache also causes memory to be updated. The alternative to write
through is a write-back scheme that copies a block back to memory when it is
replaced; we'll discuss this scheme further in upcoming sections.

To take advantage of spatial locality, a cache must have a block size larger than
one word. The use of a larger block decreases the miss rate and improves the effi 
ciency of the cache by reducing the amount of tag storage relative to the amount
of data storage in the cache. Although a larger block size decreases the miss rate, it
ca n also increase the miss penalty. If the miss penalty increased linea rly with the
block size, la rger blocks could easily lead to lower perform ance. To avoid this, the
bandwidth of main memory is increased to transfer cache blocks more effi ciently.
The two common methods fo r doing this are making the memory wider and
interleaving. In both cases, we reduce the time to fetch the block by minimizing
the number of times we must start a new memo ry access to fetch a block, and ,
with a wider bus, we can also decrease the time needed to send the block from the
memo ry to the cache.

The speed of the memo ry system affects the designer's decision on the size of the
cache block. \Vhich of the following cache designer guidelines are generally valid?

1. The shorter the memory latency, the smaller the cache block.

2. The shorter the memory latency, the larger the cache block.

3. The higher the memory bandwidth , the smaller the cache block.

4. The higher the memory bandwidth, the larger the cache block.

Check
Yourself
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Measuring and Improving Cache
Performance

In this section , we begin by looking at how to measure and analyze cache perfor
mance; we then explo re two different techniques for improving cache perfor
mance. One focuses on reducing the miss rate by reducing the probability that
two different mem ory blocks will contend fo r the same cache location. The sec
ond technique reduces the miss penalty by adding an additional level to the hier
archy. This technique, called multilevel caching, first appea red in high -end
computers selling for over $1 00,000 in 1990; since then it has become common on
desktop computers selling fo r less than $1000!

CPU time ca n be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends wa iting for the memory
system. Normally, we assume that the costs of cache accesses that are hits are part
of the normal CPU execution cycles. Thus,

CPU time = (CPU execution clock cycles + Memory-stall clock cycles)
x Clock cycle time

The memory-stall clock cycles come primarily from cache misses, and we make
that assumption here. We also restrict the discussion to a simplified model of the
memo ry system. In rea l processors, the stalls generated by reads and writes ca n be
quite complex, and accurate performance prediction usually requires very
deta iled simulations of the processor and mem ory system.

Memory-stall clock cycles ca n be defined as the sum of the stall cycles coming
from rea ds plus th ose coming from writes:

Memory-stall clock cycles = Rea d-stall cycles + Write-stall cycles

The rea d-stall cycles ca n be defined in terms of the number of rea d accesses per
program , the miss penalty in clock cycles for a rea d, and the read miss rate:

Read-stall cycles = Reads X Rea d miss rate X Rea d miss penalty
Program

Writes are mo re complicated. For a write-th rough scheme, we have two sources of
stalls: write misses, which usually require that we fetch the block befo re continu 
ing the write (see the Elaboration on page 484 for more details on dealing with
writes), and write buffer stalls, which occur when the write buffer is full when a
write occurs. Thus, the cycles stalled for writes equals the sum of these two:
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Write-stall cycles (
Writes I" ·· I" .. I )X 'v nte miss rate X 'v nte miss pena ty

Program

+ Write buffer stalls

Memory-stall clock cycles

Because the write buffer stalls depend on the timing of writes, and not just the
frequency, it is not possible to give a simple equation to compute such stalls. For
tunately, in systems with a reasonable write buffer depth (e.g., four or more
words) and a memory capable of accepting writes at a rate that significantly
exceeds the average write frequency in programs (e.g., by a factor of two) , the
write buffer stalls will be small, and we ca n safely ignore them. If a system did not
meet these criteria, it would not be well designed; instead, the designer should have
used either a deeper write buffer or a write-back organization.

Write-back schemes also have potential additional stalls arising from the need
to write a cache block back to memory when the block is replaced. We will discuss
this more in Section 7.5.

In most write- th rough cache o rga nizations, the rea d and write miss penalties
are the same (the time to fetch the block from memory). If we assume that the
write buffer stalls are negligible, we can combine the reads and writes by using a
single miss rate and the miss penalty:

Memory accesses XMiss rate X Miss penalty
Program

We ca n also factor this as

Memory-stall clock cycles = Instructions X Misse~ XMiss penalty
Program InstructIOn

Let's consider a simple example to help us understand the impact of cache perfor
mance on processor performance.

Calculating Cache Performance

Assume an instruction cache miss rate for a program is 2% and a data cache
miss rate is 4%. If a processo r has a CPI of 2 without any memory stalls and
the miss penalty is 100 cycles fo r all misses, determine how much faster a p ro
cesso r would run with a perfect cache that never missed. Use the instruction
frequencies for SPECint2000 from Chapter 3, Figure 3.26, on page 228.

EXAMPLE
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The number of memory miss cycles for instructions in terms of the Instruc
tion count (I ) is

Instruction miss cycles = I X 2 % X 100 = 2.00 X I

The frequency of all loads and stores in SPECint2000 is 36%. Therefore. we ca n
find the number of memory miss cycles for data references:

Data miss cycles = I X 36% X 4 % X 100 = 1.44 X I

The total number of memory-stall cycles is 2.00 I + 1.44 I = 3.44 I. This is
more than 3 cycles of memory stall per instruction. Accordingly, the CP! with
mem ory stalls is 2 + 3.44 = 5.44. Since there is no change in instruction count
or clock rate, the ratio of the CPU execution times is

CPU time with stalls
CPU time with perfect cache

CP! stall

CPI prrfect

I X CPI stall X Clock cycle

I X CPl prrfect X Clock cycle

5.44

2

The performance with the perfect cache is better by 5.44
2

2.72 .

Wh at happens if the processor is made faster, but the memory system is not?
The amount of time spent on memory stalls will take up an increasing fraction of
the execution time; Amdahl's law, which we examined in Chapter 4, reminds us of
this fact. A few simple examples show how serious this problem ca n be. Suppose
we speed up the computer in the previous example by reducing its CPl from 2 to 1
without changing the clock rate, which might be done with an imp roved pipeline.
The system with cache misses would then have a CPI of 1 + 3.44 = 4.44, and the
system with the perfect cache would be

4.44 = 4.44 times fa ster
1

The amount of execution time spent on memory stalls would have risen from

to

3.44
5.44

= 63 %
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3.44
4.44

77%

Similarly, increa sing clock rate without changing the memory system also
increases the performance lost due to cache misses, as the next example shows.

Cache Performance with Increased Clock Rate

Suppose we increase the performance of the computer in the previous exam 
ple by doubling its clock rate. Sin ce the main memory speed is unlikely to
change, assume that the absolute time to handle a cache miss does not
change. How much faster will the computer be with the faster clock, assum 
ing the sa me miss rate as the previous exa mple?

Measured in the fa ster clock cycles, the new miss penalty will be twice as
many clock cycles, or 200 clock cycles. Hence:

Total miss cycles per instruction = (2% X 200) + 36% X (4% X 200) = 6.88

Thus, the faster computer with cache misses will have a CPI of 2 + 6.88 =
8.88, compared to a CPI with cache misses of 5.44 for the slower computer.

Using the formula for CPU time from the previous exa mple, we ca n compute
the relative performance as

EXAMPLE

ANSWER

Performance with fa st clock
Performance with slow clock

Execution time with slow clock
Execution time with fast clock

IC X CPIslow dock X Clock cycle

IC CPI Clock 9'cle
X fast dock X 2

5.44

8.88 X ~
1.23

Thus, the computer with the fa ster clock is about 1.2 times faster rather than
2 times faster, which it would have been if we ignored cache misses.
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As these exa mples illustrate, relative cache penalties increase as a processor
becomes faster. Furtherm ore, if a processor improves both clock rate and CPI , it
suffers a double hit:

I. The lower the CPI , the more pronoun ced the impact of stall cycles.

2. The main mem ory system is unlikely to improve as fast as processor cycle
time, primarily because the perfo rm ance of the underlying DRAM is not
getting much faster. When ca lculating CPI , the cache miss penalty is mea
sured in processor clock cycles needed for a miss. Therefore, if the main
mem ories of two p rocesso rs have the same absolute access times, a higher
processor clock rate leads to a larger miss penalty.

Thus, th e importance of cache perfo rm ance for processo rs with low CPI and
high clock rates is greater, and co nsequently the danger of neglecting cache
behavio r in assessing the performance of such processors is greater. As we will
see in Sectio n 7.6, th e use of fast, pipelined processo rs in desktop PCs and
wo rkstations has led to the use of sophist ica ted cache system s even in comput 
ers sellin g fo r less th an a $1000.

The previous examples and equations assume th at th e hit tim e is not a fac
to r in determining cache perfo rmance. Clea rly, if the hit time increases, the
total time to access a word from th e m emo ry system will in crease, possibly
causin g an increase in the p rocesso r cycle time. Alth ough we will see addi 
tional exa mples of what ca n in crease hit time shortly, o ne exa mple is in creas
ing the cache size. A larger cache could clea rly have a lo nger access time, just
as if your desk in the library was very large (say, 3 square meters), it wo uld
take lo nger to loca te a book on the desk. With pipelines deeper than fi ve
stages, an in crease in hit tim e likely adds another stage to th e pipeline, sin ce it
may take multiple cycles for a cache hit. Alth ough it is mo re co mplex to ca lcu 
late the performance impact of a deeper pipelin e, at so me po int the increase in
hit time for a larger cache could d ominate the imp rovem ent in hit rate, lea d 
ing to a decrease in p rocesso r perfo rman ce.

The next subsection discusses alternative cache organizations that decrease
miss rate but may sometimes increase hit time; additional exa mples appea r in Fal
lacies and Pitfalls (Section 7.7).

Reducing Cache Misses by More Rexible Placement
of Blocks

So far, when we place a block in the cache, we have used a simple placement
scheme: A block can go in exactly one place in the cache. As mentioned ea rlier, it
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is ca lled direct mapped because there is a direct mapping from any block address in
memory to a single location in the upper level of the hiera rchy. There is actually a
whole range of schemes for placing blocks. At one extreme is direct mapped,
where a block ca n be placed in exactly one location.

At the other extreme is a scheme where a block can be placed in any location in
the cache. Such a scheme is ca lled fully associative because a block in memory
may be associated with any entry in the cache. To find a given block in a fullyasso
ciative cache, all the entries in the cache must be sea rched because a block ca n be
placed in anyone. To make the sea rch practical, it is done in parallel with a com 
parator associated with each cache entry. These comparators significantly increase
the hardware cost, effectively ma king fully associative placement practical only for
caches with small numbers of blocks.

The middle range of designs between direct mapped and full y associative is
ca lled set associative. In a set-associative cache, th ere are a fi xed number of
locations (at least two) where each block ca n be placed; a set -associative cache
with n locations for a block is ca lled an n-way set -associative cache. An n-way
set -associative cache con sists of a number of sets, each of which con sists of n
blocks. Ea ch block in the mem ory maps to a unique set in the cache given by th e
ind ex fi eld, and a block can be placed in any element of that set. Thus, a set
associa tive placement combin es direct-mapped placement and full y associa tive
placement: a block is directly mapped into a set, and th en all the blocks in the
set are sea rched for a match.

Remember that in a direct-mapped cache, the position of a mem ory block is
given by

(Block number) modulo (Number of cache blocks)

In a set -associative cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)

Since the block may be placed in any element of the set, all the tags ofall the ele
ments of the set must be sea rched. In a full y associa tive cache, the block can go
anywhere and all tags ofall the blocks in the cache must be sea rched. For exa mple,
Figure 7. 13 shows where block 12 may be placed in a cache with eight blocks total,
according to the block placement policy fo r direct-mapped, two-way set -associa
tive, and fully associative caches.

We can think of every block placement strategy as a va riation on set asso
ciativity. Figure 7. 14 shows the possible associativity strucnlfes for an eight-block
cache. A direct-mapped cache is simply a one-way set -associative cache: each
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full y associative cache A
cache structure in which a block
can be placed in any location in
the cache.

set-associative cache Acache
that has a fixed number ofloca
tions (at least two) where each
block can be placed.
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Direct mapped Set associative Fully associative

Block # 0 1 2 34 5 67

Data

Set #

Data

2 3

Data

T, g

Search

1

2
T,g

Search

1

2
T, g

Search

1

2

1
FIGURE 7.13 The location of a memory block whose address Is 12 In a cache with 8 blocks varies for dlrect-mapped, set
associative, and fully associative placement. In direct-mapped placement, there is only one cache block where memory block 12 can be
found, and that block is given by (12 mooulo 8) = 4. In a lm>-wayset-associative cache, there would be four sets, and memory block 12 must be in set
( 12 mod 4) = 0; the memory block could be in either element of the set . In a fully associative placement, the memory block for block address 12 can
appear in any oflhe eight cache blocks.

cache entry holds one block and each set has one element. A full y associa tive
cache with 111 entries is simply an /1l-way set-associative cache; it has one set with
111 blocks, and an ent ry ca n reside in any block within that set.

The adva ntage of increasing the degree of associa tivity is th at it usually
decreases the miss rate, as the next exa mple shows. The main disa dva ntage, which
we discuss in more detail shortly, is an increase in the hit time.
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One-way set associative

(di rec t mapped)

Block Tag Data

o
1

2

3

4

5

6

7

Two-way set associative

Set Tag Data Tag Data

o
1

2

3

Sol

o
1

Four-way set associative

Tag Data Tag Data Tag Data Tag Data

I EE I EE I
Eight-way set associative (full y associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

D 00_-----,DOD OOL-I 00

FtGURE 7.14 An elght-block cache configured as direct mapped, two-way set associa
tive, four-way set associative, and fully associative. The total size of the cache in blocks is equal
to the munber of sets times the associativity. Thus, for a fixed cache size, increasing the associativity
decreases the nwnber of sets, while increasing the munber of elements per set. With eight blocks, an eight
way set-associative cache is the same as a fully associative cache.

Misses and Associativity in Caches

Assume there are three small caches, each consisting of four one-word blocks.
One cache is fully associative, a second is two-way set associative, and the
third is direct mapped. Find the number of misses for each cache organiza
tion given the following sequence of block addresses: 0, 8, 0,6,8.

EXAMPLE
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The direct-mapped case is easiest. First, let's determine to which cache block
each block address maps:

Block address Cache block

0 (0 modulo 4) '" 0

6 (6 modulo 4) '" 2

8 (S modulo 4) '" 0

Now we ca n fill in the cache contents after each reference, using a blank entry
to mea n that the block is invalid , colored text to show a new entry added to
the cache for the associate reference, and a plain text to show an old entry in
the cache:

Address of memory
block accessed •

Contents of cache blocks after reference

0 miss Memory(O]

8 miss Memory(8]

0 miss Memory(O]

6 miss Memory[O) Memory[6)

8 miss Memory(8] Memory[6]

The direct-mapped cache generates five misses for the fi ve accesses.

The set-associative cache has two sets (with indices 0 and 1) with two ele
ments per set. Let's first determine to which set each block address maps:

Block address Cache set

0 (0 modulo 2) '" 0

6 (6 modulo 2) _ 0

8 (8 modulo 2) _ 0

Because we have a choice of which entry in a set to replace on a miss, we need
a replacement rule. Set-associa tive caches usually replace the least recently
used block within a set; that is, the block that was used furthest in the past is
replaced. (We will discuss replacement rules in m ore detail shortly. ) Using
this replacement rule, the contents of the set-associative cache after each ref
erence looks like this:
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..Address of memory Contents of cache blocks after reference

block accessed Set 0 Set 0 Set 1 Set 1

0 miss Memory(O]

8 miss Memory[O) Memory[8)

0 hit Memory[O) Memory[8]

6 miss Memory[O) Memory[6)

8 miss Memory(8] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has
been less recently referenced than block o. The two-way set-associative cache
has four misses, one less th an the direct-mapped cache.

The fully associative cache has four cache blocks (in a single set); any memo
ry block can be stored in any cache block. The fully associative cache has the
best performance, with only three misses:

..Address of memory Contents of cache blocks after reference

block accessed Block 0 Block 1 Block 2 Block 3

0 miss Memory(O]

8 miss Memory[O) Memory[8)

0 hit Memory[O) Memory[8]

6 miss Memory[O) Memory[8] Memory(6)

8 hit Memory[O) Memory[8] Memory[6]

For this series of references, three misses is the best we ca n do because three
unique block addresses are accessed. Notice that if we had eight blocks in the
cache, there would be no replacements in the two-way set-associative cache
(check this for you rself) , and it would have the same number of misses as the
fully associative cache. Similarly, if we had ]6 blocks, all three caches would
have the sa me number of misses. This change in miss rate shows us that cache
size and associativity are not independent in determining cache performance.

How much of a reduction in the miss rate is achieved by associativity? Figure 7.] 5
shows the improvement for the SPEC2000 bendlmarks for a 64 KB data cache with
a ]6-wo rd block, and associativity ranging from direct mapped to eight -way. Going
from one-way to two-way associativity decreases the miss rate by about ]5%, but
there is little further improvement in going to higher associativity.
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Associativity Data miss rate

1 10.396

2 8.6%

4 8.3%

8 8.1%

FIGURE 7.15 The data cache miss rates for an organization like the Intrlnslty FastMATH
processor for SPEC2000 benchmarks with associativity varying from one-way to eight·
way. These results for 10 SPEC2000 programs are from Hennessy and Patterson [2003 ].

Locating a Block in the Cache

Now, let's consider the task of finding:l block in :I cache that is set associative. Just
as in a direct -mapped cache, each block in a set -associative cache includes an
address tag that gives the block address. The tag of every cache block within the
appropriate set is checked to see if it m atches the block address from the proces
sor. Figure 7.1 6 shows how the address is decomposed. The index value is used to
select the set containing the address of interest, and the tags of all the blocks in the
set must be sea rched. Because speed is of the essence, all the tags in the selected set
a re sea rched in parallel. As in a fully associa tive cache, a sequential search would
make the hit time of a set -associative cache too slow.

If th e to tal cache size is kept the sa me, increasin g the associativity increases
the number of blocks per set , which is the number of simultaneou s compares
needed to perfo rm the sea rch in parallel: each increase by a facto r of two in
associa tivity doubles the number of blocks per set and halves the number of
sets. Acco rdingly, each factor-o f-two in crease in associa tivity decreases the size
of the index by I bit and increases the size of the tag by I bit. In a fully associa
tive cache, there is effectively only one set, and all the blocks must be checked in
parallel. Thus, there is no ind ex, and the entire address, excluding the block off
set, is compared aga inst the tag of every block. In other wo rds, we sea rch th e
entire cache without any indexing.

In a direct -mapped cache, such as in Figu re 7.7 on page 478, only a single com 
parato r is needed, because the entry ca n be in only one block, and we access the
cache simply by indexing. Figure 7.1 7 shows that in a four-way set-associa tive
cache, four comparators a re needed, together with a 4-to- 1 multiplexor to choose

T, g Index Block Offset

FIGURE 7.16 The three portions of an address In a set·assoclatlve or dlrect-mapped
cache. The index is used to seleC1 the set, then the tag is used to choose the block by comparison with the
blocks in the selected set . The block offset is the address of the desired data within the block.
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Address
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FIGURE 7.17 The Implementation of a four-way set-associative cache requires four comparators and a 4-to-l multiplexor.
The comparators determine which element of the selected set (if any) matches the tag. The output of the comparators is used to select the data from
one of the four blocks of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output enable signals on the
data portions of the cache RAMs can be used to select the entry in the set that drives the output. The Output enable signal comes from the compara
tors, causing the element that matches to drive the data outputs. This organization eliminates the need for the multiplexor.

among the four potential members of the selected set. The cache access consists of
indexing the appropriate set and then searching the tags of the set. The costs of an
associative cache are the extra comparators and any delay imposed by having to
do the compare and select from among the elements of the set.

The choice among direct-mapped, set-associative, or fully associative mapping
in any memory hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardware.
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Size of Tags versus Set Associativity

Increasing associativity requires more comparators, and more tag bits per cache
block. Assuming a cadle of 4K blocks, a four-word block size, and a 32-bit ad
dress, find the total number of sets and the total number of tag bits for caches that
are direct mapped, two-way and four-way set associative, and fully associative.

Since there are 16 (=24) bytes per block, a 32-bit address yields 32 - 4 = 28
bits to be used fo r ind ex and tag. The direct -mapped cache has the sa me
number of sets as blocks, and hence 12 bits of index, sin ce log2(4K) = 12;
hence, the total number of tag bits is (28 - 12) X4K = 16 X4K = 64 Kbits.

Each degree of associativity decreases the number of sets by a factor of two and
thus decreases the number of bits used to index the cadle by one and increases the
number of bits in the tag by one. Thus, for a two-way set-associative cache, there
are 2Ksets,and the total number of tag bits is (28-11 ) X2x 2K= 34 X2K= 68 Kbits.
For a four-way set-associative cache, the total number of sets is IK, and the total
number of tag bits is (28 - 10) X4 X IK = 72 X IK = 72 Kbits.

For a fully associative cache, there is only one set with 4K blocks, and the tag
is 28 bits, lea ding to a total of 28 X4K X I = 11 2K tag bits .

Choosing Which Block to Replace

When a miss occurs in a direct-mapped cache, the requested block ca n go in
exactly one position , and the block occupying that position must be repla ced. In
an associative cache, we have a choice of where to place the requested block, and
hence a choice of which block to replace. In a fully associative cache, all blocks are
ca ndidates for repla cement. In a set-associative cache, we must choose among the
blocks in the selected set.

The most commonly used scheme is least recently used (LRU), which we used
in the previous example. In an LRU scheme. The block repla ced is the one th at has
been unused for the longest time. LRU replacement is implemented by keeping
track of when each element in a set was used relative to the other elements in the
set. For a two-way set -associative cache, tracking when the two elements were
used can be implemented by keeping a single bit in each set and setting the bit to
indicate an element whenever that element is referenced. As associativity
increases, implementing LRU gets harder; in Section 7.5, we will see an alternative
scheme for replacement.
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Reducing the Miss Penalty Using Multilevel Caches

All m odern computers m ake use of caches. In m ost cases, these caches are imple
mented on the sam e die as the m icrop rocessor that form s the processor. To fur
ther close the gap between the fast clock rates of m odern processors and the
relatively long time required to access DRAMs, m any microprocessors support an
additional level of caching. This second -level cache, which can be on the sa m e
chip or off-chip in a sepa rate set of SRAMs, is accessed whenever a miss occurs in
the prima ry cache. If the second -level cache contains the desired data, the miss
penalty for the first-level cache wiII be the access time of the second -level cache,
wh ich will be much less than the access time of m ain m em or y. If neither the pri 
m ary nor seconda ry cache contains the data, a m ain m em ory access is required ,
and a larger miss penalty is incurred.

How significant is the perfo rma nce improvem ent from the use of a secondary
cache? The next exa mple shows us.

Performance of Multilevel Caches

Suppose we have a p rocesso r with a base CPI of 1.0, assuming all references
hit in the prima ry cache, and a clock rate of 5 G Hz. Assume a m ain mem o ry
access time of 100 ns, including all the miss handling. Suppose the miss rate
per instruction at the primary cache is 2% . How much faster wiII the proces
so r be if we add a secondary cache that has a 5 ns access time for either a hit
or a miss and is large enough to reduce the miss rate to m ain m em ory to
0.5% ?

The miss penalty to m ain mem ory is

100 ns
(;~d~; '" 500 clock cycles0.2 n.

dock cyd..

EXAMPLE
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The effective CPI with one level of caching is given by

To tal CPI = Base CPI + Memory-stall cycles per instructio n

For the processor with o ne level o f caching,

Total CPI = 1.0 + Memory-stall cycles per instructio n = 1.0 + 2% x 500 = 11.0

With two levels of cache, a miss in the primary (or first-level) cache ca n be
satisfied either by the secondary cache or by main m em ory. The miss penalty
for an access to the second-level cache is

5 ns
0.2 ns

dock cyd~

25 clock cycles

If the miss is satisfied in the secondary cache, then this is the entire miss penal
ty. If the miss needs to go to main mem ory, then the total miss penalty is the
sum of the secondary cache access time and the main m emory access time.

Thus, for a two- level cache, total CPI is the sum of the stall cycles from both
levels of cache and the base CPI:

Total CPI = 1 + Primary stalls per instructio n
+ Secondary stalls per instructio n
= 1 + 2% x 25 + 0.5% x 500 = 1 + 0.5 + 2.5 = 4.0

Thus, the processor with the secondary cache is faster by

11.0 = 2.8
4.0

Alternatively, we could have computed the stall cycles by summing the stall cycles
of those references that hit in the secondary cache ((2% - 0.5%) x 25 = 0.4) and
those references that go to main memory, which must include the cost to access
the seco nda ry cache as well as the main memory access time (0.5% x (25 + 500) =

2.6). The sum , 1.0 + 0.4 + 2.6, is again 4.0.
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The design considerations for a primary and secondary cache are significa ntly
different because the presence of the other cache changes the best choice versus a
single-level cache. In particular, a two-level cache structure allows the primary
cache to focus on minimizing hit time to yield a shorter clock cycle, while allow
ing the secondary cache to focus on miss rate to reduce the penalty of long mem 
o ry access times.

The interaction of the two caches permits such a focus. The miss penalty of the
primary cache is significantly reduced by the presence of the secondary cache,
allowing the primary to be smaller and have a higher miss rate. For the secondary
cache, access time becomes less important with the presence of the primary cache,
since the access time of the secondary cache affects the miss penalty of the pri 
mary cache, rather than directly affecting the primary cache hit time o r the pro
cesso r cycle time.

The effect of these changes on the two caches ca n be seen by comparing each
cache to the optimal design for a single level of cache. In comparison to a single
level cache, the primary cache of a multilevel cache is often smaller. Furthermore,
the primary cache often uses a smaller block size, to go with the smaller cache size
and reduced miss penalty. In comparison , the secondary cache will oft en be larger
than in a single-level cache, since the access time of the secondary cache is less
crit ical. With a larger total size, the secondary cache often will use a larger block
size than appropriate with a single-level cache

In Chapter 2, we saw that Qu ickso rt had an algorithmic adva ntage over Bubble
Sort that could not be overcome by language or compiler optimization. Figure
7.18(a) shows instructions executed by item sea rched for Radix Sort versus Qu ick
sort. Indeed, for large arrays, Radix Sort has an algo rithmic advantage over quick
sort in terms of number of operations. Figure 7. 18(b) shows time per key instea d
of instructions executed. We see th at the lines start on the sa me trajectory as Fig
ure 7.18(a) , but then the Radix Sort line diverges as the data to so rt increases.
What is going on? Figure 7.1 8(c) answers by looking at the cache misses per item
sorted: Qu icksort consistently has many fewer misses per item to be so rted.

Alas, standard algorithmic analysis ignores the impact of the memo ry hierar
chy. As faster clock rates and Moore's law allow architects to squeeze all of the per
formance out of a strea m of instructions, using the memory hierarchy well is
critical to high performance. As we sa id in the int roduction, understanding the
behavior of the memory hierarchy is crit ical to understanding the performance of
programs on today's computers.
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caches, rather than just a cache
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FIGURE 7.18 Comparing Quicksort and Radix Sort by (a) Instructions executed per Item
sorted, (b ) time per Item sorted, and (e) cache misses per Item sorted. This data is from a
paper by LaMarca and Ladner [1 9% 1. Although the numbers would change for newer computers, the
idea still holds. Due to such results, new versions of Radix Sort have been invented that take memory hierar
ch)' into accOlUlt, to regain its algorithmic advantages (see Section 7.7). The oosic idea of cache optimiza
tions is to use aU the data in a block repeatedly before it is replaced on a miss.
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Elaboration: Multilevel caches create several complications . First, there are now
several different types of misses and corresponding miss rates. In the example on
page 499, we saw the primary cache miss rate and the global miss rate- the fraction
of references that missed in all cache levels. There is also a miss rate for the second
ary cache, which is the ratio of all misses in the secondary cache divided by the num
ber of accesses. This miss rate is called the local miss ra te of the secondary cache.
Because the primary cache filters accesses, especially those with good spatial and
temporal locality, the local miss rate of the secondary cache is much higher than the
global miss rate . For the example on page 499, we can compute the local miss rate of
the secondary cache as: 0.5%/2% = 25%! Luckily, the global miss rate dictates how
often we must access the main memory.

Additional complications arise because the caches may have different block sizes to
match the larger or smaller total size . Likewise, the associativity of the cache may
change. On-chip caches are often built with associativity of four or higher, while off-chip
caches rarely have associativity of greater than two. On chip Ll caches tend to have
lower associativity than one chip L2 caches since fast hit time is more important for Ll
caches. These changes in block size and associativity introduce complications in the
modeling of the caches, which typically mean that all levels need to be simulated
together to understand the behavior.

Elaboration: With out-of-order processors, performance is more complex, since they
execute instructions during the miss penalty. Instead of instruction miss rate and data
miss rates, we use misses per instruction, and this formula :
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global m iss ra te The fraction
of references that miss in all lev
e1s of a multilevel cache.

local m iss ra te The fraction of
references to one level ofa cache
that miss; used in multilevel
hierarchies.

Memory stall cycles _
Instruction

Misse.s X (Total miss latency - Overlapped miss latency)
Instruction

There is no general way to calculate overlapped miss latency, so evaluations of
memory hierarchies for out-of-order processors inevitably require simulation of the pro
cessor and memory hierarchy. Only by seeing the execution of the processor during
each miss can we see if the processor stalls waiting for data or simply finds other work
to do. A guideline is that the processor often hides the miss penalty for an Ll cache
miss that hits in the L2 cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy
varies bet.....een different implementations of the same architecture in cache size, asso
ciativity, block size, and number of caches . To copy with such variability, some recent
numerical libraries parameterize their algorithms and then search the parameter space
at runtime to find the best combination for a particular computer.
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Which of the following is generally true about a design with multiple levels of
caches?

1. First-level caches are more concerned about hit time, and second -level
caches are more concerned about miss rate.

2. First-level caches are more concerned about iniSS rate, and second -level
caches are more concerned about hit time.

Summary

In this section, we focused on three topics: cache performance, using associativity
to reduce miss rates, and the use of multilevel cache hierarchies to reduce miss
penalties.

Since the total number of cycles spent on a program is the sum of the processor
cycles and the memory-stall cycles, the memory system can have a significant effect
on program execution time. In fact, as processors get faster (by lowering CPI or by
increasing the clock rate or both), the relative effect of the memory-stall cycles
increases, making good memory systems critical to achieving high performance.
The number of memory-stall cycles depends on both the miss rate and the miss
penalty. The challenge, as we will see in Section 7.5, is to reduce one of these factors
without significantly affecting other critical factors in the memory hierarchy.

To reduce the miss rate, we exa mined the use of associative placement schemes.
Such schemes ca n reduce the miss rate of a cache by allowing more flexible place
ment of blocks within the cache. Fully associative schemes allow blocks to be
placed anywhere, but also require that every block in the cache be searched to sat 
isfy a request. This sea rch is usually implemented by having a comparator per
cache block and searching the tags in parallel. The cost of the comparators makes
large fully associative caches impractical. Set-associative caches are a practical alter
native, since we need only search am ong the elements of a unique set that is cho
sen by indexing. Set -associative caches have higher miss rates but are fa ster to
access. The amount of associativity that yields the best performance depends on
both the techn ology and the details of the implementation.

Finally, we looked at multilevel caches as a technique to reduce the miss pen
alty by allowing a larger secondary cache to handle misses to the primary cache.
Second -level caches have become comm onpla ce as designers find that limited
silicon and th e goa ls of high clock rates prevent primary caches from becoming
large. Th e secondary cache, which is often 10 or more times larger than the pri
mary cache, handles many accesses that miss in the primary cache. In su ch
cases, the miss penalty is that of the access time to the secondary cache (typically
< 10 processor cycles) versus the access time to memory (typ ica lly> 100 proces
sor cycles). As with associa tivity, the design trad e-o ffs between th e size of th e
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secondary cache and its access time depend on a number of aspects of the
implementation.

Virtual Memory

In the previous section , we saw how caches p rovided fast access to recently used
portions of a program's code and data. Similarly, the main mem ory ca n act as a
"cache" fo r the second ary storage, usually implemented with m agnet ic disks. This
technique is ca lled virtual memory. Histo rically, there were two major motiva
tions for virtual memory: to allow effi cient and sa fe sharing of mem ory among
multiple programs, and to remove the programming burdens of a sm all, limited
amount of main memo ry. Four deca des aft er its invention, it's the former reason
that reigns today.

Consider a collection of p rograms running at once on a computer. The total
memo ry required by all the programs may be much larger than the amount of
main memory ava ilable on the computer, but only a fraction of this memory is
actively being used at any point in time. Ma in mem ory need contain only the
active portions of the many programs, just as a cache contain s only the active por
tion of one p rogram. Thus, the principle of locality enables virnlal memory as
well as caches, and virnlal memory allows us to effi ciently share the processo r as
well as the main memory. Of course, to allow multiple p rograms to share the sa me
memo ry, we must be able to protect the programs from each other, ensuring that
a program ca n only rea d and write the portions of main memory that have been
assigned to it.

We ca nnot kn ow which programs will share th e memory with other pro
grams when we co mpile them. In fact, the programs sh aring the mem ory
change dynamically while the p rogram s are running. Beca use of this dynamic
interaction, we would like to compile each p rogram into its own address space
separate range of memo ry loca tions accessible only to this program. Virtual
memory implement s the translation of a p rogram's address space to physical
addresses. This translation p rocess enforces protection of a program's address
space from other p rogram s.

The second motivation fo r virtual memory is to allow a single user program to
exceed the size of primary memory. Formerly, if a program beca me too large for
memory, it was up to the programmer to make it fit. Programmers divided p ro
grams into pieces and then identified the pieces that were mutually exclusive.
These overlays were loaded or unloa ded under user program cont rol during exe
cution , with the p rogrammer ensuring th at the program never tried to access an
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. . . a system has been
devised to make the core
drum combination appear to
the programmer as a single
level store, the requisite
transfers taking place auto
matically.

Kilburn et aL,"One-level stor
age system," 1962

virtual memory Atechnique
that uses main memory as a
"cache" for secondary storage.

physical address An address
. .m mam memory.

protection A set of mecha
nismsfor ensuring that multiple
processes sharing the processor,
memory, or I/O devices cannot
interfere, intentionally or unin
tentionally, with one another by
reading or writing each other's
data. These mechanisms also
isolate the operating system
from a user process.
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overlay that was not loaded and that the overlays loaded never exceeded the total
size of the mem ory. Overlays were traditionally organized as modules, each con
taining both code and data. Ca lls between procedures in different modules would
lead to overlaying of one module with another.

As you ca n well imagine, this responsibility was a substantial burden on pro
grammers. Virtual memory, which was invented to relieve programmers of this
difficulty, automatically manages the two levels of the mem ory hiera rchy repre
sented by main memory (sometimes called physical memory to distinguish it from
virtual memory) and secondary storage.

Although the concepts at work in virtual mem ory and in caches are the
sa me, their differing historical roots have led to the use of different termin 
ology. A virtual mem ory block is ca lled a page, and a virtual m em ory miss is
called a page fault . With virtual mem ory, the processor produces a virtual
address, which is translated by a combination of hardware and softwa re to a
physical address, whi ch in turn ca n be used to access main memory.
Figure 7. 19 shows the virtually addressed memory with pages mapped to main
mem ory. This process is ca lled address mapping or address translation. Today,
th e two memory hiera rchy levels controlled by virtual m em ory are DRAMs

page fault An event that occurs
when an accessed page is not
present in main memory.

virtual address An address
that corresponds to a location in
virtual space and is translated by
address mapping to a physical
address when memory is
accessed.

address translation Also
called address mapping. The
process by which a virtual
address is mapped to an address
lIsed to access memory.

Virtual addresses Physical addresses

FIGURE 7.19 In virtual memory, blocks of memory (called pages) are mapped from one
set of addresses (called vITfualaddresses) to another set (called physical addresses).
The processor generates virtual addresses while the memory is accessed U'iing physical addresses. Both the
virtual memory and the physical memory are broken into pages, so that a virtual p.1ge is really mapped to a
physical page. Of course, it is also possible for a virtual page to be absent from main memory and not be
mapped to a physical address, residing instead on disk. Physical P.1ges can be shared by having two virtual
addresses point to the same physical address. This capability is used to allow two different programs to share
data or code.
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and magnet ic disks (see Chapter 1, pages 5, 13 and 23). If we return to our
library analogy, we ca n think of a virtual address as the title of a book and a
physical address as the loca tion of th at book in the library, such as might be
given by th e Library of Congress ca ll number.

Virtual memory also simplifies loading the program for execution by provid 
in g relocation. Reloca tion maps the virtual addresses used by a program to dif
ferent physical addresses before the addresses are used to access memory. This
relocation allows us to load the program anywhere in main memory. Further
more, all virtual memo ry systems in use today reloca te th e program as a set of
fixed -size blocks (pages), thereby eliminating the need to find a contiguous
block of memo ry to alloca te to a program; instead , the operating system need
only find a sufficient number of pages in main memory. Fo rmerly, relocation
problems required special hardwa re and special suppo rt in the operating sys
tem; today, virtual memo ry also provides this fun ction.

In virtual memo ry, the address is broken into a virtual page number and a page
offset. Figure 7.20 shows the translation of the virtual page number to a physical
page number. The physical page number constitutes the upper portion of the
physical address, while the page offset, which is not changed, constitutes the lower

Virtual address

313029 2827 ······················ 15 141312111 09 8 ··········· 321 0

Virtual page number Page offset

( Translation

29 2827 ········· ••• ••• ••• ••• 15 141312111 09 8 ···· •••••• 321 0

Physical page number Page offset

Physica l address

FtGURE 7.20 Mapping from a virtual to a physical address. The palle size is 212 - 4 KB. The
number of physical palles allowed in memory is 218, since Ihe physical palle number has 18 bils in it. Thus,
main memory can have at most 1 GB, while Ihe virtual address space is 4 GB.
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segmentation A variable-size
address mapping scheme in
which an address consists of t",'O
parts: a segment number, which
is mapped to a physical address,
and a segment offset.
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portion. The number of bits in the page-offset field determines the page size. The
number of pages addressable with the virtual address need not match the number
of pages addressable with the physical address. Having a larger number of virtual
pages than physical pages is the basis for the illusion of an essentially unbounded
amount of virtual memory.

Many design choices in virtual memory systems are motivated by the high cost
of a miss, which in virtual memory is traditionally called a page fault. A page fault
will take millions of clock cycles to process. (The table on page 469 shows that
main memory is about 100,000 times faster than disk. ) This enormous miss pen
alty, dominated by the time to get the first word for typical page sizes, leads to sev
eral key decisions in designing virtual memory systems:

• Pages should be large enough to try to amortize the high access time. Sizes
from 4 KB to 16 KB are typical today. New desktop and server systems are
being developed to support 32 KB and 64 KB pages, but new embedded sys
tems are going in the other direction, to 1 KB pages.

• Organizations that reduce the page fault rate are attractive. The primary tech
nique used here is to allow fully associative placement of pages in memory.

• Page faults can be handled in software because the overhead will be small
compared to the disk access time. In addition , software can afford to use
clever algorithms for choosing how to place pages because even small reduc
tions in the miss rate will pay for the cost of such algorithms.

• Write-through will not work for virtual memory, since writes take too long.
Instead, virtual memory systems use write-back.

The next few subsections address these factors in virtual memory design.

Elaboration: Although we normally think of virtual addresses as much larger than
physical addresses, the opposite can occur when the processor address size is small rel
ative to the state of the memory technology. No single program can benefit, but a collec
tion of programs running at the same time can benefit from not having to be swapped to
memory or by running on parallel processors. Given that Moore's law applies to DRAM,
32-bit processors are already problematic for servers and soon for desktops.

Elaboration: The discussion of virtual memory in this book focuses on paging, which
uses fixed-size blocks. There is also a variable-size block scheme called segmentation.
In segmentation, an address consists of two parts : a segment number and a segment
offset. The segment register is mapped to a physical address, and the offset is added
to find the actual physical address. Because the segment can vary in size, a bounds
check is also needed to make sure that the offset is within the segment. The major use
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of segmentation is to support more powerful methods of protection and sharing in an
address space . Most operating system textbooks contain extensive discussions of seg
mentation compared to paging and of the use of segmentation to logically share the
address space . The major disadvantage of segmentation is that it splits the address
space into logically separate pieces that must be manipulated as a two-part
address : the segment number and the offset. Paging, in contrast, makes the boundary
between page number and offset invisible to programmers and compilers.

Segments have also been used as a method to extend the address space without
changing the word size of the computer. Such attempts have been unsuccessful
because of the awkwardness and performance penalties inherent in a two-part address
of which programmers and compilers must be aware.

Many architectures divide the address space into large fixed-size blocks that sim
plify protection between the operating system and user programs and increase the effi
ciency of implementing paging. Although these divisions are often called "segments,"
this mechanism is much simpler than variable block size segmentation and is not visi
ble to user programs; we discuss it in more detail shortly.

Placing a Page and Finding It Again

Because of the incredibly high penalty for a page fault , designers reduce page fault
frequency by optimizing page placement. If we allow a virtual page to be mapped
to any physical page, the operating system can then choose to replace any page it
wants when a page fault occurs. For example, the operating system can use a
sophisticated algorithm and complex data structures , which track page usage, to
try to choose a page that will not be needed for a long time. The ability to use a
clever and flexible replacement scheme reduces the page fault rate and simplifies
the use of fully associative placement of pages.

As mentioned in Section 7.3, the difficulty in using fully associative place
ment is in locating an entry, since it can be anywhere in the upper level of the
hierarchy. A full search is impractical. In virtual memory systems, we locate
pages by using a table that indexes the memory; this structure is called a page
table and resides in memory. A page table is indexed with the page number
from the virtual address to discover the corresponding physical page number.
Each program has its own page table, which maps the virtual address space of
that program to main memory. In our library analogy, the page table corre
sponds to a mapping between book titles and library locations. Just as the card
catalog may contain entries for books in another library on campus rather than
the local branch library, we will see that the page table may contain entries for
pages not present in memory. To indicate the location of the page table in mem
ory, the hardware includes a register that points to the start of the page table; we
call this the page table register. Assume for now that the page table is in a fixed
and contiguous area of memory.
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page table The table contain
ing the virtual to physical
address translations in a virnlal
memory system. The table,
which is stored in memory, is
typically indexed by the virtual
page number; each entry in the
table contains the physical page
number for that virtual page if
the page is currently in memory.
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The page table, together with the program counter and the registers, specifies the
state of a program. If we wa nt to allow another program to use the processor, we
must save this state. Later, after restoring this state, the program ca n continue
execution. 'lVe often refer to this state as a process. The process is considered active
when it is in possession of the processor; otherwise, it is considered inactive. The
operating system ca n make a process active by loading the process's state, includ 
ing the program counter, which will initiate execution at the va lue of the saved
program counter.

The process's address space, and hence all the data it ca n access in memory, is
defined by its page table, which resides in memory. Rather than save the entire
page table, the opera ting system simply loads the page table register to point to
the page table of the process it wants to make active. Ea ch process has its own page
table, since different processes use the sa me virtual addresses. The operating sys
tem is responsible fo r allocating the physical memory and updating the page
tables, so that the virtual address spaces of different processes do not collide. Ai;

we will see shortly, the use of separate page tables also provides protection of one
process from another.

Figure 7.2 1 uses the page table register, the virtual address, and the indica ted
page table to show how the hardwa re ca n form a physical address. A valid bit is
used in each page table entry, just as we did in a cache. If the bit is off, the page is
not present in main memory and a page fault occurs. If the bit is on , the page is
in memory and the entry contains the physical page number.

Because the page table contains a mapping for every possible virtual page, no
tags are required. In cache terminology, the index that is used to access the page
table consists of the full block address, which is the virtual page number.

Page Faults

If the valid bit for a virtual page is off, a page fault occurs. The operating system
must be given control. This transfer is done with the exception mechanism, which
we discuss later in this section. Once the operating system gets control, it must
find the page in the next level of the hiera rchy (usually magnetic disk) and decide
where to place the requested page in main memory.

The virtual address alone does not immediately tell us where the page is on
disk. Returning to our library analogy, we ca nn ot find the location of a library
book on the shelves just by kn owing its title. Instead, we go to the ca talog and look
up the book, obtaining an address for the location on the shelves, such as the
Library of Congress call number. Likewise, in a virnlal memory system, we must
keep tra ck of the location on disk of each page in virtual address space.
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Page table register

Virtual address

31 3 0 2. 28 2 7 .......................... 15 14 1 3 1 2 11 1 0 • 8 ......... 3 2 1 0

Virtual page number Page offset

2lJ 12

Valid Physical page number

Page table

18

If 0 then page is not
present in memory

2. 28 27 ................................. .. 1 5 14 1 3 1 2 11 10 • 8 ·· ...... 3 2 1 0

Physical page number Page offset

Physical address
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FtGURE 7.21 The page table Is Indexed with the virtual page number to obtain the corresponding portion of the physical
address. The starting address of the page table is given by the p.1ge table pointer. In this figure, the page size is 212 bytes, or 4 KB. The virtual address
space is i 32 bytes, or 4 GB, and the physical address space is 230 bytes, which allows main memory of up to 1 GB. The nwnber of entries in the p.1ge
table is 220, or I million entries. The valid bit for each emry indicates whether the mapping is legal. If it is off, then the page is not present in memory.
Although the page table entry shown here need only be 19 bits wide, it would typicaUy be rounded up to 32 bits for ease of indexing. The extra bits
would be used to store additional information that needs to be kept on a per-page basis, such as protection.

Because we do not know ahead of time when a page in memory will be chosen
to be replaced , the operating system usually creates the space on disk for all the
pages of a process when it creates the process. This disk space is called the swap
space. At that time, it also crea tes a data structure to record where each virtual
page is stored on disk. This data structure may be part of the page table or may be
an auxiliary data strucnlfe indexed in the same way as the page table. Figure 7.22

swap space The sp ace on the

disk reserved for the full virntal

memory space of a process.
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Virtual page
number

Page table
Physical page or Physica l memory

Valid disk address

/,
1 //1
1
1

~0
1
1
0

~
1 Disk storage
1
0 ~1

[ I-, I

FIGURE 7.22 The page table maps each page In virtual memory to either a page In
main memory or a page stored on disk, which Is the next level In the hierarchy. The vir
tual page number is used to index the page table. If the valid bit is on, the page table supplies the physical
page number (i .e., the starting address of the page in memory) corresponding to the virtual page. If the
valid bit is off, the page currently resides only on disk, at a specified disk address. In many systems, the
table of physical page addresses and disk page addresses, while logically one table, is stored in two sepa
rate data structures. Dual tables are justified in part because we must keep the disk addresses of all the
pages, even if they are currently in main memory. Remember that the pages in main memory and the
pages on disk are identical in size.

shows the organization when a single table holds either the physical page number
o r the disk address.

The operating system also creates a data structure that tracks which processes
and which virtual addresses use each physical page. When a page fault occurs, if all
the pages in main memory are in use, the operating system must choose a page to
replace. Because we want to minimize the number of page faults, most operating
systems try to choose a page that they hypothesize will not be needed in the nea r
future. Using the past to predict the future, operating systems follow the least
recently used (LRU ) replacement scheme, which we mentioned in Section 7.3.
The operating system searches for the least recently used page, making the
assumption that a page that has not been used in a long time is less likely to be
needed than a more recently accessed page. The replaced pages are written to swap
space on the disk. In case you are wondering, the operating system is just another
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process, and these tables controlling memory are in memory; the details of this
seeming contradiction will be explained shortly.

For example, suppose the page references (in order) were 10, 12,9,7, II , 10,
and then we referenced page 8, which was not present in memory. The LRU page
is 12; in LRU replacement, we would replace page 12 in main memory with page
8. If the next reference also generated a page fault, we would replace page 9, since
it would then be the LRU among the pages present in memory.

Implementing a completely accurate LRU scheme is too expensive, since it
requires updating a data stmcture on every memory reference. Instead, most
operating systems approximate LRU by keeping track of which pages have and
which pages have not been recently used. To help the operating system estimate
the LRU pages, some computers provide a use bit or reference bit, which is set
whenever a page is accessed. The operating system periodically clears the refer
ence bits and later records them so it can determine which pages were touched
during a particular time period. With this usage information, the operating sys
tem can select a page that is among the least recently referenced (detected by hav
ing its reference bit off). If this bit is not provided by the hardware, the operating
system must find another way to estimate which pages have been accessed.

Elaboration: With a 32-bit virtual address, 4 KB pages, and 4 bytes per page table
entry, we can compute the total page table size:

Number of page table entries = ~ = 220

2"

Size of page table = 220 page table entries x 22 b~~S = 4 MB
page ta e entry

That is, we would need to use 4 MB of memory for each program in execution at any
time . On a computer with tens to hundreds of active programs and a fixed-size page
table, most or all of the memory would be tied up in page tables!

A range of techniques is used to reduce the amount of storage required for the page
table . The five techniques below aim at reducing the total maximum storage required as
well as minimizing the main memory dedicated to page tables:

1 . The simplest technique is to keep a limit register that restricts the size of the page
table for a given precess . If the virtual page number becomes larger than the con
tents of the limit register, entries must be added to the page table. This technique
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replacement schemes.
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allows the page table to grow as a process consumes more space . Thus, the page
table will only be large if the process is using many pages of virtual address space.
This technique requires that the address space expand in only one direction .

2. Allowing growth in only one direction is not sufficient, since most languages re
quire two areas whose size is expandable : one area holds the stack and the other
area holds the heap. Because of this duality, it is convenient to divide the page
table and let it grow from the highest address down, as well as from the lowest
address up. This means that there will be two separate page tables and two sep
arate limits. The use of two page tables breaks the address space into two seg
ments. The high-order bit of an address usually determines which segment and
thus which page table to use for that address . Since the segment is specified by
the high-order address bit, each segment can be as large as one-half of the ad
dress space . A limit register for each segment specifies the current size of the seg
ment, which grows in units of pages . This type of segmentation is used by many
architectures, including MIPS. Unlike the type of segmentation discussed in the
Elaboration on page 514, this form of segmentation is invisible to the application
program, although not to the operating system. The major disadvantage of this
scheme is that it does not work well when the address space is used in a sparse
fashion rather than as a contiguous set of virtual addresses .

3 . Another approach to reducing the page table size is to apply a hashing function to
the virtual address so that the page table data structure need be only the size of
the number of physical pages in main memory. Such a structure is called an invert
ed page table. Of course, the lookup process is slightly more complex with an in
verted page table because we can no longer just index the page table .

4. Multiple levels of page tables can also be used to reduce the total amount of page
table storage. The first level maps large fixed-size blocks of virtual address space,
perhaps 64 to 256 pages in total. These large blocks are sometimes called seg
ments, and this first-level mapping table is sometimes called a segment table,
though the segments are invisible to the user. Each entry in the segment table in
dicates whether any pages in that segment are allocated and, if so, points to a
page table for that segment. Address translation happens by first looking in the
segment table, using the highest-order bits of the address . If the segment address
is valid, the next set of high-order bits is used to index the page table indicated by
the segment table entry. This scheme allows the address space to be used in a
sparse fashion (multiple noncontiguous segments can be active) without having to
allocate the entire page table . Such schemes are particularly useful with very large
address spaces and in software systems that require noncontiguous allocation .
The primary disadvantage of this two-level mapping is the more complex process
for address translation .

5. To reduce the actual main memory tied up in page tables, most modern systems
also allow the page tables to be paged . Although this sounds tricky, it works by
using the same basic ideas of virtual memory and simply allowing the page tables
to reside in the virtual address space. In addition, there are some small but critical
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problems, such as a never-ending series of page faults , which must be avoided.
How these problems are overcome is both very detailed and typically high ly pro
cessor specific. In brief, these problems are avoided by placing all the page tables
in the address space of the operating system and plac ing at least some of the
page tables for the system in a portion of main memory that is physica lly ad
dressed and is always present and thus never on disk.

What about Writes?

The difference between the access time to the cache and main memory is tens to
hundreds of cycles, and write-through schemes ca n be used , although we need a
write buffer to hide the latency of the write from the processor. In a virtual mem 
ory system , writes to the next level of the hierarchy (disk) take millions of proces
sor clock cycles; therefore, building a write buffer to allow the system to write
th rough to disk would be completely impractical. Instea d, virtual memo ry sys
tems must use write- back, performing the individual writes into the page in
memory and copying the page back to disk when it is replaced in the memory.
This copying back to the lower level in the hierarchy is the source of the other
name for this technique of handling writes, namely, copy back.

A write- back scheme has another major adva ntage in a virtual memory system.
Because the disk transfer time is small compared with its access time, copying
back an entire page is much mo re effi cient than writing individual words back to
the disk. A write-back operation , alth ough more effi cient th an transferring indi
vidual words, is still costly. Thus, we would like to know whether a page needs to
be copied back when we choose to replace it. To track whether a page has been
written since it was read into the memory, a dirty bit is added to the page table.
The dirty bit is set when any word in a page is written. If the operating system
chooses to replace the page, the dirty bit indicates whether the page needs to be
written out before its location in memory can be given to another page.

Making Address Translation Fast: The TLB

Since the page tables are stored in main memory, every memory access by a program
can take at least twice as long: one memory access to obtain the physical address and
a second access to get the data. The key to improving access performance is to rely on
locality of reference to the page table. When a translation for a virtual page number is
used, it wiII probably be needed again in the near funlre because the references to the
words on that page have both temporal and spatial locality.
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Accordingly, modern processo rs include :I special cache that keeps track of
recently used translations. This special address translation cache is traditionally
referred to as a tran slation-Iookaside buffer (TLB), although it would be more
accurate to call it a translation cache. The TLB corresponds to that little piece of
paper we typica lly use to record the location of a set of books we look up in the
ca rd catalog; rather than continually sea rching the entire catalog, we reco rd the
location of several books and use the scrap of paper as a cache of Library of Con 
gress call numbers.

Figure 7.23 shows that each tag entry in the TLB holds a portion of the virtual
page number, and each data entry of the TLB holds a physical page number. Because
we will no longer access the page table on every reference, instead accessing the TLB,
the TLB will need to include o ther bits, such as the dirty and the reference bit.

TLB
Virtual page

number Valid Dirty Ref Tag
Physical page

address

1 0 1
1 1 1
1 1 1
1 0 1
000
1 0 1

Page table

Physical page
Valid Dirty Ref or disk address

1 1 1
1 0 0
1 0 0
1 0 1
0 00
1 0 1
1 0 1
0 00
1 1 1
1 1 1
000
1 1 1

Physical memory

~

~><;;

~ Dis k storage

FIGURE 7.23 The TLB acts as a cache on the page table for the entries that map to physical pages only. The TLB contmns a sub
set of the virtual-to-physical page mappings that are in the page table . The TLB mappings are shown in color. Because the TLB is a cache, it must have
a tag field. If there is no matching ent ry in the TLB for a p.1ge, the page table must be examined. The page table either supplies a physical page number
for the page (which can then be used to build a TLB entry) or indic.1tes that the p.1ge resides on disk, in which case a p.1ge fault occurs. Since the page
table has an entry for every virtual page, no tag field is needed; in other words, it is /lot a cache,
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On every reference, we look up the virtual page number in the TLB. If we get a
hit, the physical page number is used to form the address, and the co rresponding
reference bit is turned on. If the processor is performing a write, the dirty bit is
also turned on. If a miss in the TLB occurs, we must determine whether it is a
page fault or merely a TLB miss. If the page exists in memory, then the TLB miss
indica tes only that the translation is missing. In such cases, the processor can
handle the TLB miss by loading the translation from the page table into the TLB
and then trying the reference again. If the page is not present in memory, then
the TLB miss indicates a true page fault. In this case, the processor invokes the
opera ting system using an exception. Because the TLB ha s many fewer entries
than the number of pages in main memory, TLB misses will be much more fre
quent than true page faults.

TLB misses ca n be handled either in hardwa re or in softwa re. In practice, with
care there ca n be little performance difference between the two approaches
because the basic operations are the sa me in either case.

After a TLB miss occurs and the missing tran slation has been retrieved from
the page table, we will need to select a TLB entry to replace. Because the reference
and dirty bits are contained in the TLB entry, we need to copy these bits back to
the page table entry when we replace an entry. These bits are the only portion of
the TLB entry that ca n be changed. Using write-back-that is, copying these
entries back at miss time rather than when they are written- is very efficient,
since we expect the TLB miss rate to be small. Some systems use other techniques
to approximate the reference and dirty bits, eliminating the need to write into the
TLB except to load a new table entry on a miss.

Some typical va lues for a TLB might be

• TLB size: 16-5 12 entries

• Block size: 1-2 page table entries (typica lly 4-8 bytes each)

• Hit time: 0.5-1 clock cycle

• Miss penalty: 10-100 clock cycles

• Miss rate: 0.0 1%- 1%

Designers have used a wide variety of associativities in TLBs. Some systems use
small, fully associative TLBs because a fully associative mapping has a lower miss
rate; furthermore, sin ce the TLB is small , the cost of a full y associative mapping is
not too high. Other systems use large TLBs, often with small associativity. With a
fully associative mapping, choosing the entry to replace becomes tricky since
implementing a hardwa re LRU scheme is too expensive. Furthermore, since TLB
misses are much m ore frequent than page faults and thus must be handled more
cheaply, we cannot afford an expensive softwa re algorithm, as we ca n for page
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faults. As a result, many systems provide some suppo rt fo r randomly choosing an
entry to replace. We'll examine replacement schemes in a little more detail in
Section 7.5.

The Intrinsity FastMATH TLB

To see these ideas in a rea l processor, let's take a closer look at the TLB of the
Intrinsity FastMATH. The memory system uses 4 KB pages and a 32-bit address
space; thus, the virnlal page number is 20 bits long, as in the top of Figu re 7.24.
The physica l add ress is the sa me size as the virtual address. The TLB contains 16
entries, is fully associative, and is shared between the instruction and data refer
ences. Each entry is 64 bits wide and contain s a 20-bit tag (which is the virtual
page number fo r that TLB entry), the co rresponding physica l page number (also
20 bits), a valid bit, a dirty bit, and other bookkeeping bits.

Figu re 7.24 shows the TLB and one of the caches, while Figure 7.25 shows the
steps in processing a read or write request. \-Vhen a TLB miss occurs, the MIPS
hardwa re saves the page number of the reference in a specia l register and generates
an exception. The exception invokes the operating system , which handles the miss
in softwa re. To find the physical address fo r the missing page, the TLB miss rou
tine indexes the page table using the page number of the virtual address and the
page table register, which indicates the starting address of the active process page
table. Using a special set of system instructions that ca n upd ate the TLB, the oper
ating system places the physical address from the page table into the TLB. A TLB
miss takes about 13 clock cycles, assuming the code and the page table entry are in
the instruction cache and data cache, respectively. (We will see the M IPS TLB
code on page 534) A true page fault occurs if the page table ent ry does not have a
va lid physical address. The hardwa re maintain s an index th at indicates the recom 
mended entry to replace; the recommended entry is chosen randomly.

There is an extra complication for write requests: namely, the write access bit in
the TLB must be checked. This bit prevents the p rogram from writing into pages
for which it has only read access. If the program attem pts a write and the write
access bit is off, an exception is generated. The write access bit forms pa rt of the
protection mechanism , which we discuss shortly.

Integrating Virtual Memory, TLBs, and Caches

Our virtual memory and cache systems work together as a hierarchy, so that data
ca nn ot be in the cache unless it is present in main memory. The operating system
plays an important role in maintaining this hierarchy by flushing the contents of
any page from the cache, when it decides to migrate that page to disk. At the sa me
time, the as modifies the page tables and TLB, so that an attempt to access any
data on the page will generate a page fault.

Under the best of ci rcumstances, a virtual address is translated by the TLB and
sent to the cache where the appropriate data is found , retrieved, and sent back to
the processo r. In the wo rst case, a reference can miss in all three components of
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31 30 29

Vi rtual address

14131211109 ·· 3 2 1 0

B_.
offset

Virtual page number Page offset

20 }"

Valid Dirty T.g Physical page number

0

TLB
0

B hit ...... •
0

0

0
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Physical page number _I Page offset
Phys ica l address

BlockPhysical address lag " Cache index
offset

V B B 4 ,

B
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Valid T.g

0
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FtGURE 7.24 11Ie TLB and cache Implement the process of going from a virtua l address t o a dat a Item In the Intrlnsl ty Fast·
MATH. This figure shows the org.1nization of the TLB and the data cache assuming a 4 KB page size. This diagram focuses on a read; Figure 7.25
describes howto handle writes. Note that unlike Figure 7.9 on page 486, the tag and data RAMs are split. By addressing the long but narrow data RAM
with the cache index concatenated with the block offset, we select the desired word in the block without a 16:1 multiplexor. While the cache is direct
mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every TLB tag be compared against the virtual p.1ge number,
since the entry of interest can be anywhere in the TLB. If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical
page number together with bits from the page offset form the index that is used to access the cache. (The Intrinsity actually has a 16 KB page size; the
FJaboration on page 528 explains how it works. )
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Virtual address

TLB access

TLB miss
exception

No

Physical address

Deliver data
to the CPU

No

Write protection

r
-------I Try to write data

Yes exception to cache

Cache miss stall I-_N_o(
while read block

No

No

r
------ITry to read data

from cache

Cache miss stall
while read block

Write data into cache,
update the dirty bit, and

put the data and the
address into the write buffer

FIGURE 7.25 Processing a read or a write through In the Intrinslty FastMATH TLB and cache. If the TLB generates a hit, the cache
can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall while the data is
brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to the write buffer if we
assume write-th rough. A WTite miss is jU'itlike a read miss except that the block is modified after it is read from memory. Write-back requires writes to
set a dirty bit for the cache block, and a write buffer is loaded with the whole block only on a read miss or write miss if the block to be replaced is dirty.
Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur after a TLB hit occurs., which means that the data must be
present in memory. The relationship between TLB misses and cache misses is examined further in the following example and the exercises at the end
of this chapter.
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the memory hierarchy: the TLB, the page table, and the cache. The following
example illustrates these interactions in more detail..

Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 7.24 that includes a TLB and a
cache organized as shown, a memory reference can encounter three different
types of misses: a TLB miss, a page fault, and a cache miss. Consider all the
combinations of these three events with one or more occurring (seven possi
bilities). For each possibility, state whether this event can actually occur and
under what circumstances.

Figure 7.26 shows the possible circumstances and whether they can arise in
practice or not.

Elaboration: Figure 7.26 assumes that all memory addresses are translated to
physical addresses before the cache is accessed . In this organization, the cache is
physically indexed and physically tagged (both the cache index and tag are physical,
rather than virtual, addresses) . In such a system, the amount of time to access mem
ory, assuming a cache hit, must accommodate both a TLB access and a cache access;
of course, these accesses can be pipelined .

Alternatively, the processor can index the cache with an address that is completely
or partially virtual. This is called a virtually addressed cache, and it uses tags that are
virtual addresses; hence, such a cache is virtually indexed and virtually tagged. In such
caches, the address translation hardware (TLB) is unused during the normal cache
access, since the cache is accessed with a virtual address that has not been trans
lated to a physical address . This takes the TLB out of the critical path, reducing cache
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EXAMPLE

ANSWER

virtua lly addressed cach e A
cache that is accessed with a vir
tual address rather than a physi
cal address.

11111.
hit hit miss

miss hit hit

miss hit miss

miss miss miss

hit miss miss

hit miss hit

miss miss hit

Possible? If so, under what circumstance?

Possible, although the page table is never really checked if TLB hits.

TLB misses, but entry found in page table; after retry, data is found in cache.

TLB misses, but entry found in page table; after retry, data misses in cache.

TLB misses and is followed by a page fault; after retry, data must miss in cache.

Impossible: cannot have a translation in TLB if page is not present in memory.

Impossible: cannot have a translation in TLB if page is not present in memory.

Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 7.26 The possible combinations of events In the TLB, virtual memory system,
and cache. Three of these combinations are impossible, and one is possible (TLB hit, virtual memory hit,
cache miss) but never detected.



528

aliasing A situation in which
the same object is accessed by
two addresses; can occur in vir
tual memory when there are two
virtual addresses for the same
physical page.

physically addressed cach e A
cache that is addressed by a
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latency. When a cache miss occurs, however, the processor needs to translate the
address to a physical address so that it can fetch the cache block from main memory.

When the cache is accessed with a virtual address and pages are shared between
programs (which may access them with different virtual addresses), there is the possi
bility of aliasing. Aliasing occurs when the same object has two names-in this case,
two virtual addresses for the same page . This ambiguity creates a problem because a
word on such a page may be cached in two different locations, each corresponding to
different virtual addresses. This ambiguity would allow one program to write the data
without the other program being aware that the data had changed . Completely virtually
addressed caches either introduce design limitations on the cache and TLB to reduce
aliases or require the operating system, and possibly the user, to take steps to ensure
that aliases do not occur.

Figure 7.24 assumed a 4 KB page size, but it's really 16 KB . The lntrinsity FastMATH
uses such a memory system organization . The cache and TLB are still accessed in par
allel, so the upper 2 bits of the cache index must be virtual. Hence, up to four cache
entries could be aliased to the same physical memory address. As the L2 cache on the
chip includes all entries in the L1 caches, on a L1 miss it checks the other three possi
ble cache locations in the L2 cache for aliases. If it finds one, it flushes it from the
caches to prevent aliases from occurring.

A common compromise between these two design points is caches that are virtually
indexed (sometimes using just the page offset portion of the address, which is really a
physical address since it is untranslated), but use physical tags. These designs, which
are virtually indexed but physically tagged, attempt to achieve the performance advan
tages of virtually indexed caches with the architecturally simpler advantages of a physi
cally addressed cache. For example, there is no alias problem in this case. The L1 data
cache of the Pentium 4 is an example as would the lntrinsity if the page size was 4 KB.
To pull off this trick, there must be careful coordination between the minimum page
size, the cache size, and associativity.

Elaboration: The FastMATH TLB is a bit more complicated than in Figure 7.24. MIPS
includes two physical page mappings per virtual page number, thereby mapping an even
odd pair of virtual page numbers into two physical page numbers. Hence, the tag is 1 bit
narrower since each entry corresponds to two pages. The least significant bit of the vir
tual page number selects between the two physical pages. There are separate book
keeping bits for each physical page. This optimization doubles the amount of memory
mapped per TLB entry. As the Elaboration on page 530 explains, the tag field actually
includes an B-bit address space ID field to reduce the cost of context switches . To sup
port the variable page sizes mentioned on page 537, there is also a 32-bit mask field
that determines the dividing line between the virtual page address and the page offset.

Implementing Protection with Virtual Memory

One of the most important functions for virtual memory is to allow sharing of a
single main memory by multiple processes, while providing memory protection
among these processes and the operating system. The protection mechanism must
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ensure that although multiple processes are sharing the sa me main memory, one
renegade process cann ot write into the address space of another user process or
into the opera ting system either intentionally or unintentionally. For exa mple, if
the program that maintains student grades were running on a computer at the
same time as the programs of the students in the first programming course, we
wouldn't wa nt the errant program of a beginner to write over someone's grades.
The write access bit in the TLB ca n protect a page from being written. Without
this level of protection, computer viruses would be even more widespread.

To enable the operating system to implement protection in the virtual memory sys
tem, the hardwa re must provide at least the three basic capabilities summarized below.

I. Support at least two modes that indica te whether the running process is a
user process or an operating system process, variously called a supervisor
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process ca n read but not
write. This includes the user/supervisor mode bit, which dictates whether
the processor is in user or supervisor mode, the page table pointer, and the
TLB. To write these elements the operating system uses specia l instructions
that are only available in supervisor mode.

3. Provide mechanisms whereby the processor can go from user mode to
superviso r mode, and vice versa. The first direction is typically accom
plished by a system call exception, implemented as a specia l instruction
(syscall in the M IPS instruction set) that transfers control to a dedicated
location in supervisor code space. As with any other exception , the program
counter from the point of the system call is saved in the exception PC (EPC),
and the processor is placed in superviso r mode. To return to user mode
from the exception, use the retllrn from exception (ERET) instruction, which
resets to user mode and jumps to the address in EPe.

By using these mechanisms and storing the page tables in the operating sys
tem's address space, the opera ting system ca n change the page tables while pre
venting a user process from changing them, ensuring that a user process ca n
access only the sto rage provided to it by the operating system.

We also wa nt to prevent a process from read ing th e data of another process.
For example, we wouldn't want a student program to read th e grades while they
were in the processor's memory. Once we begin sharing main mem ory, we must
provide the ability fo r a process to protect its data from both read ing and writ 
in g by another process; otherwise, sharing the main mem ory will be a mixed
blessing!
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Remember that each process has its own virtual address space. Thus, if the
operating system keeps the page tables organized so that the independent virtual
pages map to disjoint physical pages, one process will not be able to access
another's data. Of course, this also requires that a user process be unable to change
the page table mapping. The operating system can assure safety if it prevents the
user process from modifying its own page tables. Yet , the operating system must
be able to modify the page tables. Placing the page tables in the protected address
space of the operating system satisfies both requirements.

\Vhen processes want to share information in a limited way, the operating sys
tem must assist them, since accessing the information of another process requires
changing the page table of the accessing process. The write access bit can be used
to restrict the sha ring to just read sharing, and, like the rest of the page table, this
bit can be changed only by the operating system. To allow another process, say PI,
to read a page owned by process P2, P2 would ask the operating system to create a
page table entry for a virtual page in PI's address space that points to the same
physical page that P2 wants to share. The operating system could use the write
protection bit to prevent PI from writing the data , if that was P2's wish. Any bits
that determine the access rights for a page must be included in both the page table
and the TLB because the page table is accessed only on a TLB miss.

Elaboration: When the operating system decides to change from running process Pi
to running process P2 (called a context switch or process switch), it must ensure that P2
cannot get access to the page tables of Pi because that would compromise protection . If
there is no TLB, it suffices to change the page table register to point to P2's page table
(rather than to Pi's); with a TLB, we must clear the TLB entries that belong to Pi-both to
protect the data of Pi and to force the TLB to load the entries for P2. If the process
switch rate were high, this could be quite inefficient. For example, P2 might load only a
few TLB entries before the operating system switched back to Pi. Unfortunately, Pi
would then find that all its TLB entries were gone and would have to pay TLB misses to
reload them. This problem arises because the virtual addresses used by Pi and P2 are
the same, and we must clear out the TLB to avoid confusing these addresses .

A common alternative is to extend the virtual address space by adding a process
identifier or task identifier. The lntrinsity FastMATH has an B-bit address space ID (AS ID)
field for this purpose . This small field identifies the currently running process; it is kept
in a register loaded by the operating system when it switches processes. The process
identifier is concatenated to the tag portion of the TLB, so that a TLB hit occurs only if
both the page number and the process identifier match . This combination eliminates
the need to clear the TLB. except on rare occasions.

Similar problems can occur for a cache, since on a process switch the cache will
contain data from the running process . These problems arise in different ways for phys
ically addressed and virtually addressed caches, and a variety of different solutions,
such as process identifiers, are used to ensure that a process gets its own data .
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Handling TLB Misses and Page Faults

Although the tra tlslation of virtual to physical addresses with a TLB is straightfor
wa rd when we get a TLB hit, handling TLB misses and page faults are more com 
plex. A TLB miss occurs when no entry in the TLB matches a virtual address. A
TLB miss ca n indicate one of two possibilities:

I. The page is present in memory, and we need only create the missing TLB entry.

2. The page is not present in memory, and we need to transfer control to the
operating system to deal with a page fault.

How do we know which of these two circumstances has occurred? \Vhen we p ro
cess the TLB miss, we will look for a page table entry to bring into the TLB. If the
matching page table entry has a va lid bit that is turned off, then the corresponding
page is not in memo ry and we have a page fault, rather than just a TLB miss. If the
valid bit is on, we can simply retrieve the desired entry.

A TLB miss ca n be handled in soft wa re or hardwa re because it will require only
a short sequence of operations to copy a valid page table entry from memory into
the TLB. MIPS traditioll3lly handles a TLB miss in softwa re. It brings in the page
table entry from memory and then reexecutes the instruction that caused the TLB
miss. Upon reexecuting it will get a TLB hit. If the page table entry indicates the
page is not in memo ry, this time it will get a page fault exception.

Handling a TLB miss or a page fault requires using the exception mechanism to
interrupt the active process, transferring control to the operating system, and later
resuming execution of the interrupted process. A page fault will be recognized
sometime during the clock cycle u sed to access memory. To restart the instruction
after the page fault is handled , the p rogram counter of the instruction that ca used
the page fault must be saved. Just as in Chapters 5 and 6, the exception program
counter (EPC) is used to hold this value.

In addition, a TLB miss or page fault exception must be asserted by the end of
the sa me clock cycle that the memory access occurs, so that the next clock cycle
will begin exception p rocessing rather than continue normal instruction execu 
tion. If the page fault was not recognized in this clock cycle, a load instruction
could overwrite a register, and this could be disast rous when we t ry to restart the
instruction. For example, consider the in struction 1w $1 , 0 ( $1 ): the computer
must be able to prevent the write pipeline stage from occurring; otherwise, it
could not properly restart the instruction, sin ce the contents of $1 would have
been dest royed. A similar complication arises on stores. \Ve must prevent the
write into memory from actually completing when there is a page fault; this is
usually done by deasserting the write cont rol line to the memory.
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Register CPO register number Description

EPC 14 INhere to restart after exception

Cause 13 Cause of exception

BadVAddr 8 Address that caused exception

Index 0 Location in TLB to be read or written

Random 1 Pseudorandom location in TLB

EntryLo 2 P~sical page address and flags

EntryHi 10 Virtual page address

Context 4 Page table address and page number

FIGURE 7.27 MIPS control registers. These are considered to be in coprocessor 0, and hence are
read using mf cO and written using mtcO.

Between the time we begin executing the exception handler in the opera ting sys
tem and the time that the operatin g system has saved a11 the state of the process,
the operating system is particularly vulnerable. For exa mple, if another excep
tion occurred when we were processing the first exception in the operating sys
tem, the control unit would overwrite the exception program counter, m aking it
impossible to return to the instruction that caused the page fault ! We can avoid
this disaster by providing the ability to disable and enable exceptions. When an
exception first occurs, the processor sets a bit that disables all other exceptions;
this could happen at the sa me time the processor sets the supervisor m ode bit.
The operating system will then save just enough state to allow it to recover if
another exception occurs-namely, the exception program counter and Cause
register. EPC and Cause are two of the special control registers that help with
exceptions, TLB misses, and page fault s; Figure 7.27 shows the rest. The operating
system ca n then reenable exceptions. These steps make sure that exceptions will
not ca use the processor to lose any state and thereby be unable to restart execution
of the interrupting instruction.

Once the operating system knows the virtual address that caused the page fault ,
it must complete three steps:

I. Look up the page table entry using the virtual address and find the location
of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be writ
ten out to disk before we can bring a new virnlal page into this physical page.

3. Start a read to bring the referenced page from disk into the chosen physical
page.
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Of course, this last step will take millions of p rocessor clock cycles (so will the sec
ond if the replaced page is dirty); accordingly, the operating system will usually
select another process to execute in the p rocessor until the disk access completes.
Because the operating system has saved the state of the process, it ca n freely give
cont rol of the processor to another process.

\-¥hen the read of the page from disk is complete, the operating system can
restore the state of the process that originally caused the page fault and execute the
instruction that returns from the exception. This instruction will reset the proces
sor from kernel to user mode, as well as restore the program counter. The user
process then reexecutes the instruction that faulted , accesses the requested page
successfully, and continues execution.

Page fault exceptions for data accesses are difficult to implement properly in a
processo r because of a combination of three characteristics:

I. They occur in the middle of instructions, unlike instruction page faults.

2. The instruction cannot be completed before handling the exception.

3. After handling the exception , the instruction must be restarted as if nothing
had occurred.

Making instructions restartable, so that the exception ca n be handled and the
instruction later continued, is relatively easy in an architecture like the MIPS.
Because each instruction writes only one data item and this write occurs at the
end of the instruction cycle, we ca n simply prevent the instruction from complet
ing (by not writing) and restart the instruction at the beginning.

Fo r p rocessors with much more complex instructions that may touch many
memory locations and write many data items, making instructions restartable is
much hard er. Processing one instruction m ay generate a number of page faults
in the middle of the instruction. For exa mple, some p rocessors have block move
instructions that touch thousa nds of data words. In such processo rs, instruc
tions often ca nn ot be restarted from th e beginnin g, as we do fo r MIPS instruc
tions. Instead , the in struction must be interrupted and later continued
midstrea m in its execution. Resumin g an instruction in the middle of its execu
tion usually requires saving some special state, p rocessing the exception , and
resto ring th at specia l state. Making this wo rk properly requires ca reful and
detailed coordination between the exception -handling code in the operating
system and the hardwa re.

Let's look in more detail at MIPS. When a TLB miss occurs, the MIPS hardware
saves the page number of the reference in a special register called Bild VAdd rand
generates an exception.

The exception invokes the operating system, which handles the miss in software.
Control is transferred to address 8000 Ooo~ex' the location of the TLB miss han
dIer. To find the physical address for the missing page, the TLB miss routine indexes
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restartable instruction An
instruction that can resume exe
cution after an exception is
resolved without the exception 's
affecting the result of the
instruction.

handler Name of a software
routine invoked to "handle" an
exception or interrupt.



# copy address of PTE into temp $kl
# put PTE into temp $kl
# put PTE into special register EntryLo
# put EntryLo into TLB entry at Random
# return from TLB miss exception
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the page table using the page number of the virtual address and the page table regis
ter, which indicates the starting address of the active process page table. To make this
indexing fast, MIPS hardwa re places everything you need in the special Contex t
register: the upper 12 bits have the address of the base of the page table and the next
18 bits have the virtual address of the missing page. Each page table entry is one
word, so the last 2 bits are O. Thus, the first two instructions copy the Context regis
ter into the kernel temporary register $kl and then load the page table entry from
that address into $kl. Recall that $ kO and $kl are reserved for the operating system
to use without saving; a major reason for this convention is to make the TLB miss
handler fast. Below is the MIPS code for a typical TLB miss handler:

TLBmiss :
mfcO $kl , Context
lw lkl . Dllkl)
mtcO $kl , EntryLo
tlbwr
eret

As shown above, MIPS has a special set of system instructions to update the
TLB. The instruction tl bwr copies from control register EntryLo into the TLB
entry selected by the control register Random. Random implements random
replacement, so it is basically a free-running counter. A TLB miss takes about a
dozen clock cycles.

Note that the TLB miss handler does not check to see if the page table entry is
va lid. Because the exception for TLB entry missing is much m ore frequent than a
page fault, the operating system loads the TLB from the page table without exa m 
ining the entry and restarts the instruction. If the entry is invalid, another and dif
ferent exception occurs, and the operating system recognizes the page fault. This
method m akes the frequent case of a TLB miss fast, at a slight performance pen
alty for the infrequent case of a page fault.

Once the process that generated the page fault has been interrupted, it tran sfers
control to 8000 0180hex, a different address than TLB miss handler. This is the
general address for exception; TLB miss has a special entry point to lower the pen
alty for a TLB miss. The operating system uses the exception Cause register to
diagnose the cause of the exception. Because the exception is a page fault, the
operating system knows that extensive processing will be required. Thus, unlike a
TLB miss, it saves the entire state of the active process. This state includes all the
general-purpose and floating-po int registers, the page table address register, the
EPC, and the exception Cause register. Since exception handlers do not usually
use the floa ting-point registers, the general entry point does not save them , leav
ing that to the few handlers that need them.

Figure 7.28 sketches the MIPS code of an exception handler. Note that we save
and restore the state in MIPS code, taking care when we enable and disable excep
tions, but we invoke C code to handle the particular exception.
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Save state
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Sra, XCCRA($U )

Save GPR addi

"
"

Skl. $sp. -XCPSIZE If
Ssp. XCCSP(Skll If
SVO. XCCVO(Skll If

II
II

save space on s t ac~ f or stat e
save Ssp on s t ac~

save SvO on s t ac~

save Svl. $di. $si . Hi .... on s ta c ~

save Sra on s t ac~

XCCH](Skll
XCT L](Skll,,,
XCCCR(Skll

Save Hi, La

Save Exception
Registers

Set sp

mfhi
mfl 0

""
mfcO

"
mfcO

"
move

,,0,,1
SVO.
Sv!.
SaO.
SaO.

Sa 3.
Sa 3.
Ssp.

,,,
XCT

'"
SR(Skll

II
II
II
II
II
II
II
II
II
II

copy Hi
copy Lo
save Hi value on s ta c ~

save Lo value on sta ck
copy ca use regis t er
save Scr value on stac~

save Svl. ....
copy Status Regi ster
save Ssr on stac~

sp - sp - XCPSIZE

Enable nested exceptions

and i
mt cO

SvO. Sa3. MAS Kl
SvO. Ssr

If $vO - $s r & MASKl. ena ble exceptions
If $sr - val ue th at enables exceptions

Call C exception handler

Set $gp move Sgp. GPINIT II set $gp to poi nt to heap ar ea

Call C code move SaO. ',p II ar~I - pointer to except ion sta ck
j" xcpt deliver II ca 1 C code t o hand l e exceptio n

Restoring state

Res t ore mos t move Sa t. ',p II temporary va lu e of $sp
GPR. Hi. 10 " Sra, XCT RA($a t ) II r es t ore $ra from sta ck

II r es t ore HO. • •••• ,.1
" SaO. XCT AO($U) II r es t ore $aO from sta ck

Restore Status " SVO. XCCSR($at ) II load old Ssr f rom stac~

Register 1; Sv l. MASK2 Zmask t o disable exceptions,,' SvO. SvO. "1 $vO - $s r & MASK2. disenable exceptions
mtcO SvO. ,,, II set Statlls Regi st er

Exception return

Res t ore $sp and
rest of GPR
used as
tempora ry
reg1 st ers

Res t ore ERC and
retllrn

mt cO
eret

Ssp. XCCSP($at )
SVO. XCCVO($at )
Sv l. XCCVl($at )
Skl. XCCEPC($at)
Sa t . XCT AT($a t )
SkI.Sepc,,,

If r estore $sp f rom sta c k
If r estore $vO f rom sta c k
If r es t ore $vl f rom sta c k
If copy old Sepc f rom stac k
If r es t ore $at f rom stac k
If r estore $epc
If r etll rn t o interrupted in structio n

FIGURE 7.28 MIPS code to save and restore state on an exception.

The virtual address that caused the fault depends on whether the fault was an
instmction or data fault. The address of the instmction that generated the fault is in
the EPC. If it was an instmction page fault, the EPC contains the virtual address of the
faulting page; otherwise, the faulting virtual address can be computed by examining
the instmction (whose address is in the EPC) to find the base register and offset field.
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unmapped A portion of the
address space that cannot have
page faults.
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Elaboration: This s implified vers ion assumes that the stack pointer (sp) is valid . To
avoid the problem of a page fault during this low-leve l exception code, MIPS sets
aside a portion of its address space that cannot have page faults , called unmapped.
The operating system places exception entry point code and the exception stack in
unmapped memory. MIPS hardware trans lates virtual addresses 8000 000Clt.ex to
BFFF FFFFhex to phys ical addresses simply by ignoring the upper bits of the virtual
address , thereby placing these addresses in the low part of phys ical memory. Thus,
the operating system places exception entry po ints and exception stacks in
unmapped memory.

Elaboration: The code in Figure 7.28 shows the MIP&32 exception return sequence.
MIPS-l uses rfe and j r instead of er et.

Summary

Virtual memory is the name for the level of memory hierarchy that manages cach
ing between the main memory and disk. Virtual memory allows a single p rogram
to expand its address space beyond the limits of main memory. Mo re importantly,
in recent computer systems virtual memory supports sharing of the main mem
o ry among multiple, simultaneously active processes, which together require far
more total physical main memory th an exists. To support sharing, virtual mem
o ry also provides mechanisms for memory protection.

Managing the memory hierarchy between main memo ry and disk is challeng
ing beca use of the high cost of page faults. Several techniques are used to reduce
the miss rate:

I. Blocks, ca lled pages, are made large to take adva ntage of spatial loca lity and
to reduce the miss rate.

2. The mapping between virtual addresses and physical addresses, which is
implemented with a page table, is made fully associative so that a virtual
page can be placed anywhere in main memory.

3. The operating system uses techniques, such as LRU and a reference bit, to
choose which pages to replace.

Writes to disk are expensive, so virtual memory uses a write-ba ck scheme and also
tracks whether a page is unchanged (using a dirty bit) to avoid writing unchanged
pages back to disk.

The virtual memory mechanism provides address translation from a virtual
address used by th e program to the physica l address space used for accessing
memory. This address translation allows protected sharin g of the main memory
and provides several additional benefit s, such as simplifying memory allocation.
To ensure that p rocesses are protected from each other requires that only th e
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operating system ca n cha nge the address translations, which is implemented by
preventing user programs from changing the page tables. Controlled sharing of
pages among processes ca n be implemented with the help of the operating sys
tem and access bits in the page table that indicate whether the user program has
read or write access to a page.

If a processor had to access a page table resident in memory to translate every
access, virtual memory would have too much overhead and caches would be
pointless! Instead, a TLB acts as a cache for translations from the page table.
Add resses are then translated from virtual to physical using the tran slations in
the TLB.

Caches, virtual memory, and TLBs all rely on a common set of principles and
policies. The next section discusses this common framework.

Alth ough virtual mem ory was invented to enable a small mem ory to act as a
large one, the performance difference between disk and mem ory m ea ns that if
a program routinely accesses m ore virtual m em ory than it ha s physical mem 
o ry it will run very slowly. Such a program would be continuously swapping
pages between memory and disk, ca lled thrashing. Thrashing is a disaster if it
occurs, but it is rare. If yo ur program thrashes, the easiest solutio n is to run it
o n a computer with m ore mem ory or buy m ore mem ory for your computer. A
more co mplex choice is to reexamine your algorithm and data stru ctures to
see if you ca n change th e loca lity and thereby reduce the number of pages that
your program uses simultaneously. This set of pages is info rmally ca lled the
working set.

A more common performance problem is TLB misses. Since a TLB might han 
dle only 32-64 page entries at a time, a program could easily see a high TLB miss
rate, as the processor may access less than a quarter megabyte directly: 64 X 4 KB
= 0.25 MB. For exa mple, TLB misses are often a challenge for Radix Sort. To try to
alleviate this problem, most computer architectures now support variable page
sizes. For example, in addition to the standard 4 KB page, MIPS hardware sup
ports 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, and 256 MB pages.
Hence, if a program uses large page sizes, it ca n access more memory directly
without TLB misses.

The practical challenge is getting the operating system to allow programs to
select these larger page sizes. Once again, the more complex solution to reducing
TLB misses is to reexamine the algorithm and data structures to red uce the work
ing set of pages.

Understanding
Program
Performance
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Match the m em ory hierardw element on the left with the closest phrase on the right:

1. L1 cache

2. L2 cache

3. Main memory

4. TLB

3 . A cache fo r a cache

b. A cache fo r disks

c. A cache for a main memory

d. A cache fo r page table entries

A Common Framework for Memory
Hierarchies

By now, you 've recognized that the different types of mem o ry hiera rchies share a
grea t deal in common. Although m any of the aspects of m em ory hiera rchies differ
quantitatively, many of the policies and features that determine how a hierarchy
functions are simila r qualitatively. Figure 7.29 shows how som e of the quantitative
characteristics of memory hierarchies ca n differ. In the rest of this section, we will
discuss the common operational aspects of m em ory hierarchies a nd how these
determine their behavio r. We will exa mine these policies as a series of four ques
tions that apply between any two levels of a m em ory hierarchy, although for sim 
plicity we will primarily use termin ology fo r caches.

Question 1: Where Can a Block Be Placed?

We have seen that block placement in the upper level of the hierarchy can use a range
of schemes, from direct mapped to set associative to fully associative. As m entioned
above, this entire range of schem es can be thought of as variations on a set -associa
tive scheme where the number of sets a nd the number of blocks per set va ries:

Scheme name Number of sets Blocks per set

Direct mapped Number of blocks in cache 1

Set associative Number of blocks in cache Associat ivity (typically 2- 16)

Associativity

Fully associative 1 Number of blocks in the cache

The advantage of increasing the degree of associativity is th at it usually
decreases the miss rate. The imp rovem ent in miss rate com es from reducing
misses that compete fo r the same loca tion. We will exa mine these in m ore deta il
shortly. First, let's look at how much improvem ent is ga ined. Figure 7.30 shows
the data fo r a workload consisting of the SPEC2000 benchmarks with caches of 4
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Feature
typical values
for Ll caches

Typical values
for L2 caches

typical values for
paged memory

typical values
for a TlB

Total size in blocks

Total size in kilobytes

250- 2000

'EM;'
4000- 250,000

500-8000

16 ,000-250,000

250,000- 1,000,000,000

16-512

0 .25-16

Block size in bytes 32-64 32-128 4000-64,000 4-32

Miss penalty in clocks 10- 25 100-1000 10 ,ooo,O()(}-'100,OOO,OOO 10-1000

Miss rates (global for L2) 296-5% 0 .196-296 0 .00001%-0.000196 0 .0196-296

FIGURE 7.29 The key quantitative design parameters that characterize the major elements of memory hierarchy In a com
puter. These are typical values for these levels as of 2004. Although the range of values is wide, this is partially because many of the values that have
shifted over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow.

15%

-
8 KB
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~
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ol--:.2"~~32~2R~~B~;,-~' ;~64~K~B~;_~';/~1~2B~K~B~~~
One-way Two-way Four-way Eight-way

Associativity

9%

3%

12%

~
•.0
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FIGURE 7.30 The data cache miss rates for each of eight cache sizes Improve as the
associativity Increases. While the benefit of going from one-way (direct-mapped) to two-way set
associative is significant, the benefits of further associativity are smaller (e.g., 1%- 10% going from t\loU-way
to four-way versus 20%--30% improvement going from one-way to two-way). There is even less improve
ment in going from four-way to eight-way set associative, which, in turn, comes very dose to the miss rates
of a fully associative cache. Smaller caches obtain a significantly larger absolute benefit from associativity
because the base miss rate of a small cache is larger. Figure 7.1 5 explains how this data was collected.

KB to 512 KB, va rying from direct mapped to eight-way set associative. The larg
est ga ins are obtained in going from direct mapped to two-way set associative,
which yields between a 20% and 30% reduction in the miss rate. As cache sizes
grow, the relative improvement from associativity in creases only slightly; since the
overall miss rate of a larger cache is lower, the opportunity fo r improving the miss
rate decreases and the absolute improvement in the miss rate from associativity
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shrinks significantly. The potential disadva ntages of associa tivity, as we men 
tioned ea rlier, are increased cost and slower access time.

Question 2: How Is a Block Found?

The choice of how we locate a block depends on the block placement scheme,
since that dictates the number of possible loca tions. We ca n summarize the
schemes as follows:

Associativity location method Comparisons required

Direct mapped index 1

Set associative index the set, 5eilR:h among elements degree of associativity

Full 5eilR:h all cache entries size of the cache

separate lookup table 0

The choice among direct-mapped, set -associative, or fully associative mapping
in any memo ry hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardwa re. Including the L2
cache on the chip enables much higher associativity, because the hit times are not
as crit ica l and the designer does not have to rely on standard SRAM chips as the
building blocks. Fully associative caches are prohibitive except fo r sm all sizes,
where the cost of the comparators is not overwhelming and where the absolute
miss rate improvements are greatest.

In virtual memory system s, a separate mapping table (the page table) is kept to
index the memory. In addition to the storage required for the table, using an index
table requires an extra memory access. The choice of full associativity for page
placement and the extra table is motivated by four facts:

I. Full associativity is benefi cial, since misses are very expensive.

2. Full associativity allows softwa re to use sophisticated replacement schemes
that are designed to reduce the miss rate.

3. The full map ca n be easily indexed with no extra hardware and no sea rch 
ing required.

4. The large page size mea ns the page table size overhead is relatively small.
(The use of a separate lookup table, like a page table for virnlal memo ry, is
not practica l fo r a cache beca use the table would be much larger than a page
table and could not be accessed quickly.)

Therefore, virtual memory systems almost always use full y associative placement.
Set-associative placement is often used for caches and TLBs, where the access

combines indexing and the sea rch of a small set. A few systems have used direct -
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mapped caches because of their adva ntage in access time and simplicity. The
adva ntage in access time occurs because finding the requested block does not
depend on a comparison. Such design choices depend on many details of the
implementation , such as whether the cache is on-chip, the technology used for
implementing the cache, and the crit ical role of cache access time in determining
the processor cycle time.

Question 3: Which Block Should Be Replaced
on a Cache Miss?

When a miss occurs in an associative cache, we must decide which block to
replace. In a fully associative cache, all blocks are candid ates for replacement. If
the cache is set associative, we must choose among the blocks in the set. Of course,
replacement is easy in a direct-m apped cache because there is only one ca ndidate.

We have alrea dy mentioned the two primary strategies for replacement in set
associative o r full y associative caches:

• Random: Ca ndidate blocks are randomly selected, possibly using some
hardwa re assistance. For example, MIPS supports random replacement for
TLB misses.

• Least recently used (LRU ): The block replaced is the one th at has been
unused for the longest time.

In practice, LRU is too costly to implement for hierarchies with more than a
small degree of associativity (two to four, typically), since tracking the usage
information is costly. Even for four-way set associativity, LRU is often approxi
mated- for exa mple, by keeping track of which of a pair of blocks is LRU (which
requires 1 bit), and then tracking which block in each pair is LRU (which requires
1 bit per pair).

For larger associa tivity, either LRU is approximated o r random replacement is
used. In caches, the replacement algorithm is in hardwa re, which means that the
scheme should be easy to implement. Rand om replacement is simple to build in
hardwa re, and for a two-way set-associative cache, random replacement has a
miss rate about 1.1 times higher than LRU replacement. As the caches become
larger, the miss rate for both replacement strategies falls, and the absolute differ
ence becomes small. In fact, random replacement can sometimes be better than
the simple LRU approximations that are easily implemented in hardwa re.

In virtual memory, some form of LRU is always approximated since even a tiny
reduction in the miss rate ca n be important when the cost of a miss is enorm ous.
Reference bits or equivalent fun ctionality is often provided to make it easier for
the operating system to track a set of less recently used pages. Beca use misses are

541
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so expensive and relatively infrequent, approximating this information primarily
in software is acceptable.

Question 4: What Happens on a Write?

A key characteristic of any memory hiera rchy is how it deals with writes. We have
already seen the two basic options:

• Write-through: The information is written to both the block in the cache and
to the block in the lower level of the memory hierarchy (main memory for a
cache). The caches in Section 7.2 used this scheme.

• Write-back (also ca lled copy-back): The information is written only to the
block in the cache. The modified block is written to the lower level of the
hierarchy only when it is replaced. Virtual memory systems always use
write-back, for the reasons discussed in Section 7.4.

Both write-back and write-through have their adva ntages. The key advantages
of write-back are the following:

• Individual words can be written by the processor at the rate that the cache,
rather than the m em ory, ca n accept them.

• Multiple writes within a block require only one write to the lower level in
the hiera rchy.

• When blocks are written back, the system ca n make effective use of a high 
bandwidth transfer, since the entire block is written.

Write-through has these advantages:

• Misses are simpler and cheaper because they never require a block to be
written back to the lower level.

• Write-through is easier to implem ent than write-back, although to be prac
tica l in a high-speed system, a write-through cache will need to use a write
buffer.

In virtual m emory systems, only a write-back policy is practical because of the
long latency of a write to the lower level of the hiera rchy (disk) . As processors con 
tinue to increase in performance at a fast er rate than DRAM-based main m emory,
the rate at which writes are generated by a processor will exceed the rate at which
the mem ory system ca n process them , even allowing for physically and logically
wider m em ories. Consequently, more and m ore caches are using a write-back
strategy.
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While caches, TLBs, and virtual m em ory m ay initially look very different,
they rely on the sa me two prin ciples of locality and can be understood by
looking at how they dea l with four questions:
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The BIG
Picture

The Three Cs: An Intuitive Model for Understanding the
Behavior of Memory Hierarchies

In this section , we look at a m odel that provides in sight into the sources of misses
in a mem ory hiera rchy and how the misses will be affected by changes in the hier
a rchy. We will explain the ideas in terms of caches, alth ough the ideas ca rryover
directly to any other level in the hierarchy. In this m odel, all misses a re classified
into one of three categories (the three Cs):

• Compulsory misses: These are cache misses caused by the first access to a
block that has never been in the cache. These are also called cold-start misses.

• Capacity misses: These a re cache misses caused when the cache ca nno t con 
tain all the blocks needed during execution of a program. Capacity misses
occur when blocks are replaced and then later retrieved.

• Conmct misses: These a re cache misses that occur in set -associative o r
direct -m apped caches when multiple blocks com pete fo r the sa me set. Con 
fl ict misses are those misses in a d irect-m apped o r set -associative cache that
a re eliminated in a fully associative cache of the sa m e size. These cache
misses are also ca lled collision misses.

Question 1:
Answer:

Question 2:
Answer:

Question 3:
Answer:

Question 4:
Answer:

Where ca n a block be placed?
One place (direct m apped), a few places (set associative),
or any place (fully associative) .

How is a block found?
There a re four m ethods: indexing (as in a direct -m apped
cache), limited sea rch (as in a set -associative cache), full
sea rch (as in a fully associative cache), and a sepa rate
lookup table (as in a page table) .

What block is repla ced on a miss?
Typically, either the least recently used or a random block.

How a re writes handled?
Each level in the hierarchy can use either write- th rough
or write-back.

three Cs model Acache model
in which all cache misses are
classified into one of three cate
gories: compulsory misses,
capacity misses, and conflict
misses.

compulsor y miss Also called
cold start miss. A cache miss
caused by the first access to a
block that has never been in the
cache.

capacity miss A cache miss
that occurs because the cache,
even with full associativity, can
not contain all the block needed
to satisfy the request.

confl ict miss Also called colli
sion miss. A cache miss that
occurs in a set-associative or
direct-mapped cache when mul·
tiple blocks compete for the
same set and that are eliminated
in a fully associative cache of the
same size.
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FIGURE 7.31 The miss rate can be broken Into three sources of misses. This graph shows
the total miss rate and its components for a range of cache sizes. This data is for the SPEC2000 integer and
floating-point benchmarks and is from the same source as the data in Figure 7.30. The compulsory miss
component is 0.006% and cannot be seen in this graph. The next component is the capacity miss rate,
which depends on cache size. The conflict portion, which depends both on associativity and on cache size,
is shown for a range of associativities from one-way to eight-way. In each case, the labeled section com,>·
sponds to the increase in the miss rate that occurs when the associativity is changed from the next higher
degree to the labeled degree of associativity. For example, the section labeled fW<rway indicates the addi
tional misses arising when the cache has associativity of two rather than four. Thus, the difference in the
miss rate incurred by a direct-mapped cache versus a fully associative cache of the same size is given by the
swn of the sections marked eigllf-wfly.jollr-wfly. two-way, and oue-way. The difference between eight-way
and four-way is so small that it is difficult to see on this graph.

Figure 7.31 shows how the miss rate divides into the three sources. These
sources of misses ca n be directly attacked by changing some aspect of the cache
design. Since conflict misses arise directly from contention for the same cache
block, in creasing associativity reduces conflict misses. Associativity, however, may
slow access time, leading to lower overall performance.

Capacity misses ca n easily be reduced by enlarging the cache; indeed , second 
level caches have been growing steadily larger for many years. Of course, when we
make the cache larger, we must also be ca reful about increasing the access time,
which could lea d to lower overall performance. Thus, first -level caches have been
growing slowly if at all.
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Possible negative
Design change Effect on miss rate performance effeef

Increase cache size decreases capacity misses may increase access time

Increase associativity decreases miss rate due to conflict may increase access time
misses

Increase block size decreases miss rate for a wide range of increases miss penalty. Very large
block sizes due to spatial locality block could increase miss rate

FtGURE 7.32 Memory hierarchy design challenges.

Because compulsory misses are generated by the first reference to a block, the
primary way for the cache system to reduce the number of compulso ry misses is
to increase the block size. This will reduce the number of references requi red to
touch each block of the program once because the program will consist of fewer
cache blocks. Increasing the block size too much can have a negative effect on per
formance because of the increase in the miss penalty.

The decomposition of misses into the three Cs is a useful qualitative model. In
real cache designs, many of the design choices interact , and changing one cache
characteristic will often affect several components of the miss rate. Despite such
shortcomings, this model is a useful way to gain insight into the performance of
cache designs.

The challenge in designing memory hierarchies is that every change that
potentially improves the miss rate can also negatively affect overall perfor
mance, as Figure 7.32 summarizes. This combination of positive and nega
tive effects is what makes the design of a memory hierarchy interesting.

\Vhich of the following statements (if any) are generally true?

I. There is no way to reduce compulsory misses.

2. Fully associate caches have no conflict misses.

3. In reducing misses, associativity is m ore impo rtant than capacity.

The BIG
Picture

Check
Yourself
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Real Stuff: The Pentium P4 and the AMD
Opteron Memory Hierarchies

In this section , we will look at the memory hierarchy in two modern microproces
sors: the Intel Pentium P4 and the AMD Opteron processor. In 2004, the P4 is
used in a va riety of PC desktops and small servers. The AMD Opteron processor is
finding its way into higher-end servers and clusters.

Figu re 7.33 shows the Opteron die photo, and Figure 1.9 on page 21 in Chapter
1 shows the P4 die photo. Both have secondary caches on the main processor die.
Such integration reduces access time to the second ary cache and also reduces the
number of pins on the chip, since there is no need for a bus to an external second 
ary cache.
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FIGURE 7.33 An AMD Opteron die processor photo with the components labeled. The L2
cache occupies 42% of the die. The remaining components in order of size are HyperTransport"": 13%,
DDR memory: 10%, FetchfScanfAlignf Microcode: 6%, Memory cont roller: 4%, FPU: 4%, Instruction
cache: 4%, Data cache: 4%, Execut ion units: 3%, Bus unit: 2%, and dock generator: 0.2%. In a 0.13 tech·
nology, this die is 193 mm2.
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The Memory Hierarchies of the P4 and Opteron

Figure 7.34 summarizes the address sizes and TLBs of the two processors.
Note that the AMD Opteron has four TLBs while the P4 has two and that the

virtual and physical addresses do not have to match the word size. AMD imple
ments only 48 of the potential 64 bits of its virtual space and 40 of the potential 64
bits of its physical address space. Intel increases the physical address space to 36
bits, although no single program can address more than 32 bits.

Figure 7.35 shows their caches. Note that both the L1 data cache and the L2
caches are larger in the Opteron and that P4 uses a larger block size for its L2
cache than its L1 data cache.

Alth ough the Opteron runs the same IA-32 programs as the Pentium P4, its
biggest difference is that it has added a 64-bit addressing mode. Just as the 80386
added a flat 32-bit address space and 32-bit registers to the prior 16-bit 80286
architecture, Opteron adds a new mode with flat 64-bit address space and 64-bit
registers to the IA-32 architecture, called AMD64. It increases the program
counter to 64 bits, extends eight 32-bit registers to 64 bits, adds eight new 64-bit
registers, and doubles the number of SSE2 registers. In 2004 Intel announced that
future IA-32 processors will include their 64-bit address extension.

Techniques to Reduce Miss Penalties

Both the Pentium 4 and the AMD Opteron have additional optimizations that
allow them to reduce the miss penalty. The first of these is the return of the

Characteristic Intel Pentium P4 AMD Opteron

Virtual address 32 bits 48 bits

Physical address 36 bits 40 bits

Page size 4 KB, 2/4 MB 4 KB, 2/4 MB

TLB organization 1 TLB for instructions and 1 TLB for 2 TLBs for instructions and 2 TLBs for data
do", Both L1 TLBs fully associative, LRU
Both are four·way set associative replacement

Both use pseudo.t.RU replacement Both L2 TLBs are four.way set associativity,

Both have 128 entries round-robin LRU

TLB misses handled in ha rdware Both L1 TLBs have 40 entries

Both L2 TLBs have 512 entries

TLB misses handled in hardware

FtGURE 7.34 Address translation and TLB hardware for the Intel Pentium P4 and AMD
Opteron. The word size sets the maximum size of the virtual address, but a processor need not use all bits.
The physical address size is independem of m>rd size. The P4 has one TLB for instructions and a separate
identical TLB for data, while the Opteron has both an L1 TLB and an L2 TLB for instructions and identical
LI and L2 TLBs for data. Both processors provide support for large pages, which are used for things like the
operating system or mapping a frame buffer. The large-page scheme avoids using a large mUlIber of entries
to map a single object that is always present .
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nonblocking (;ache A cache
that allows the processor to
make references to the cache
while the cache is handling an
earl ier miss.

Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Characteristic Intel Pentium P4 AMDOpteron

Ll cache organization Split instruction and data caches Split instruction and data caches

Ll cache size 8 KB for data , 96 KB trace cache for 64 KB each for instructions/ data
RiSe instructions (12K RISC operations)

Ll cache associativity 4.way set associative 2·way set associative

Ll replacement Approximated LRU replacement LRU replacement

Ll block size 64 bytes 64 bytes

Ll write policy Write.through Write-back

L2 cache organization Unified (instruction and data) Unified (instruction and data)

L2 cache size 512 KB 1024 KB (1 MB)

L2 cache associativity Sway set associative 16.way set associative

L2 replacement Approximated LRU replacement Approximated LRU replacement

L2 block size 128 bytes 64 bytes

L2 write policy Write.tlack Write-back

FIGURE 7.35 First-level and second-level caches In the Intel Pentium P4 and AMD
Opteron. The primary caches in the P4 are physically indexed and tagged; for a discussion of the alterna
tives, see the Elaboration on page 527.

requested word fi rst on a miss, as described in the Elaboration on page 490. Both
allow the processor to continue to execute instructions that access the data cache
during a cache miss. This technique, called a nonblocking cach e, is commonly
used as designers attempt to hide the cache miss latency by using out -of-order pro
cessors. They implement two flavors of nonblocking. Hit under miss allows addi
tional cache hits during a miss, while miss IInder miss allows multiple outstanding
cache misses. The aim of the first of these two is hiding some miss latency with
other work, while the aim of the second is overlapping the latency of two different
misses.

Overlapping a large fraction of miss times for multiple outstanding misses
requires a high -bandwidth memory system capable of handling multiple misses in
parallel. In desktop systems, the memory may only be able to take limited adva n
tage of this capability, but large servers and multip rocesso rs often have memory
systems capable of handling more than one outstanding miss in pa rallel.

Both microprocesso rs prefetch instructions and have a built -in hardwa re
prefetd l mechanism for data accesses. They look at a pattern of data misses and use
this information to try to predict the next address to start fetching the data before
the miss occurs. SUd l techniques genera lly work best when accessing arrays in loops.

A significant challenge facing cadle designers is to support processo rs like the P4
and Opteron that ca n execute more than one memory instruction per dock cyde.
Multiple requests ca n be supported in the fi rst-level cache by two different tech
niques. The cadle can be multiported, allowing more than one simultaneous access
to the same cache block. Multiported caches, however, are often too expensive, since
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the RAM cells in a multiported memory must be much larger than single-ported
cells. The alternative scheme is to break the cache into banks and allow multiple,
independent accesses, provided the accesses are to different banks. The technique is
similar to interleaved main memory (see Figure 7.11 on page 489).

To reduce the memory traffic in a multiprocessor configuration, Intel has other
versions of the P4 with much larger on-dlip caches in 2004. For example, the Intel
Pentium P4 Xeon comes with third-level cache 011 chip of 1 MB and is intended for
dual-processor servers. A more radical example is the Intel Pentium P4 Extreme
Edition , which comes with 2 MB of L3 cache but no support for multiprocessing.
These two chips are much larger and more expensive. For example, in 2004 a Preci
sion Workstation 360 with a 3.2 GHz P4 costs about $1900. Upgrading to the
Extreme Edition processor adds $500 to the price. The Dell Precision Workstation
450, which allows dual processors, costs about $2000 for a 3.2 GHz Xeon with 1MB
of L3 cache. Adding a second processor like that one adds $1500 to the price.

The sophisticated memory hierarchies of these chips and the large fraction of
the dies dedicated to caches and TLBs show the significant design effort expended
to try to close the gap between processor cycle times and memory latency. Future
advances in processor pipeline designs, together with the increased use of multi
processing that presents its own problems in memory hierarchies, provide many
new challenges for designers.

Elaboration: Perhaps the largest difference between the AMD and Intel chips is the
use of a trace cache for the P4 instruction cache, while the AMD Opteron uses a more
traditional instruction cache .

Instead of organizing the instructions in a cache block sequentially to promote spa
tial locality, a trace cache finds a dynamic sequence of instructions including taken
branches to load into a cache block. Thus, the cache blocks contain dynamic traces of
the executed instructions as determined by the CPU rather than static sequences of
instructions as determined by memory layout. It folds branch prediction (Chapter 6) into
the cache, so the branches must be validated along with the addresses in order to have
a valid fetch . In addition, the P4 caches the micro-operations (see Chapter 5) rather
than the IA-32 instructions as in the Opteron .

Clearly, trace caches have much more complicated address mapping mechanisms,
since the addresses are no longer aligned to power-of-two multiples of the word size .

Trace caches can improve utilization of cache blocks, however. For example, very
long blocks in conventional caches may be entered from a taken branch, and hence the
first portion of the block occupies space in the cache that might not be fetched . Simi
larly, such blocks may be exited by taken branches, so the last portion of the block
might be wasted . Given that taken branches or jumps occur every 5-10 instructions,
effective block utilization is a real problem for processors like the Opteron , whose 64
byte block would likely include 16-24 80x86 instructions . Trace caches store instruc
tions only from the branch entry point to the exit of the trace, thereby avoiding such
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header and trailer overhead . A downs ide of t race caches is that they potentially store
the same instructions multiple times in the cache: conditional branches making differ
ent choices result in the same instructions being part of sepa rate traces, which each
appear in the cache.

To account for both the larger s ize of the micro--operations and the redundancy inher
ent in a trace cache, Intel claims that the miss rate of the 96 KB trace cache of the P4,
which holds 12K micro-operations, is about that of an 8 KB cache, which holds about
2K-3K IA-32 instructions.

Fallacies and Pitfalls

As one of the most naturally quantitative aspects of computer architecnlfe, the
memo ry hierarchy would seem to be less vulnerable to fallacies and pitfalls. Not
only have there been many fallacies propagated and pitfalls encountered, but
some have led to major negative outcomes. We start with a pitfall th at often traps
students in exercises and exams.

Pitfall: Forgetting to account fo r byte address ing or the cache block size in siml/
lating a cache.

When simulating a cache (by hand or by computer), we need to make sure we
account for the effect of byte addressing and multiword blocks in determining
which cache block a given address maps into. Fo r example, if we have a 32-byte
direct-mapped cache with a block size of 4 bytes, the byte address 36 maps into
block I of the cache, since byte address 36 is block address 9 and (9 modulo 8) = I.
On the other hand, if address 36 is a word address, then it maps into block (36
mod 8) = 4. Make sure the problem clea rly states the base of the address.

In like fashion, we must account for the block size. Suppose we have a cache
with 256 bytes and a block size of 32 bytes. \Vhich block does the byte address
300 fall into? If we brea k the address 300 into fi elds, we ca n see the answer:

31 30 29 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 I 0 0 1 0 1 1 0 o I

Cache Block
block offset

number

Block address
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Byte address 300 is block address

l 33
0
2
0J 9

The number of blocks in the cache is

l2
3
526 J =8

Block number 9 falls into cache block number (9 mod ulo 8) = 1.
This mistake catches many people, including the authors (in ea rlier drafts) and

instructors who forget whether they intended the addresses to be in words, bytes,
or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Ignoring memory system behavior when writing programs or when gener
Ilting code in a compiler.

This could easily be written as a fallacy: "Progra mmers ca n ignore memory hiera r
chies in writing code." We illustrate with an exa mple using matrix multiply, to
complement the sort comparison in Figure 7. 18 on page 508.

Here is the inner loop of the version of matrix multiply from Chapter 3:

for (i = O; i! =500 ; i = i +ll
for (j =O; j! =500 ; j = j +ll

for (k=O; k! =500 ; k= k+l)
x[i][j] = x[i][j] + y[i][k] * z[k][j];

When run with inputs that are 500 x 500 double precision matrices, the CPU
runtime of the above loop on a MIPS CPU with a 1 MB secondary cache was
about half the speed compared to when the loop order is changed to k , j , i (so i
is innermost)! The only difference is how the program accesses memory and the
ensuing effect on the memory hierarchy. Further compiler optimizations using a
technique called blocking ca n result in a runtime that is another four times faster
for this code!

Pitfall: Using average memory access time to evaluate the memory hierarchy ofan
out-of-order processor.

If a processor stalls during a cache miss, then you can separa tely calculate the
memory-stall time and the processor execution time, and hence evaluate the
memory hierarchy independently using average memory access time.

If the processor continues to execute instructions and may even sustain more
cache misses during a cache miss, then the only accurate assessment of the mem
ory hiera rchy is to simulate the out -of-order processor along with the memory
hierarchy.

551
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Pitfall: Extending an address space by adding segments on top ofan unsegmented
address space.

During the 1970s, many programs grew so large that not all the code and data
could be addressed with just a 16-bit address. Computers were then revised to
offer 32-bit addresses, either through an unsegmented 32-bit address space (also
called a flat address space) o r by adding 16 bits of segment to the existing 16-bit
address. From a marketing point of view, adding segments th at were program 
mer-visible and that forced the programmer and compiler to decompose p ro
grams into segments could solve the addressing problem. Unfo rtunately, there is
t rouble any time a programming language wants an address that is larger than one
segment, such as indices for large arrays, unrestricted pointers, or reference
parameters. Mo reover, adding segments ca n turn every address into two words
one for the segment number and one for the segment offset-causing problems in
the use of addresses in registers. Given the size of DRAMs and Moo re's law, many
of today's 32-bit systems are facing similar problems.

Concluding Remarks

The difficulty of building a memory system to keep pace with faster processo rs is
undersco red by the fact th at the raw material fo r main memory, DRAMs, is essen
tially the sa me in the fastest computers as it is in the slowest and cheapest. Figure
7.36 compares the memory hierarchy of microprocessors aimed at desktop, server,
and embedded applications. The L1 caches are similar across applica tions, with
the primary differences being L2 cache size, die size, processor clock rate, and
instructions issued per clock.

It is the principle of locality that gives us a chance to overcome the long latency
of memory access-a nd the soundness of this strategy is demonstrated at all levels
of the memo ry hierarchy. Although these levels of the hierarchy look quite differ
ent in quantitative term s, they follow similar strategies in their operation and
exploit the sa me properties of locality.

Because processor speeds continue to imp rove faster than either DRAM access
times or disk access times, memory will in creasingly be the factor that limits per
formance. Processors in crease in perfo rm ance at a high rate, and DRAMs are now
doubling their density about every two years. The access time of DRAMs, however,
is improving at a much slower rate-less than 10% per yea r. Figure 7.37 plots pro
cessor performance aga inst a 7% annual performance imp rovement in DRAM
latency. \-Vhile latency improves slowly, recent enhancements in DRAM technol
ogy (double data rate DRAMs and related techniques) have led to greater
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AMD
Opteron

Intrlnsity
FastMATH Intel Pentium 4 Intel PXA250
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5""
UltraSPARC IV

Instruction set architedure 1A·32 , AMD64 MIPS32 IA-32 ARM SPARC v9

Intended application server embedded desktop 10WilOwer embedded server

Die size (mm2) (2004) 193 122 217 356

Instructions issued/clock 3 2 3 RISC ops 1 4 ,2

Clock rate (2004) 2.0 GHz 2.0 GHz 3 .2 GHz 0 .4 GHz 1.2 GHz

Instruction cache 6 4 KB, 16 KB, 12000 RISC op trace 32 KB, 32 KB,
2.way set direct mapped cache (-96 KB) 32.way set 4.way set

associative associative associative

Latency (clocks) 3? 4 4 1 2

Data cache 6 4 KB, 16 KB, 8 KB, 32 KB, 64 KB,
2.way set 1~"" 4--way 32.way set 4.way set

associative set associative set associative associative associative

Latency (clocks) 3 3 2 1 2

TLB entries (IjD/L2 TLB) 40/40/512/ 16 128/128 32/32 128/512
512

Minimum page sire 41<8 41<8 4 KB 1 KB 81<8

On~hip L2 cache 1024 KB, 1024 KB, 512 KB,
16-way set +way set S-way set

associative associative associative

Ofkhip L2 cache 16 MB, 2.way
set associative

Block size (L1/L2, bytes) 64 64 6 4/128 32 32

FIGURE 7.36 Desktop, embedded, and server microprocessors In 2004. From a memory hierarchy perspect ive, the primary differences
between c.1tegories is the L2 cache. There is no L2 cache for the low-power embedded, a large on-chip L2 for the embedded and desktop, and 16 MB
off chip for the server. The processor dock rates also vary: 0.4 GH z for low-power embedded, I GHz or higher for the rest . Note that UltraSPARC IV
has two processors on the chip.

increases in memo ry bandwidth. This potentially higher memory bandwidth has
enabled designers to increase cache block sizes with smaller increases in the miss
penalty.

Recent Trends

The challenge in designing memory hierarchies to close this growing gap, as we
noted in the Big Picture on page 545, is that all the hardwa re design choices fo r
memory hierarchies have both a positive and negative effect on performance. This
means that fo r each level of the hierarchy there is an optimal perfo rm ance point
per program, which must include some misses. If this is the case, how ca n we
overcome the growing gap between processor speeds and lower levels of the hier
archy? This question is currently the topic of much resea rch.
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FIGURE 7.37 Using their 1980 performance as a baseline, the access time of DRAMs versus the performance of processors
Is plotted over time Note that the vertical axis must be on a logarithmic scale to record the size of the processor-DRAM performance g.1p. The
memory baseline is 64 KB DRAM in 1980, with three years to the next generation until 1996 and two years thereafter, with a 7% per year performance
improvement in latency. The processor line assumes a 35% improvement per year until 1986, and a 55% improvement wltiI2003. It slows thereafter.

On-chip first-level caches initially helped close the gap that was growing
between processor clock cycle time and off-chip SRAM cycle time. To narrow the
gap between the small on-chip caches and DRAM, second -level caches became
widespread. Today, all desktop computers use second-level caches on chip, and
third-level caches are becoming popular in some segments. Multilevel caches also
make it possible to use other optimizations more easily fo r two reasons. First, the
design parameters of a second- or third -level cache are different from a first-level
cache. For exa mple, because a second- or third -level cache will be much larger, it
is possible to use larger block sizes. Second , a second - or third-level cache is not
constantly being used by the processor, as a first-level cache is. This allows us to
consider having the second- or third -level cache do something when it is idle that
may be useful in preventing future misses.

Another possible direction is to seek software help. Efficiently managing the
memo ry hiera rchy using a variety of program transformations and hardwa re
fa cilities is a major focus of compiler enhancements. Two different ideas are being
explo red. One idea is to reo rga nize the program to enhance its spatial and tempo
rallocality. This approach focuses on loop-o riented programs that use large arrays
as the major data structure; large linea r algebra problems are a typical example. By
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restructuring the loops that access the arrays, substantially improved loca lity
and , therefore, cache performance-can be obtained. The exa mple on page 55 1
showed how effective even a simple change of loop structure could be.

Another direction is to try to use compiler-directed prefetching. In prefetch
ing, a block of data is brought into the cache before it is actually referenced. The
compiler tries to identify data blocks needed in the funlfe and , using special
instructions, tells the memory hierarchy to move the blocks into the cache. When
the block is actually referenced, it is found in the cache, rather than causing a
cache miss. The use of secondary caches has made prefetching even more attrac
tive, since the secondary cache ca n be involved in a prefetch, while the primary
cache continues to service processor requests.

As we will see in • Chapter 9, memory systems are also a central design issue
for parallel processors. The growing impo rtance of the memory hierarchy in
determining system performance in both uniprocessor and multiprocessor sys
tems mea ns that this important area will continue to be a focus of both designers
and researchers for some years to come.
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prefetching A technique in
which data blocks needed in the
fi.lture are brought into the
cache early by the use of special
instructions that specify the
address of the block.

Historical Perspective and Further
Reading

This history section . gives an overview of memory technologies, from mercury
delay lines to DRAM, the invention of the mem ory hierarchy and protection
mechanisms, and concludes with a brief history of operating systems, including
crss, MULTI CS, UNIX, BSD UNIX, MS-DOS, Windows, and Linux.

Exercises

7.1 [5] <§7. 1> SRAM is commonly used to implement small, fa st, on-chip caches
while DRAM is used for larger, slower main memory. In the past, a common de
sign for supercomputers was to build machines with no caches and main memo 
ries made entirely out of SRAM (the Cray C90, for example, a very fa st computer
in its day). If cost were no object, would you still wa nt to design a system this way?

7.2 [!O] <§7.2> Describe the general characteristics of a program that would ex
hibit very little temporal and spatial loca lity with regard to data accesses. Provide
an exa mple program (pseudocode is fine).
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7.3 [ IO J <§7.2> Describe the general charJ cteristics of:l program that would ex
hibit very high amounts of temporal locality but very little spatial locality with re
ga rd to data accesses. Provide an example p rogram (pseudocode is fine).

7.4 [ IO J <§7.2> Describe the general chara cteristics of a program that would ex
hibit very little temporal locality but very high amounts of spatial locality with re
ga rd to data accesses. Provide an example program (pseudocode is fine).

7.5 [3/3J <§7.2> A new processo r can use either a write- th rough or write-back
cache selectable through softwa re.

3 . Assume the processor will run data intensive applica tions with a large num 
ber of load and store operations. Explain which cache write policy should be
used.

b. Consider the sa me question but this time for a safety critical system III

which data integrity is more important than memory performan ce.

7.6 [IOJ <§7.2> 18 For More Practice: Locality.

7.7 [IOJ <§7.2> 18 For More Practice: Loca lity.

7.8 [IOJ <§7.2> II For More Practice: Locality.

7.9 [ IO J <§7.2> Here is a series of address references given as wo rd addresses: 2,
3, 11 , 16,2 1, 13, 64, 48, 19, 11 , 3, 22, 4, 27, 6, and 11. Assuming a direct-mapped
cache with 16 one-word blocks that is initially empty, label each reference in the
list as a hit or a miss and show the final contents of the cache.

7.10 (10) <§7.2> Using the series of references given in Exercise 7.9, show the hits
and misses and fin al cache contents for a direct-mapped cache with four-word
blocks and a total size of 16 wo rds.

7.11 (15) <§7.2> Given the following pseudocode:

in t array[lOOOO , lOOOOO] ;

fo r each element array[i][j] (

array[i][j] = array[i][j] *2 ;

I

write two C programs that implement this algorithm: one should access the ele
ments of the array in row-major order, and the other should access them in col
umn -major order. Compare the execution times of the two programs. \Vhat does
this tell you about the effects of memo ry layout on cache performance?

7.12 (10 ) <§7.2> Compute the total number of bits required to implement the
cache in Figure 7.9 on page 486. This number is different from the size of the
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cache, which usually refers to the number of bytes ofdata stored in the cache. The
number of bits needed to implement the cache represents the total amount of
memory needed for storing all the data, tags, and valid bits.

7.13 (10 ) <§7.2> Find a method to eliminate the AND ga te on the valid bit in
Figure 7.7 on page 478. (Hint: You need to change the comparison. )

7.14 [ IOJ <§7.2> Consider a memory hiera rchy using one of the three orga niza
tions for main memory shown in Figure 7.11 on page 489. Assume that the cache
block size is 16 words, that the width oforganization (b) of the figure is four words,
and that the number ofba nks in organization (c) is four. If the main memory latency
for a new access is 10 memory bus clock cycles and the transfer time is 1 memory bus
clock cycle, what are the miss penalties for each of these organizations?

7.15 (10 ) <§7.2> • For More Practice: Cache Performan ce.

7.16 [ IS) <§7.2> Cache C 1 is direct-mapped with 16 one-word blocks. Cache C2
is direct-mapped with 4 four-word blocks. Assume that the miss penalty for C 1 is
8 memory bus clock cycles and the miss penalty for C2 is 11 memory bus clock cy
cles. Assuming that the caches are initially empty, find a reference string for which
C2 has a lower miss rate but spends more memory bus clock cycles on cache misses
than C 1. Use word addresses.

7.17 [5J <§7.2> .. In More Depth: Average Memory Access Time

7.18 [5J <§7.2> • In Mo re Depth: Average Memory Access Time

7.19 (10 ) <§7.2> • In More Depth: Average Memory Access Time

7.20 (10) <§7.2> Assume a memory system that supports interleaving either four
reads or four writes. Given the following mem ory addresses in order as they ap
pear on the memory bus: 3, 9, 17,2,5 1, 37, 13, 4,8,41 ,67, 10, which ones will result
in a bank conflict?

7.21 [3 hours) <§7.3> Use a cache simulator to simulate several different cache
orga nizations for the first 1 million references in a tra ce of gce. Both dinero (a
cache simulator) and the gcc tra ces are available-see the Prefa ce of this book for
information on how to obta in them. Assume an instruction cache of 32 KB and a
data cache of32 KB using the sa me orga nization. You should choose at least two
kinds of associativity and two block sizes. Draw a diagram like that in Figure 7. 17
on page 503 that shows the data cache o rga nization with the best hit rate.

7.22 [ I dayJ <§7.3> You are commissioned to design a cache fora new system. It
has a 32-bit physical byte address and requires separate instruction and data cach 
es. The SRAMs have an access time of 1.5 ns and a size of32 K X8 bits, and you have
a total of 16 SRAMs to use. The miss penalty for the mem ory system is 8 + 2 x Block
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size in wo rds. Using set associativity add s 0.2 ns to the cache access time. Using the
first 1million references of gee, find the best I and 0 cache orga nizations, given the
ava ilable SRAMs.

7.23 (10 ) <§§7.2, 8 .5> II Fo r More Practice: Cache Configurations

7.24 (10 ) <§§7.2, 8 .5> " Fo r More Practice: Cache Configurations

7.25 (10 ) <§7.3> .. For Mo re Practice: Cache Operation

7.26 (10 ) <§7.3> II For More Practice: Cache Operation

7.27 (10 ) <§7.3> II For More Practice: Cache Operation

7.28 [5J <§7.3> Associativity usually improves the miss ratio, but not always.
Give a sho rt series of address references fo r which a two-way set-associative cache
with LRU repla cement would experience more misses than a direct-mapped cache
of the sa me size.

7.29 (15) <§7.3> Suppose a com puter's address size is k bits (using byte address
ing), the cache size is S bytes, the block size is B bytes, and the cache is A-way set
associative. Assume that B is a power of two, so B = 2b. Figure out what the follow
ing quantities are in terms of 5, B, A, b, and k: the number of sets in the cache, the
number of index bits in the address, and the number of bits needed to implement
the cache (see Exercise 7. 12).

7.30 (10 ) <§7.3> III For More Practice: Cache Configurations.

7.31 (10 ) <§7.3> III For More Practice: Cache Configurations.

7.32 (20 ) <§7.3> Consider three processors with different cache configurations:

• Cache 1: Direct-mapped with one-word blocks

• Cache 2: Direct-mapped with four-wo rd blocks

• Cache 3: Two-way set associative with four-wo rd blocks

The following miss rate measurements have been m ade:

• Cache 1: Instruction miss rate is 4%; data miss rate is 6%.

• Cache 2: Instruction miss rate is 2%; data miss rate is 4%.

• Cache 3: Instruction miss rate is 2%; data miss rate is 3%.

Fo r these processors, one-half of the instructions contain a data reference. Assume
that the cache miss penalty is 6 + Block size in words. The CPI for this workload
was measured on a processo r with cache 1 and was found to be 2.0. Determine
which processo r spends the most cycles on cache misses.
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7.33 [5J <§7.3> The cycle times for the processors in Exercise 7.32 are 420 ps for
the first and second processors and 310 ps for the third processor. Determine
which processor is the fa stest and which is the slowest.

7.34 [15J <§7.3 > Assume that the cache for the system described in Exercise 7.32 is
two-way set associative and has eight-word blocks and a total size of 16 KB. Show the
cache orga nization and access using the same format as Figure 7.1 7 on page 503.

7.35 (10 ) <§§7.2, 7.4> The following C program is run (with no optimizations)
on a processor with a cache that has eight -word (32-byte) blocks and hold s 256
bytes of data:

int i , j , c , st r ide , array[512] ;

f o r ( i = O; i<10000 ; i ++ )
for (j =O; j<512 ; j = j +s tride )

C = array[j] +17 ;

If we consider only the cache activity generated by references to the array and we
assume that integers are words, what is the expected miss rate when the cache is
direct mapped and stride = 256? How about if stride = 255? Would either of these
change if the cache were two-way set associative?

7.36 (10 ) <§§7.3, B.5> " Fo r More Practice: Cache Configurations

7.37 [5 J <§§7.2-7.4> • For Mo re Practice: Memory Hiera rchy Interactions

7.38 [4 hoursJ <§§7.2-7.4> We want to use a cache simulato r to simulate several
different TLB and virtual memory organizations. Use the first I million references
of gcc for this evaluation. We wa nt to know the TLB miss rate fo r each of the fol
lowing TLBs and page sizes:

I. 64-entry TLB with full associativity and 4 KB pages

2. 32-entry TLB with full associativity and 8 KB pages

3. 64-entry TLB with eight-way associativity and 4 KB pages

4. I28-entry TLB with four-way associativity and 4 KB pages

7.39 [15J <§7.4> Consider a virtual memory system with the following properties:

• 40-bit virtual byte address

• 16 KB pages

• 36-bit physical byte address

What is the total size of the page table for each process on this processor, assuming
that the valid, protection , dirty, and use bits take a total of 4 bits and that all the vir
tual pages are in use? (Assume that disk addresses are not stored in the page table.)

55.
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7.40 ( IS) <§7.4> Assume that the virtual mem ory system of Exercise 7.39 is im
plemented with a two-way set-associative TLB with a total of 256 TLB entries.
Show the virtual-to-physical mapping with a figure like Figure 7.24 on page 525.
Make sure to label the width of all fi eld s and signals.

7.41 (10 ) <§7.4> A p rocesso r has a 16-ent ry TLB and uses 4 KB pages. What are
the performance consequences of this memory system if a program accesses at least
2 MB of memory at a time? Ca n anything be done to imp rove perfo rmance?

7.42 (10 ) <§7.4> Buffer overflows are a common exploit used to ga in control of
a system. If a buffer is allocated on the stack, a hacker could overflow the buffer and
insert a sequence of malicous instructions comp romising the system. Can you
think of a hardwa re mechanism that could be used to prevent this?

7.43 ( IS) <§7.4> .. For More Practice: Hierarchica l Page Tables

7.44 ( IS) <§7.4> .. For More Practice: Hierarchica l Page Tables

7.45 (5] <§7.5> If all misses are classified into one of three categories-compul
sory, capacity, or conflict (as discussed on page 543)-which misses are likely to be
reduced when a program is rewritten so as to require less memory? How about if
the clock rate of the processo r that the program is running on is increased? How
about if the associativity of the existing cache is increased?

7.46 (5] <§7.5> The following C program could be used to help construct a cache
simulator. Ma ny of the data types have not been defined, but the code accurately
describes the actions that take place during a read access to a direct-mapped cache.

wo r d ReadDi r ec t MappedCa che( address a)
st at ic Entry ca che[ CACH E_SI ZE_I N_WORDS] ;
Ent ry e = cache[a . index] ;
i f (e . valid == FALS E !! e . tag != a . t ag) (

e . valid = t rue ;
e . ta g = a . t ag ;
e .data = load_f r om_memory(a) ;

}

return e . dat a ;

Your task is to modify this code to produce an accurate description of the actions
that take place during a rea d access to a direct-mapped cache with multiple-word
blocks.

7.47 (8] <§7.5> This exercise is similar to Exercise 7.46, except this time write the
code for read accesses to an n-way set-associative cache with one-word blocks.
Note that your code will likely suggest that the comparisons are sequential in na 
ture when in fact they would be perfo rmed in parallel by actual hardwa re.
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7.48 [8J <§7.5> Extend your solution to Exercise 7.46 by including the specifi ca
tion of a new procedure for handling write accesses, assuming a write- th rough pol
icy. Be sure to consider whether or not your solution for handling read accesses
needs to be mod ified.

7.49 [8J <§7.5> Extend your solution to Exercise 7.46 by including the specifica
tion of a new procedure for handling write accesses, assuming a write- back policy.
Be sure to consider whether or not your solution for handling read accesses needs
to be modified.

7.50 [S) <§7.5> This exercise is similar to Exercise 7.48, but this time extend your
solution to Exercise 7.47. Assume that the cache uses random replacement.

7.51 [S) <§7.5> This exercise is similar to Exercise 7.49, but this time extend your
solution to Exercise 7.47. Assume that the cache uses random replacement.

7.52 (5) <§§7.7-7.S> Why might a compiler perform the following optimization?

/ * Be f ore * /

fo r (j = 0 ; j < 20 ; j ++ l
f or (i = 0 ; i < 200 ; i ++ )

x[i][j] = x[i][j] + 1 ;

/ * Aft er * /

fo r (i = 0 ; i < 200 ; i ++ l
f or (j = 0 ; j < 20 ; j ++ )

x[i][j] - x[i][j] + 1 ;

§7.I , page 472: 1.

§7.2, page 49 1: I and 4: A lower miss penalty can lea d to smaller blocks, yet higher
memory bandwidth usually lea ds to larger blocks, sin ce the miss penalty is only
slightly larger.
§7.3, page 510: 1.
§7.4, page 53S: I -a, 2-c, 3-c, 4-d.
§7.5, page 545: 2.
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Computers
in the

Real World

Problem: Find a way to help conserve art

work threatened by environmental factors and

aging or damaged by earlier attempts at resto

ration without causing further harm to irre

placeable artworks.

Solution: Use computers and scientific

instrumentation to ana lyze the artwork and its
setting, enabling art conservators and restor

ers to undertake a more informed and success

ful preservation of an artwork.
Art conservation and restoration have devel

oped into high-technology fields that make

e.x.'tensive use of computing and scientific

instrumentation. For example, one of the most

challenging forms of art to restore and main

tain are frescoes, which are painted in the wet

plaster of a wall or ceiling. Moisture and heat
change the surface and cause deterioration;

simila rly air pollution, smoke from candles,
and other contaminants directly attack the

paint as well as add dirt and grime that cover

the original artwork.
During the restoration of Michelangelo's

frescoes in the Sistine Chapel, computers were

used to survey the ceiling, finding cracks and

precisely mapping the surface and the frescos.

Saving the World's
Art Treasures

Since the width of the ceiling and wa ll s varies
from about three feet to almost six feet , there

are significant differences in thermal behavior,

which in turn affects the surface painting.

Computers were used to model the entire

structure, including the high humidi ty gener

ated when a thousand people stand inside the

chapel on a warm day! This led to a computer

controlled climate system that uses sensors

placed in strategic locations. The goal is to

keep the visitors cool while preserving Miche
lange lo's masterpiece for generations to come.

A laser scan of Michelangelo's statue of Da\lld



Perhaps the area of art conservation that

has been most affected by the ava ilability of

low-cost, high-performance computation has

been painting restoration. Three techniques

infrared reflectography, ultraviolet imaging,

and X-radiography- have found the heaviest

use. Because of the need for highly precise,
high resolution imaging, computer controlled

cameras or X-ray scanners are used in all these

techniques. This results in a patchwork of

images, which are then stitched together by a

computer. The combination of computer con

trolled motion of a camera or X-ray scanner

and subsequent computer composition of tens

to thousands of images permits that scanning

of large surfaces at very high resolution.

Infrared reflectography uses light in the

near-infrared spectrum and a digital camera

to detect the intensity of reflection of the light
from the surface of a painting, mural, or

fresco. This technique is useful for finding the

underdrawing that most artists use to initially

sketch out the forms in a painting. The under

drawing, typically done in black, often using

charcoal, absorbs the infrared light. In the fig-

An Image from the Sistine Chapel In normal light

(left) and In Infrared (right).

ure below, are two images of a painting: one
shown in normal light (on the left) and one

using the infrared reflectography technique
(on the right).

Restorers use ultraviolet imaging to look at

the original colors of a painting that has been
retouched. X-radiography provides similar

information, since white and yellow pigments

that were covered or painted over appear

darker due to their lead content.

Scanning technologies have also been

applied to three-dimensional art objects , such
as sculpture. Michelangelo's David was

scanned using a laser range finder by a group

led by Professor Marc Levoy at Stanford. The

resulting database for a scan with 0.29 mm

resolution consists of over 2 billion polygons

and 32 gigabytes of data. The Digital Miche

langelo project has created a detailed model of
the famous sculpture useful both for conser
vation as well as an educational tool for stu

dents around the world. Two of the many

images that can be derived from the three

dimensional scan as shown opposite.

To learn more see these references on

the 11II library

Conserving paintings, a site dedicated to Harvard Uni
versity's digital imaging lab.

Sistine Chapel, a short background on th e Sistine
Chapel.

The Digital Michelangelo project
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Storage, Networks,
and Other
Peripherals

Combining bandwidth and storage . ..
enables swift and reliable access to
the ever-expanding troves ofconten t
017 the proliferating disks and . ..
repositories of the Internet.

George Gilder
The End rsDrawing Nigh, 2000
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566 Chapter 8

Introduction

Although users can get frustrated if their computer hangs and must be rebooted ,
they become apoplectic if their storage system crashes and they lose information.
Thus, the bar for dependability is much higher for storage than for computation.
Networks also plan for failures in communication , including several mechanisms
to detect and recover from such failures. Hence, I/O systems generally place much
grea ter emphasis on dependability and cost , while processors and mem ory focus
on performance and cost.

I/O systems must also plan for expandability and for diversity of devices, which
is not a concern for processors. Expandability is related to storage capacity, which
is another design parameter for I/O systems; systems may need a lower bound of
storage capacity to fulfill their role.

Although performance plays a smaller role for I/O, it is more complex. For
exa mple, with some devices we may care primarily about access latency, while
with others throughput is crucial. Furthermore, performance depends on many
aspects of the system: the device chara cteristics, the connection between the
device and the rest of the system, the memory hiera rchy, and the operating sys
tem. Figure 8.1 shows the structure of a simple system with its I/O. All of the com
ponents, from the individual I/O devices to the processor to the system software,
will affect the dependability, expandability, and performance of tasks that include
110.

I/O devices are incredibly diverse. Three characteristics are useful in organizing
this wide variety:

• Behavior: Input (read once), output (write only, cannot be read), or storage
(can be reread and usually rewritten).

• Partner: Either a human or a machine is at the other end of the I/O device,
either feeding data on input or reading data on output.

• Data rate: The peak rate at which data ca n be tran sferred between the I/O
device and the main memory or processor. It is useful to know what maxi
mum demand the device may generate.

For exa mple, a keyboard is an inpl/tdevice used by a hI/mall with a peak data rate
of about 10 bytes per second. Figure 8.2 shows some of the I/O devices connected
to computers.

In Chapter 1, we briefly discussed four important and characteristic I/O
devices: mice, graphics displays, disks, and networks. In this chapter we go into
much more depth on disk storage and networks.
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Interrupts
Processor

Cache

Memory- 110 bus

Main VO I/O I/O
memory contro ller controller controller

Graphics /' Network /
Disk Disk output r

FIGURE 8.1 A typical co llection of I/O devices. The connectlons between the I/O deVICes, pro
cessor, and memory are usually called buses. Communication among the devices and the processor use both
interrupts and protocols on the bus, as we will see in this chapter. Figure 8.11 on p.1ge 585 shows the organi
zation for a desktop Pc.

How we should assess I/O perfo rm ance often depends on the applica tion. In
some environments, we may ca re primarily about system th roughput. In these
cases, I/O bandwidth will be most important. Even I/O bandwidth ca n be mea
sured in two different ways:

1. How much data can we move th rough the system in a certain time?

2. How many I/O operations ca n we do per unit of time?

\Vhich performance measurement is best may depend on the environment. For
exa mple, in many multimedia applications, most I/O requests are for long streams
of data, and transfer bandwidth is the important characteristic. In another
environment, we may wish to process a large number of small, unrelated accesses
to an I/O device. An exa mple of such an environment might be a tax-processing
offi ce of the National Income Tax Service (NITS). NITS mostly ca res about pro
cessing a large number of forms in a given time; each tax form is sto red separately
and is fairly small. A system oriented towa rd large fil e transfer may be satisfactory,
but an I/O system th at ca n support the simultaneous transfer of many small fil es
may be cheaper and faster fo r p rocessing millions of tax fo rms.
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ItO requests Reads or writes to
I/O devices.

Chapter 8

Device Behavior Partner Data rate (Mbltjsec)

Keyboard input human 0 .0001

Mouse input human 0 .0038

Voice input input human 0 .2640

Sound input input machine 3 .0000

Scanner input human 3 .2000

Voice output output human 0 .2640

Sound output output human 8 .0000

Laser printer output human 3 .2000

Graphics display output human 800.0000-8000.0000

Modem input or output machine 0 .0160-0.0640

Network/ LAN input or output machine 100.0000-1000.0000

Network/ wireless LAN input or output machine 11.0000-54.0000

Optical disk storage machine SO.OOOO

Magnetic tape storage machine 32.0000

Magnetic disk storage machine 240.0000-2560.0000

FIGURE 8.2 The diversity of I/ O devices. YO devices can be distinguished by whether they serve as
input, output , or storage devices; their communication partner (people or other computers); and their peak
communication rates . The data rates span eight orders of magnitude. Note that a network can be an input
or an output device, but cannot be used for storage. Transfer rates for devices are always quoted in base 10,
so that 10 Mbit/sec = 10,000,000 bits/sec.

In other applications, we ca re primarily about response time, which you will
reca ll is the total elapsed time to accomplish a pa rt icular task. If the 110 requests
are extremely large, response time will depend heavily on bandwidth , but in many
environments most accesses will be small, and the I/O system with the lowest
latency per access will deliver the best response time. On single-user machines
such as desktop computers and laptops, response time is the key performance
characteristic.

A large number of applications, especia lly in the vast commercial market for
computing, require both high th roughput and sho rt response times. Exa mples
include automatic teller machines (ATMs), order entry and inventory tracking
systems, fil e servers, and Web servers. In such environments, we ca re about both
how long each task takes and how many tasks we can process in a second. The
number of ATM requests you can p rocess per hour doesn't matter if each one
takes 15 minutes-you won't have any customers left! Similarly, if you ca n process
each ATM request quickly but can only handle a small number of requests at once,
you won't be able to support many ATMs, o r the cost of the computer per ATM
will be very high.

In summ ary, the three classes of desktop, server, and embedded computers are
sensitive to I/O dependability and cost. Desktop and embedded systems are more
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focused on response time and diversity of I/O devices, while server systems are
more focused on throughput and expandability of I/O devices.

56.

Disk Storage and Dependability

As mentioned in Chapter I, magnetic disks rely on a rotating platter coated with a
magnetic surface and use a moveable rea d/write head to access the disk. Disk stor
age is nonvolatile-the data remains even when power is removed. A magnetic
disk consists of a collection of platters (1-4), each of which ha s two recordable
disk surfaces. The stack of platters is rotated at 5400 to 15,000 RPM and has a
diameter from an inch to just over 3.5 in ches. Each disk surface is divided into
concentric circles, called tracks. There are typically 10 ,000 to 50,000 tra cks per
surface. Each track is in turn divided into sectors that contain the information;
each tra ck may have 100 to 500 sectors. Sectors are typically 512 bytes in size,
although there is an initiative to increase the sector size to 4096 bytes. The
sequence recorded on the magnetic media is a sector number, a gap, the info rma 
tion for that sector including error correct ion code (see III Appendix B, page B
64), a gap, the sector number of the next sector, and so on. Originally, all tracks
had the sa me number of sectors and hence the same number of bits, but with the
introduction of zone bit recording (ZBR) in the ea rly 1990s, disk drives changed
to a va rying number of sectors (and hence bits) per track, instead keeping the
spacing between bits constant. ZBR in creases the number of bits on the outer
tracks and thus increases the drive capacity.

As we saw in Chapter I, to read and write information the read/write heads
must be moved so that they are over the correct location. The disk heads for each
surface are connected together and move in conjunction , so that every head is
over the same track of every surface. The term cylinder is used to refer to all the
tracks under the heads at a given point on all surfaces.

To access data, the operating system must direct the disk through a three-stage
process. The first step is to position the head over the proper track. This operation
is ca lled a seek, and the time to move the head to the desired tra ck is ca lled the
seek time.

Disk manufacturers repo rt minimum seek time, maximum seek time, and
average seek time in their manuals. The first two are easy to measure, but the aver
age is open to wide interpretation because it depends on the seek distance. The
industry ha s decided to calculate average seek time as the sum of the time for all
possible seeks divided by the number of possible seeks. Average seek times are
usually advertised as 3 ms to 14 ms, but, depending on the application and sched
uling of disk requests , the actual average seek time may be only 25% to 33% of the

nonvolatile Storage device
where data retains its value even
when power is removed.

track One of thousands of con
centric circles that makes up the
surface of a magnetic disk.

sector One of the segments
that make up a track on a mag
netic disk; a sector is the small
est amount of information that
is read or written on a disk.

seek The process ofpositioning
a read/write head over the
proper track on a disk.
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advertised number because of loca lity of disk references. This loca lity arises both
because of successive accesses to the same file and because the operating system
tries to schedule such accesses together.

Once the head has reached the correct tra ck, we must wa it for the desired sec
tor to rotate under the read/write head. This time is called the rotational latency
or rotational delay. The average latency to the desired information is halfway
around the disk. Because the disks rotate at 5400 RPM to 15,000 RPM , the average
rotational latency is between

rotation latency Also called
delay. The time required for the
desired sector of a disk to rotate
under the read/write head; lISU

ally assumed to be half the
rotation time.

Average rotational latency

and

Average rotational latency

0.5 rotation
5400 RPM

0.0056 seconds

0.5 rotation

15,000 RPM

0.5 rotation

5400 RPM /(60 se~onds)
mlllute

5.6 ms

0.5 rotation

15,000 RPM /(60 sesollds)
mlllute

EXAMPLE

0.0020 second s = 2.0 ms

The la st component of a disk access, transfer time, is the time to transfer a block
of bits. The transfer time is a function of the sector size, the rotation speed, and
the recording density of a track. Transfer rates in 2004 are between 30 and 80
MB/sec. The one complication is that most disk controllers have a built-in cache
that stores sectors as they are passed over; transfer rates from the cache are typi
cally high er and may be up to 320 MB/sec in 2004. Today, most disk transfers are
multiple sectors in length.

A disk controller usually handles the detailed control of the disk and the transfer
between the disk and the memory. The controller adds the final component of
disk access time, controller time, which is the overhead the controller imposes in
performing an I/O access. The average time to perform an I/O operation will con 
sist of these four times plus any wait time in curred because other processes are
using the disk.

Disk Read Time

What is the average time to read or write a 512-byte sector for a typical disk
rotating at 10,000 RPM ? The advertised average seek time is 6 ms, the transfer
rate is 50 MB/sec, and the controller overhead is 0.2 ms. Assume that the disk
is idle so that there is no wa iting time.
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Average disk access time is equal to Average seek time + Average rotational
delay + Transfer time + Controller overhead. Using the advertised average
seek time, the answer is

ANSWER

571

6.0 ms + 0.5 rotation +~ + 0.2 ms
10,000 RPM 50 MB/sec

6.0 + 3.0 + 0.01 + 0.2 9.2 ms

If the measured average seek time is 25% of the advertised average time, the
answer IS

1.5 ms + 3.0 ms + 0.01 ms + 0.2 ms = 4.7 ms

Notice that when we consider measured average seek time, as opposed to
advertised average seek time, the rotational latency can be the largest compo
nent of the access time.

Disk densities have continued to increase for more than 50 years. The impact
of this compounded improvement in density and the reduction in physical size of
a disk drive has been amazing, as Figure 8.3 shows. The aims of different disk
designers have led to a wide variety of drives being available at any particular time.
Figure 8.4 shows the characteristics of three magnetic disks. In 2004, these disks
from a single manufacturer cost between $0.50 and $5 per gigabyte, depending on
size, interface, and performance. The smaller drive has advantages in power and
volume per byte.

Elaboration: Most disk controllers include caches. Such caches allow for fast
access to data that was recently read between transfers requested by the CPU. They
use write through and do not update on a write miss. They often also include prefetch
algorithms to try to anticipate demand. Of course, such capabilities complicate the
measurement of disk performance and increase the importance of workload choice .

Dependability, Reliability, and Availability

Users crave dependable storage, but how do you define it? In the computer indus
try, it is harder than looking it up in the dictionary. After considerable debate, the
following is considered the standard definition (Laprie 1985):

Computer system dependability is the quality ofdelivered service such that reli
ance mn justifiably be placed on this service. The service delivered by a system
is its observed actllal behavior as perceived by other system(s) interacting with
this system's users. Each module also has an ideal specified behavior, where a
service specification is an agreed description of the expected behavior. A system
fail lire occurs when the actual behavior deviates from the specified behavior.
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FIGURE 8.3 Six magnetic disks, varying In diameter from 14 Inches down to 1.8 Inches.
The IBM microdrive, not shown, has a I-inch diameter. The pictured disks were introduced over more than
IS years ago and hence are not intended to be representative of the best capacity of modern disks of these
diameters. This photograph does, however, accurately portray their relative physical sizes. The widest disk is
the DEC R81, containing four 14·jnch diameter planers and storing 456 MB.1t was manufactured in 1985.
The 8-inch diameter disk comes from Fujitsu, and this 1984 disk stores 130 MB on six platters. The Microp
olis RDS3 has five S.lS·inch planers and stores 85 MB. The IBM 0361 also has five platters, bUllhese are just
3.5 inches in diameter. This 1988 disk holds 320 MB. In 2004, the most dense 3.5·inch disk had 2 platters
and holds 200 GB in the same space, yielding an increase in density of abom 600 times! The Conner CP
2045 has two 2.5·inch platters containing 40 MB and was made in 1990. The smallest disk in this photo·
graph is the Integral 1820. This single 1.8·inch platter contains 20 MB and was made in 1992. Figure 8.11
on page 585 shows a lO·inch drive that holds 340 ME.

Thus, you need a reference specification of expected behavior to be able to
determine dependability. Users ca n then see a system alternating between two
states of delivered service with respect to the service specifi cation:

I. Service accomplishment, where the service is delivered as specified

2. Service interruption, where the delivered service is different from the speci-
fied service

Transitions from state 1 to state 2 are caused by failures, and transitions from state
2 to state 1 are called restorations. Failures can be permanent or intermittent. The
latter is the more difficult case to diagnose when a system oscillates between the
two states; permanent failures are much easier to diagnose. This definition leads
to two related terms: reliability and availability.
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Characteristics Seagate ST3734S3 Seagate ST3200822 Seagate ST94811A

Disk diameter (inches) 3 .50 3 .50 2 .50

Formatted data capacity (GB) 73.4 200.0 40.0

Number of disk surfaces (heads) 8 4 2

Rotation speed (RPM) 15.000 7200 5400

Interna l disk cache size (MB) 8 8 8

External interface. bandwidth (MB/se<:) Ultra320 SCSI . 320 Serial ATA. 150 ATA. 100

Sustained transfer rate (MB/sec) 57-86 32-58 34

Minimum seek (read/write) (ms) 0 .2/0.4 1.0/1.2 1 .5/2.0

Average see k read/write (ms) 3 .6/3.9 8 .5/9.5 12.0/14.0

Mean time to failure (MTTF) (hours) 1.200.OO0@25·C 6oo.000@ 25·C 330.000 @ 25·C

Warranty (years) 5 3

Nonre<:overable read errors pe r bits read <1 per loJ-~ < 1 per 1014 < 1 per loJ-4

Temperature. vibration limits (operating) 5 ·-55·C. 400 Hz@0.5G O·.-QO·C. 350 Hz @ 0 .5 G 5·-55·C. 400 Hz @ 1 G

Size: dimensions (in.). we ight (pounds) 1 .0· x 4 .0· x 5 .8" . 1.9 Ibs 1 .0· x 4 .0· x 5 .8" .1.4 Ibs 0 .4 · x 2 .7" x 3 .9· . 0 .2 Ibs

Power: operatingjidle/standby (watts) 20?/12/ 12/8/1 2 .4/ 1 .0/0.4

GB/cu. in .. GB/watt 3 GB/cu.in .. 4 GB/W 9 GB/cu.in .. 16 GB/W 10 GB/cu.in .. 17 GB/W
Price in 2004. $/GB ~ $400. ~ $5/GB ~ $100. m $0.5/GB m $100. m $2.50/GB

FIGURE 8.4 Characteristics of three magnetic disks by a single manufacturer In 2004. The disks shown here either interface to
SCSI, a standard I/O bus for many systems, or ATA, a standard I/O bus for PCS. The first disk is intended for file servers, the second for desktop PCs,
and the last for laptop computers. Each disk has an 8 MB cache.The t ransfer rate from the cache is 3-6 times faster than the transfer rate from the disk
surface. The much lower cost of the ATA 3.S-inch drive is primarily due to the hypercompetitive PC market, although there are differences in perfor
mance and reliability between it and the SCSI drive. The service life for these disks is 5 years, although Seagate offers a S-year guarantee only on the
SCSI drive, with a I-year guarantee on the other two. Note that the quoted MTIF assumes nominal power and temperature. Disk lifetimes can be
much shorter if temperature and vibration are not controlled. See the link to Seagate at www.seagate.romfor more information on these drives .

Reliability is a measure of the continuous service accomplishment-or, equiva
lently, of the time to failure-from a reference point. Hence, the mea n time to fa il
ure (MTTF) of disks in Figure 8.4 is a reliability measure. Service interruption is
measured as mean time to repair (MTIR). Mean time between faill/res (MTBF) is
sim ply the sum of MTTF + MTTR. Although MTBF is widely used , MTIF is
oft en the more app ropriate term.

Availabili ty is a measure of the service accomplishment with respect to the
alternation between the two states of accomplishment and interruption. Ava ilabil
ity is statistica lly quantified as

Ava ilability MIIF==
(MTTF + MTTR)

Note that reliability and ava ilability are quantifiable measures, rather than just
synonyms fo r dependability.

\Vhat is the ca use of failures? Figure 8.5 summ arizes many papers that have col
lected data on reasons for computer systems and telecommunications systems to
fail. Clearly, hum an operators are a significa nt source of failures.

small computer systems
interface (SCSI) Abus used as
a standard for I/O devices.
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redundant arrays of inexpen
sive disks (RAID) An
organization of disks that uses
an array of small and inexpen
sive disks so as to increase both
performance and reliability.
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Operator Software Hardware System Year data collected

42% 25. 18. Data center (Tandem) 1985

15. 55. 14% Data center (Tandem) 1989

18. 44% 39% Data center (DEC VAX) 1985

5O'J6 20. 30% Data center (DEC VAX) 1993

5O'J6 14% 19% U.S. public telephone network 1998

54% " 30% U.S. public telephone network 2000

60% 25. 15. Internet services 2002

FIGURE 8.5 Summary of studies of reasons for failures. Although it is difficult to coUeet data
to determine jf operators are the cawe of errors, since operators often record the reasons for failures, these
studies did capture that data . There were often other categories, such as environmental reasons for oulage&,
bUlthey were generally small. The top two rows come from a classic paper by lim Gray [19901, which is still
widely quoted almost 20 years after the data was collected. The next two rows are from a paper by Murphy
and Gent who studied causes of outages in VAX systems over time ("Measuring system and software reli·
ability using an automated data collection process," Quality and Reliability Engineering International 11 :5,
September-Dctober 1995,341- 53). The fifth and sixth rows are studies of FCC failure data about the u .s .
public switched telephone network by Kuhn ("Sources of failure in the public switched telephone net\\oUrk,~

IEEE Computer 30:4, April 1997,31- 36) and by Patty Enriquez. The most recent study of three Internet ser·
vices is from Oppenheimer, Ganapath , and Patterson [2003 1.

To increase MTT F, you can improve the quality of the components or design
systems to continue operation in the presence of components th at have fa iled.
Hence, failure needs to be defined with respect to a context. A failure in a compo
nent m ay not lead to a failure of the system. To make this distinction clea r, the
term fault is used to mea n failure of a component. Here are three ways to improve
MTTF,

I. Fault avoidance: preventing fault occurrence by construction

2. Fault tolerance: using redundancy to allow the service to comply with the
service specification despite faults occurring, which applies primarily to
hardwa re faults

3. Fault forecasting: predicting the presence and creation of faults, which
applies to hardwa re and softwa re fa ults

Shrinking MTTR ca n help ava ilability as much as increasing MITE Fo r exa mple,
tools fo r fault detection , diagnosis, and repair ca n help reduce the time to repair
faults by people, softwa re, and hardwa re.

RAID

Leveraging redundancy to imp rove the ava ilability of disk storage is captured in
the phrase Redundant Arrays of Inexpensive Disks, abbreviated RAID. At the
time the term was coined, the alternative was large, expensive disks, such as the
larger ones in Figure 8.3. The argument was that by replacing a few large disks
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with many small disks, performance would im prove because there would be more
read heads, and there would be adva ntages in cost , power, and floor space since
smaller disks are much more effi cient per gigabyte th an larger disks. Redundancy
was needed because the many more smaller disks had lower reliability than a few
large disks.

By having many small disks, the cost of extra redund ancy to imp rove depend 
ability is small relative to the large disks. Thus, dependability was mo re affordable
if you constructed a redundant array of inexpensive disks. In ret rospect, this was
the key adva ntage.

How much redund ancy do you need? Do you need extra information to find
the faults? Does it matter how you o rga nize the data and the extra check info rm a
tion on these disks? The paper that coined the term gave an evolutionary answer
to these questions, starting with the simplest but most expensive solution. Figure
8.6 shows the evolution and exa mple cost in number of extra check disks. To keep
track of the evolution , the authors numbered the stages of RAID, and they are still
used today.

No Redundancy (RAID 0)

Simply spreading data over multiple disks, ca lled striping, automatically forces
accesses to several disks. Striping across a set of disks makes the collection appea r
to softwa re as a single large disk, which simplifies sto rage management. It also
improves performance for large accesses, since many disks ca n operate at once.
Video-editing systems, for exa mple, often stripe their data and may not worry
about dependability as much as, say, databases.

RAID 0 is something of a misnomer as there is no redundancy. However, RAID
levels are often left to the operator to set when crea ting a storage system, and
RAID 0 is often listed as one of the options. Hence, the term RAID 0 has become
widely used.

Mirroring (RAID 1)

This traditional scheme fo r tolerating disk failure, ca lled mirroring or shadowing,
uses twice as many disks as does RAID o. Whenever data are written to one disk,
those data are also written to a redundant disk, so that there are always two copies
of the information. If a disk fails, the system just goes to the "mirror" and reads its
contents to get the desired information. Mirroring is the most expensive RAID
solution , sin ce it requires the most disks.

Error Detecting and Correcting Code (RAID 2)

RAID 2 bo rrows an erro r detection and correction scheme most often used for
memo ries (see . Appendix B). Since RAID 2 has fallen into disuse, we' ll not
describe it here.
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striping Allocation oflogically
sequential blocks to separate
disks to allow higher perfor
mance than a single disk can
deliver.

mirroring Writing the identi
cal data to multiple disks to
increase data availability.
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Data disks Check disks

RAIDO
(No redundancy)
Widely used

RAID 1
(Mirroring)
EMC, HP(Tandem), IBM

RAID 2
(Error correction ccx:le)
Unused

RAID3
(Bit-interleaved parity)
Storage Concepts

RAID4
(Block-interleaving parity)
Network Appliance

RAID S
(Distributed block
interleaved parity)
Widely used

RAID6
(P + Q redundancy )
Rarely used

uuuu
UUUU UUUU
UUUU UUU
UUUU U
UUUU U
UUUU U
UUUU UU

protection group The group
of data disks or blocks that share
a common check disk or block.

FIGURE 8.6 RAID for an example of four data disks showing extra cheek disks per RAID
level and companies that use each level. Figures 8.7 and 8.8 explain the difference between RAID
3, RAID 4, and RAID 5.

Bit-Interleaved Parity (RAID 3)

The cost of higher availability can be reduced to 1/N, where N is the number of
disks in a protection group. Rather th an have a complete copy of the original data
for each disk, we need only add enough redundant information to restore the lost
information on a failure. Reads or writes go to all disks in the group, with one
extra disk to hold the check information in case there is a fa ilure. RAID 3 is popu
lar in applica tions with large data sets, such as multimedia and some scientific
codes.

Parity is one such scheme. Readers unfamiliar with parity ca n think of the
redundant disk as having the sum of all the data in the other disks. When a disk
fails, then you subtract all the data in the good disks from the pa rity disk; the
remaining information must be the missing information. Parity is simply the sum
modulo two.
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Unlike RAID 1, many disks must be rea d to determine the missing data. The
assumption behind this technique is that taking longer to recover from failure but
spending less on redundant storage is a good trade-off.

Block-Interleaved Parity (RAID 4)

RAID 4 uses the sa me ratio of data disks and check disks as RAID 3, but they
access data differently. The parity is sto red as blocks and associated with a set of
data blocks.

In RAID 3, every access went to all disks. However, some applications prefer
smaller accesses, allowing independent accesses to occur in parallel. That is the
purpose of the RA ID levels 4 to 6. Since error detection information in each sector
is checked on reads to see if data are co rrect, such "small reads" to each disk ca n
occur independently as long as the minimum access is one sector. In the RAID
context , a small access goes to just one disk in a protection group while a large
access goes to all the disks in a protection group.

Writes are another matter. It would seem that each small write would demand
that all other disks be accessed to read the rest of the information needed to
recalculate the new parity, as in Figure 8.7. A "small write" would require reading
the old data and old parity, adding the new information , and then writing the new
parity to the parity disk and the new data to the data disk.
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New Data 1. Read 2.Read 3. Read New Data 1. Read

DOJ:

+ XOR

2.Read

DO] EJ~8 AJJ

4.Write 5. Write

om EJ [§] 8 AJJ

3. Write 4. Write

FIGURE 8.7 Small write update on RAID 3 versus RAID 4. This optimization for smaU writes reduces the number of disk accesses as well as
the number of disks occupied. This figure assumes we have four blocks of data and one block of p.1rity. The straightforward RAIO 3 parity calculation
in the left of the figure reads blocks 01, 02, and 03 before adding block DO' to calculate the new parity P'. (In case you were wondering, the new data
00 comes directly from the CPU, so disks are not involved in reading iL) The RAIO 4 shortcut on the right reads the old value DO and comp.1fes it to
the new value 00 to see which bits wiU change. You then read to old p.1rity P and then change the corresponding bits to form P'. The logical function
exclusive OR does exactly what we want. This example replaces three disk reads (01,02, 03) and two disk writes (00', P') involving all the disks for
tm> disk reads (DO, P) and two disk writes (DO', P' ), which in'·olve just two disks. Increasing the size of the parity group increases the &wings of the
shortcut. RAIO 5 uses the &'\Ille shortcut.
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The key insight to reduce this overhea d is that parity is simply a sum of infor
mation; by watching which bits change when we write the new information , we
need only change the corresponding bits on the parity disk. Figure 8.7 shows the
shortcut. We must read the old data from the disk being written , compare old data
to the new data to see which bits change, read the old parity, change the corre
sponding bits, then write the new data and new parity. Thus, the small write
involves four disk accesses to two disks in stead of accessing all disks. This orga ni 
zation is RAID 4.

Distributed Block-Interleaved Parity (RAID 5)

RAID 4 efficiently suppo rts a mixtu re of large reads, large writes, and small reads,
plus it allows small writes. One drawback to the system is that the parity disk must
be updated on every write, so the parity disk is the bottleneck for back-to-back
writes.

To fi x the parity-write bottleneck, the parity info rm ation can be spread
th roughout all the disks so that there is no single bottleneck for writes. The dis
tributed parity orga niza tion is RAID 5.

Figu re 8.8 shows how data are distributed in RAID 4 versus RAID 5. As the
o rganization on the right shows, in RAID 5 the parity associated with each row of
data blocks is no longer restricted to a single disk. This orga nization allows multi
ple writes to occur simultaneously as long as the parity blocks are not located to
the sa me disk. Fo r example, a write to block 8 on the right must also access its par
ity block P2, thereby occupying the first and third disks. A second write to block 5
on the right, implying an update to its parity block PI , accesses the second and
fourth disks and thus could occur concurrently with the write to block 8. Those
sa me writes to the o rga nization on the left result in changes to blocks PI and P2,
both on the fifth disk, which is a bottleneck.

P + Q Redundancy (RAID 6)

Parity-based schemes protect against a single self-identifying failure. When a single
failure correction is not sufficient, parity ca n be generalized to have a second ca lcu
lation over the data and another check disk of information. This second check
block allows recovery from a second failure. Thus, the sto rage overhead is twice
that of RAID 5. The small write shortcut of Figure 8.7 works as well, except now
there are six disk accesses instead of four to update both P and Q information.

RAID Summary

RAID I and RAID 5 are widely used in servers; one estimate is 80% of disks in
servers are found in some RAID system.

One weakness of the RAID systems is repair. First , to avoid making the data
ull3vailable during repair, the array must be designed to allow the failed disks to
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FIGURE 8.8 Block.jnterleaved parity (RAID 4) versus distributed block·lnterleaved par·
Ity (RAID S). By distributing parity blocks to all d isks, some small writes can be performed in
parallel.

be replaced without having to turn off the system. RAIDs have enough redun 
dancy to allow continuous operation, but hot swapping disks places demands on
the physical and electrica l design of the array and the disk interfaces. Second ,
another failure could occur during repair, so the repair time affects the chances of
losing data: the longer the repair time, the greater the chances of another failure
that will lose data. Rather than having to wa it for the operato r to bring in a good
disk, some systems include standby spares so that the data ca n be reconstructed
immediately upon discovery of the failure. The operator ca n then replace the
failed disks in a more leisurely fashion. Third, although disk manufacturers quote
very high MTTF for their products, those numbers are under nominal conditions.
If a particular disk array has been subject to temperature cycles due to, say, the
failure of the air conditioning system, o r to shaking due to a poo r rack design,
construction , or installation , the failure rates will be much higher. The calculation
of RAID reliability aSSllmes independence between disk failures, but disk failures
could be correlated because such damage due to the environment would likely
happen to all the disks in the array. Finally, a human operator ultimately deter
mines which disks to remove. As Figure 8.5 shows, operators are only human, so
they occasionally remove the good disk instead of the broken disk, leading to an
unrecoverable disk failure.

Although RAID 6 is rarely used today, a cautious operator might wa nt its extra
redundancy to protect against expected hardware failures plus a safety margin to
protect against human erro r and correlated failures due to problems with the
environment.

hot swapping Replacing a
hardware component while the
system is running.

standby spares Reserve hard
ware resources that can immedi·
ately take the place of a failed
component.
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Yourself
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Which of the following are true about dependability?

I. If :l system is up, then all its components are accomplishing their expected
service.

2. Ava ilability is a quantitative measure of the percentage of time a system is
accomplishing its expected service.

3. Reliability is a quantitative measure of continuous service accomplishment
by a system.

4. The major source of outages today is softwa re.

\Vhich of the following are true about RAID levels 1,3, 4, 5, and 6?

I. RAID systems rely on redundancy to achieve high ava ilability.

2. RAID 1 (mirroring) has the highest check disk overhead.

3. For small writes, RAID 3 (bit-interleaved parity) has the worst throughput.

4. For large writes, RAID 3, 4, and 5 have the same th roughput.

Elaboration: One issue is how mirroring interacts with striping. Suppose you had,
say, four disks worth of data to store and eight physical disks to use. Would you create
four pairs of disks-each organized as RAID 1-and then stripe data across the four
RAID 1 pairs? Alternatively, would you create two sets offour disks-each organized as
RAID o-and then mirror writes to both RAID 0 sets? The RAID terminology has evolved
to call the former RAID 1 + 0 or RAID 10 ("striped mirrors") and the latter RAID 0 + 1 or
RAID 01 ("mirrored stripes").

Networks

Networks are growing in popularity over time, and unlike other I/O devices, there
are many books and courses on them. For readers who have not taken courses or
read books on netwo rking, Section 8.3 on the " CD gives a quick overview of the
topics and terminology, including internetwo rking, the OS! model, protocol fam 
ilies such as TCPIl P, long- haul networks such as ATM , loca l area networks such as
Ethernet , and wireless netwo rks such as IEEE 802.11.
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Buses and Other Connections between
Processors, Memory, and I/O Devices

In a computer system, the va rious subsystems must have interfaces to one another.
Fo r example, the memory and processo r need to communicate, as do the proces
so r and the I/O devices. For many yea rs, this has been done with a bus. A bus is a
shared communica tion link, which uses one set of wires to connect multiple sub
systems. The two major advantages of the bus organization are versatility and low
cost. By defining a single connection scheme, new devices ca n easily be added , and
peripherals ca n even be moved between computer systems that use the sa me kind
of bus. Furthermore, buses are cost-effective because a single set of wires is shared
in multiple ways.

The major disa dvantage of a bus is that it crea tes a communication bottleneck,
possibly limiting the maximum I/O th roughput. When I/O must pass th rough a
single bus, the bandwidth of that bus limits the maximum I/O th roughput.
Designing a bus system capable of meeting the demands of the processor as well as
connecting large numbers of I/O devices to the machine presents a major chal
lenge.

One reason bus design is so difficult is that the maximum bus speed is largely
limited by physical factors: the length of the bus and the number of devices.
These physica l limits prevent us from running the bus arbitrarily fast. In addition ,
the need to support a range of devices with widely va rying latencies and data
transfer rates also makes bus design challenging.

As it becomes difficult to run many parallel wires at high speed due to clock
skew and refl ection , the industry is in transition from parallel shared buses to
high-speed serial point -to- point interconnections with switches. Thus, such net
works are gradually replacing buses in our systems.

As a result of this transition , this section has been revised in this edition to
emphasize the general problem of connecting I/O devices, processors, and mem
o ry rather than focus exclusively on buses.

Bus Basics

Classically, a bus generally contains a set of cont rol lines and a set of data lines.
The cont rol lines are used to signal requests and acknowledgments, and to indi
cate what type of information is on the data lines. The data lines of the bus ca rry
information between the source and the destination. This information may con
sist of data, complex commands, or addresses. For exa mple, if a disk wa nts to
write so me data into memory from a disk sector, the data lines will be used to
indicate the address in memory in which to place the data as well as to ca rry the



582

bus transaction A sequence of
bus operations that includes a
request and may include a
response, either of which may
carry data. A transaction is initi
ated by a single request and may
take many individual bus opera
tions.

processor-memory bus A bus
that connects processor and
memory and that is short, gen
erally high speed, and matched
to the memory system so as to
maXImize memory-processor
bandwidth.

backplane bus A bus that is
designed to allow processors,
memory, and I/O devices to
coexist on a single bus.

synchronous bus A bus that
includes a clock in the control
lines and a fixed protocol for
communicating that is relative
to the clock.

asynchronous bus A bus that
uses a handshaking protocol for
coordinating usage rather than a
clock; can accommodate a wide
variety of devices of differing
speeds.
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actual data from the disk. The control lines will be used to indica te what type of
information is contained on the data lines of the bus at each point in the transfer.
Some buses have two sets of signal lines to separately communicate both data and
address in a single bus transmission. In either case, the control lines are used to
indicate what the bus contains and to implement the bus p rotocol. And because
the bus is sha red, we also need a protocol to decide who uses it next; we will dis
cuss this problem shortly.

Let's consider a typica l bus transaction. A bus transaction includes two
parts: sending the address and receiving o r sending the data. Bus transactions are
typica lly defined by what they do to memory. A read transaction transfers data
from memory (to either the processo r or an I/O device) , and a write transaction
writes data to the memory. Clea rly, this terminology is confusing. To avoid this,
we'll try to use the terms inpl/t and Ol/tput, which are always defined from the per
spective of the processo r: an input operation is inputting data from the device to
memory, where the p rocessor ca n rea d it, and an output operation is outputting
data to a device from memory where the p rocesso r wrote it.

Buses are traditionally classified as processor-memory buses or 110 bl/ses. Pro
cesso r-memory buses are short, generally high speed, and matched to the memory
system so as to maximize memory-p rocesso r bandwidth. I/O buses, by contrast,
ca n be lengthy, ca n have many types of devices connected to them , and often have
a wide range in the data bandwidth of the devices connected to them. I/O buses
do not typically interface directly to the memory but use either a processor- mem 
o ry or a backplane bus to connect to memory. Other buses with different charac
teristics have emerged fo r special functions, such as graphics buses.

The I/O bus serves as a way of expanding the machine and connecting new
peripherals. To make this easier, the computer industry has developed several
standards. The standards serve as a specification for the computer manufacturer
and for the peripheral manufacnlfer. A standard ensures the computer designer
that peripherals will be ava ilable fo r a new machine, and it ensures the peripheral
builder that users will be able to hook up their new equipment. Figure 8.9 sum 
marizes the key characteristics of the two dominant I/O bus stand ards: Firewire
and USB. They connect a va riety of devices to the desktop computer, from key
boa rds to cameras to disks.

The two basic schemes for communica tion on the bus are synchronous and
asynchronous. If a bus is synchronous, it includes a clock in the cont rol lines and
a fi xed protocol for communicating that is relative to the clock. For exa mple, for a
processor-memory bus performing a rea d from memory, we might have a proto
col that transmits the address and rea d comm and on the first clock cycle, using
the cont rol lines to indicate the type of request. The memo ry might then be
required to respond with the data word on the fifth clock. This type of protocol
ca n be implemented easily in a small finite state machine. Because the protocol is
predetermined and involves little logic, the bus ca n run very fast and the interface
logic will be small.
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Characteristic: Flrewlre (1394) USB 2.0

Bus type I/O I/O
Basic data bus width (signals) 4 2

Clocking asynchronous asynchronous

Theoretical peak bandwidth 50 MBjsec (Firewire 400) or 0 .2 MBjsec (low speed),
100 MBjsec (Firewire 800) 1.5 MBjsec (full speed),

or 60 MBjsec (high speed)

Hot plugable ye' y"
Maximum number of devices 63 127

Maximum bus length 4.5 meters 5 meters
(copper wire)

Standard name IEEE 1394, 1394b USE Implementors Forum

FtGURE 8.9 Key c:haracteristlc:s of two dominant I/O bus standards.

Synchronous buses have two major disa dva ntages, however. First , every device
on the bus must run at the same clock rate. Second , beca use of clock skew prob
lems, synch ronous buses cannot be long if they are fast (see " Appendix B for a
discussion of clock skew). Processor-memory buses are often synchronous
because the devices commun icating are close, small in number, and prepa red to
operate at high clock rates.

An asynchronous bus is not clocked. Because it is not clocked , an asynchronous
bus can accommodate a wide va riety of devices, and the bus ca n be lengthened
without worrying about clock skew or synchronization problems. Both Firewire
and USE 2.0 are asynch ronous. To coo rdin ate the transmission of data between
sender and receiver, an asynchronous bus uses a hand shaking protocol. A hand 
shaking protocol consists of a series of steps in which the sender and receiver p ro
ceed to the next step only when both pa rties agree. The protocol is implemented
with an additional set of cont rol lines.

A simple exa mple will illustrate how asynchronous buses wo rk. Let's consider a
device requesting a word of data from the memo ry system. Assume that there are
three cont rol lines:

I. ReadReq: Used to indicate a read request fo r memory. The address is put
on the data lines at the sa me time.

2. DataRdy: Used to indicate th at the data wo rd is now ready on the data
lines. In an output transaction , the memo ry will assert this signal since it is
providing the data. In an input transaction, an I/O device would assert this
signal, since it would provide data. In either case, the data is placed on the
data lines at the sa me time.

3. Ack: Used to acknowledge the ReadReq or the DataRdy signal of the other
pa rty.
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handshaking protocol A
series of steps used to coordi
nate asynchronous bus transfers
in which the sender and receiver
proceed to the next step only
when both parties agree that
the current step has been
completed.
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In an asynch ronous protocol, the cont rol signals Rea dReq and DataRdy are
asserted until the other pa rty (the memory or the device) indica tes th at the COIl 

t rollines have been seen and the data lines have been read; this indication is made
by asserting the Ack line. This complete process is called handshaking. Figure 8.1 0
shows how such a protocol operates by depicting the steps in the communication.

Although much of the bandwidth of a bus is decided by the choice of a syn
ch ronous o r asynch ronous protocol and the timing characteristics of the bus, sev
eral other factors affect the bandwidth that can be attained by a single transfer.
The most important of these are the data bus width , and whether it supports
block transfers o r it transfers a word at a time.

ReadReq

Data

. ok

DataRdy

1

3
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r---1(I~ /
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The steps in the protocol begin immediately after the device signals a request by raising ReadReq and

putting the address on the Data lines:

1 . When memory sees the ReadReq line, it reads the address from the data bus and raises Ack to

indicate it has been seen.

2 . I/O device sees the Ack line high and releases the ReadReq and data lines.

3 . Memory sees that ReadReq is low and drops the Ack line to acknowledge the ReadReq signal.

4 . This step starts when the memory has the data ready. It places the data from the read request on

the data lines and raises DataRdy.

5 . The I/O device sees DataRdy, reads the data from the bus, and signals that it has the data by raising

Ao k.

6 . The memory sees the Ack signal , drops DataRdy, and releases the data lines.

7 . Finally, the I/O device, seeing DataRdy go low, drops the Ack line, which indicates that the

transmission is completed.

A new bus transaction can now begin.

FIGURE 8.10 The asynchronous handshaking protocol consists of seven steps to read a
word from memory and receive It In an I/ O device. The signals in color are those asserted by the
I/O device, while the memory asserts the signals shown in black. The arrows label the seven steps and the
event that triggers each step. The symbol showing two lines (high and low) at the same time on the data
lines indicates tha t the data lines have valid data at this point. (The symbol indicates tha t the data is valid,
but the value is not known.)
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Elaboration: Another method for increasing the effective bus bandwidth is to
release the bus when it is not being used for transmitting information . This type of pro
tocol is called a split transaction protocol . The advantage of such a protocol is that, by
freeing the bus during the time data is not being transmitted, the protocol allows
another requestor to use the bus. This can improve the effective bus bandwidth for the
entire system if the memory is sophisticated enough to handle multiple overlapping
transactions . Multiprocessors sharing a memory bus may use split transaction proto
cols.

The Buses and Networks of the Pentium 4

Figure 8.11 shows the I/O system of a PC based on the Pentium 4. The processor
connects to peripherals via two main chips. The chip next to the processor is the
memory controller hub, commonly called the north bridge, and the one connected
to it is the I/O controller hub, called the south bridge.

Pentium 4
processor

System bus (800 MHz, 604 GBtsec)
DDR 400 AGP8X

(3.2 GBtsec) Memory (2.1 GB/sec) Graphics
Main controller output

DDR 400 hob CSA ,memory
(3.2 GBtsec) (north bridge) (0.266 GBlsec)DIMMs 1 Gbit Ethernet ./82875P

Serial ATA (266 MBlsec) Parallel ATA
(

(150 MBlsec) (100 MB/sec)
Disk CDfDVD

Serial ATA Parallel ATA /' "(150 MBlsec) (100 MBlsec)
Disk T",.

11O /
AC/97 controller

(1 MB/sec) hob
JStereo (south bridge)

(surround- 82801 EB (20 MB/sec)
10/100 Mbit Ethern:ysound) USB 2.0

(60 MBlsec) (
PCI bus...

(132 MBlsec)

FtGURE 8.11 Organization of the I/O syst em on a Pentium 4 PC using the Intel 875 c:hlp
set. Note that the maximum transfer rate between the north bridge (memory hub) and south bridge (IIO
hub) is 266 MB/sec, which is why Intel put the AGP bus and Gig.1bit Ethernet on the north bridge.

585

split transaction protocol A
protocol in which the bus is
released during a bus transac
tion while the requester is wait
ing for the data to be
transmitted, which frees the bus
for access by another requester.



586 Chapter 8

The no rth bridge is basica lly a DM A controller, connecting the processor to
memory, the AG P graphic bus, and the south bridge chip. The south bridge con
nects the north bridge to a co rnucopia of I/O buses. Intel and others offer a wide
va riety of these chip sets to connect the Pentium 4 to the outside world. To give a
flavor of the options, Figure 8.12 shows two of the chip sets.

As Moore's law continues, an increasing number of I/O controllers that were
formerly ava ilable as optional ca rds that connected to I/O buses have been co
opted into these chip sets. For example, the south bridge chip of the Intel 875
includes a striping RA ID controller, and the north bridge chip of the Intel 845GL
includes a graphics controller.

Target segment

System bus (64 bit)

875P chip set

Perfonnance PC

800/533 MHz

845GL chip set

Value PC

400 MHz

Memory controller hub ("north bridge")

Package sire, pins 42.5 x 42.5 mm, 1005 37.5 x 37.5 mm, 760

Memory speed DDR 400/333/266 SDRAM DDR 266/ 200, PC133 SDRAM

Memory buses, widths 2x72 1 x 64

Number of DIMMs, DRAM Mbit 4, 128/256/512 Mbits 2, 128/256/512 MBits
support

Maximum memory capacity 4 GB 2 GB

Memory error corre<:tion available? y" 0"

AGP graphics bus, speed yes, 8X or 4X 00

Graphics controller external Internal (Extreme Graphics)

CSA Gigabit Ethernet interface y" 00

South bridge interface speed (8 bit) 266 MHz 266 MHz

I/O controller hub ("south bridge")

Package sire, pins 31 x 3 1 mm, 460 31 x 31 mm, 421

PCI bus: width, speed, masters 32-bit, 33 MHz, 6 masters 32-bit, 33 MHz, 6 masters

Ethernet MAC controller, interface 100/10 Mbit 100/10 Mbit

USB 2.0 ports, controllers 8, 4 6,3

ATA 100 ports 2 2

Serial ATA 150 controller, ports yes, 2 00

RAID 0 controller y" 00

ACfJ7 audio controller, interface y" yo,

I/O management 5Mbus 2.0, GPIO 5Mbus 2.0, GPIO

FIGURE 8.12 Two Pentium 4 I/O chip sets from Intel. The 845GL north bridge uses many fewer
pins than the 875 by having just one memory bus and by omitting the AGP bus and the Gigabit Ethernet
interface. Note that the serial nature of USB and Serial ATA means that two more USB ports and two more
Serial ATA ports need just 39 more pins in the south bridge of the 875 versus the 845GL chip sets.
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These two chips demonstrate the gradual evolution from parallel shared buses
to high -speed serial point-to- point interconnections with switches via the past
and future versions of ATA and PCI.

Serial ATA is a serial successo r to the parallel ATA bus used by magnetic and
optical disks in PCs. The first generation transfers at 150 MB/sec compared to the
100 MB/sec of parallel ATA- 100 bus. Its distance is I meter, twice the maximum
length of ATA- 100. It uses just 7 wires, with one 2-wire data channel in each direc
tion , compared to 80 fo r ATA- IOO.

The south bridge in Figure 8.11 demonstrates the transitory period between
parallel buses and serial netwo rks by providing both parallel and serial ATA buses.

pC! Express is a serial successor to the popular PCI bus. Rather than 32-64
shared wires operating at 33 MHz-133 MHz with a peak bandwidth of 132-1064
MB/sec, PCI Express uses just 4 wires in each direction operating at 625 MH z to
offer 300 MB/sec per direction. The bandwidth per pin of PCI Express is 5- 10
times its predecessors. A computer ca n then afford to have several PCI Express
interfaces to get even higher bandwidth.

Alth ough the chips in Figu re 8.11 only show the parallel PCI bus, Intel plans to
replace the AG P graphics bus and the bus between the north bridge and the south
bridge with PCI Express in the next generation of these chips.

Buses and netwo rks provide electrical interconnection among I/O devices, pro
cesso rs, and memo ry, and also define the lowest-level protocol for communica
tion. Above this basic level, we must define hardwa re and softwa re protocols for
cont rolling data transfers between I/O devices and memo ry, and fo r the processor
to specify command s to the I/O devices. These topics are covered in the next sec
tion.

Both networks and buses connect components together. Which of the following
are true about them?

I. Netwo rks and I/O buses are almost always standardized.

2. Shared media networks and multim aster buses need an arbitration scheme.

3. Local area networks and processor- memory buses are alm ost always syn
chronous.

4. High-performance netwo rks and buses use similar techniques compared to
their lower-performan ce alternatives: they are wider, send many words per
transaction, and have separate address and data lines.

Check
Yourself
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Interfacing I/O Devices to the Processor,
Memory, and Operating System

Hardware
Software
Interface

A bus o r network p rotocol defines how a word or block of data should be commu 
nicated on a set of wires. This still leaves several other tasks that must be per
formed to actually cause data to be transferred from a device and into the memory
address space of some user program. This section focuses on these tasks and will
answer such questions as the following:

• How is a user I/O request transformed into a device command and commu 
nicated to the device?

• How is data actually transferred to or from a memory loca tion?

• What is the role of the operating system?

As we will see in answering these questions, the operating system plays a major
role in handling 110 , acting as the interface between the hardwa re and the pro 
gram that requests I/O.

The responsibilities of the operating system arise from three characteristics of
I/O systems:

I. Multiple programs using the processo r share the I/O system.

2. I/O systems often use interrupts (externally generated exceptions) to com 
municate information about I/O operations. Beca use interrupts cause a
transfer to kernel o r superviso r mode, they must be handled by the operat 
ing system (OS).

3. The low-level cont rol of an I/O device is complex because it requires man
aging a set of concurrent events and beca use the requirements for correct
device cont rol are often very detailed.

The three characteristics of I/O systems above lea d to several different fun ctions
the OS must provide:

• The OS gua rantees that a user 's program accesses only the portions of an
I/O device to which the user has rights. For example, the OS must not allow
a program to rea d or write a fil e on disk if the owner of the fil e has not
granted access to this program. In a system with shared I/O devices, protec
tion could not be provided if user programs could perfo rm I/O directly.

• The OS provides abstractions for accessing devices by supplying routines
that handle low-level device operations.
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• The OS handles the interrupts generated by I/O devices, just as it handles
the exceptions generated by a progra tn•

• The O S tries to provide equitable access to the shared I/O resources, as well
as schedule accesses in order to enhance system throughput.

To perform these functions on behalf of user programs, the operating system
must be able to communicate with the I/O devices and to prevent the user pro
gra m from communicating with the I/O devices directly. Three types of commu 
nication are required:

I. The OS must be able to give comm ands to the I/O devices. These com 
mand s include not only opera tions like read and write, but also o ther oper
ations to be done on the device, such as a disk seek.

2. The device must be able to notify the OS when the I/O device has com 
pleted an operation or has encountered an error. For exa mple, when a disk
completes a seek, it will no tify the os.

3. Data must be transferred between memory and an I/O device. For example,
the block being read on a disk read must be moved from disk to memory.

In the next few sections, we will see how these communica tions are performed.

Giving Commands to I/O Devices

To give a command to an I/O device, the processor must be able to address the
device and to supply one or more command words. Two methods are used to
address the device: memory- mapped I/O and specia l I/O instructions. In
memory-mapped 110, portions of the address space are assigned to I/O devices.
Reads and writes to those addresses are interpreted as commands to the I/O
device.

For example, a write operation ca n be used to send data to an I/O device where
the data will be interpreted as a command. When the processor places the address
and data on the memory bus, the memory system ignores the opera tion because
the address indicates a portion of the memory space used for I/O. The device con 
troller, however, sees the operation , records the data, and transmits it to the device
as a command. User programs are prevented from issuing I/O operations directly
because the os does not provide access to the address space assigned to the I/O
devices and thus the addresses are protected by the address translation. Memory
mapped I/O ca n also be used to transmit data by writing or reading to select
addresses. The device uses the address to determine the type of command, and the
data may be provided by a write or obtained by a read. In any event, the address
encodes both the device identity and the type of transmission between processor
and device.
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Actually performing a read or write of data to fulfill a program request usually
requires several separate I/O operations. Furtherm ore, the processor m ay have to
interrogate the status of the device between individual commands to determine
whether the command completed successfully. For example, a simple printer has
two I/O device registers-one for status information and one for data to be
printed. The Status register contains a done bit, set by the printer when it has
printed a character, and an error bit, indicating that the printer is jammed or out
of paper. Each byte of data to be printed is put into the Data register. The proces
sor must then wait until the printer sets the done bit before it can place another
character in the buffer. The processor must also check the error bit to determine if
a problem has occurred. Each of these operations requires a separate I/O device
access.

Elaboration: The alternative to memory-mapped I/O is to use dedicated I/O instruc
tions in the processor. These I/O instructions can spec ify both the device number and
the command word (or the location of the command word in memory). The processor
communicates the device address via a set of wires normally included as part of the
I/O bus. The actual command can be transmitted over the data lines in the bus. Exam
ples of computers with I/O instructions are the IntellA-32 and the IBM 370 computers.
By making the I/O instructions illegal to execute when not in kernel or supervisor
mode, user programs can be prevented from accessing the devices directly.

Communicating with the Processor

The process of periodica lly checking status bits to see if it is time for the next I/O
operation, as in the previous example, is ca lled polling. Polling is the simplest way
for an I/O device to communicate with the processo r. The I/O device simply puts
the inform ation in a Status register, and the p rocessor must come and get the
information. The processo r is totally in control and does all the wo rk.

Polling ca n be used in several different ways. Real-time embedded applications
poll the I/O devices since the I/O rates are predetermined and it m akes I/O over
head mo re predictable, which is helpful fo r rea l time. As we will see, this allows
polling to be used even when the I/O rate is somewhat higher.

The disadva ntage of polling is that it ca n waste a lot of p rocesso r time because
processors are so much faster than I/O devices. The p rocessor may read the Status
register many times, only to find that the device has not yet completed a compara
tively slow I/O operation , or that the mouse has not budged since the last time it
was polled. \-Vhen the device completes an operation , we must still rea d the status
to determine whether it was successful.

The overhea d in a polling interface was recognized long ago, lea ding to the
invention of interrupts to notify the p rocesso r when an I/O device requires atten 
tion from the processor. Interrupt-driven I/O, which is used by almost all systems
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for at least some devices, employs I/O interrupts to indicate to the processor that
an I/O device needs attention. When a device wa nts to notify the processor th at it
has completed some operation or needs attention , it causes the processo r to be
interrupted.

An I/O interrupt is just like the exceptions we saw in Chapters 5, 6, and 7, with
two important exceptions:

I. An I/O interrupt is asynch ro nous with respect to the in struction execution.
That is, the interrupt is not associated with any instruction and does not
prevent the in struction completion. This is very different from either page
fault exceptions or exceptions such as arithmetic overflow. Our cont rol unit
need only check for a pending I/O interrupt at the time it starts a new
instruction.

2. In addition to the fact that an I/O interrupt has occurred , we would like to
convey further information such as the identity of the device generating the
interrupt. Furthermore, the interrupts represent devices that may have dif
ferent priorities and whose interrupt requests have different urgencies asso
cia ted with them.

To communicate information to the p rocessor, such as the identity of the
device raising the interrupt, a system ca n use either vectored interrupts or an
exception Cause register. When the processor recognizes the interrupt, the device
ca n send either the vector address or a status fi eld to place in the Ca use register. As
a result, when the OS gets cont rol, it kn ows the identity of the device that caused
the interrupt and can immediately interrogate the device. An interrupt mecha
nism eliminates the need for the processor to poll the device and instead allows
the processor to focus on executing p rograms.

Interrupt Priority Levels

To deal with the different priorities of the I/O devices, m ost interrupt mechanisms
have several levels of priority: UNIX operating systems use four to six levels. These
prio rities indicate the order in which the processor should process interrupts.
Both internally generated exceptions and external I/O interrupts have priorities;
typica lly, I/O interrupts have lower priority than internal exceptions. There may
be multiple I/O interrupt priorities, with high-speed devices associated with the
higher priorities.

To support priority levels for interrupts, MIPS provides the primitives that let
the operating system implement the policy, similar to how M IPS handles TLB
misses. Figure 8.1 3 shows the key registers, and Section A.7 in . Appendix A
gives more details.

The Status register determines who can interrupt the computer. If the interrupt
enable bit is 0, then none can interrupt. A mo re refined blocking of interrupts is
ava ilable in the interrupt mask field. There is a bit in the mask co rresponding to
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FIGURE 8.13 The Cause and Status registers. This version of the Cause register corresponds to
the MIPS-32 architecture. The earlier MIPS I architecture had three nested sets of kernel/user and interrupt
enable bits to support nested interrupts. Section A.7 in iii Appendix A has more detials aboU1these regis
ters.

each bit in the pending interrupt fi eld of the Cause register. To enable the corre
sponding interrupt, there must be a 1 in the mask field at that bit position. Once
an interrupt occurs, the operating system ca n find the reason in the exception
code field of the Status register: 0 mea ns an interrupt occurred, with other values
for the exceptions mentioned in Chapter 7.

Here are the steps that must occur in handling an interrupt:

1. Logically AND the pending interrupt fi eld and the interrupt mask field to
see which enabled interrupts could be the culprit. Copies are made of these
two registers using the mfcO instruction.

2. Select the higher priority of these interrupts. The software convention IS

that the leftmost is the highest priority.

3. Save the interrupt mask field of the Status register.

4. Change the interrupt mask field to disable all interrupts of equal or lower
priority.

5. Save the processor state needed to handle the interrupt.

6. To allow higher-priority interrupts, set the interrupt enable bit of the Cause
register to 1.

7. Call the appropriate interrupt routine.

8. Before restoring state, set the interrupt enable bit of the Cause register to O.
This allows you to restore the interrupt mask field.
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• Appendix A shows an exception handler for a simple I/O task on pages A-36 to
A-37.

How do the interrtlpt priority levels (I PL) co rrespond to these mechanisms? The
IPL is an operating system invention. It is stored in the memory of the process,
and every process is given an IPL. At the lowest IPL, all interrupts are permitted.
Conversely, at the highest IPL, all interrupts are blocked. Raising and lowering the
IPL involves changes to the interrupt mask field of the Status register.

Elaboration: The two least sign ificant bits of the pending interrupt and interrupt
mask fields are for software interrupts , which are lower priority. These are typically
used by higher-priority interrupts to leave work for lower-priority interrupts to do once
the immediate reason for the interrupt is handled. Once the higher-priority interrupt is
finished, the lower-priority tasks will be noticed and handled.

Transferring the Data between a Device and Memory

We have seen two different methods that enable a device to communicate with the
processo r. These two techniques-polling and I/O interrupts- form the basis for
two methods of implementing the transfer of data between the I/O device and
memo ry. Both these techniques wo rk best with lower-bandwidth devices, where
we are more interested in reducing the cost of the device controller and interface
than in providing a high -bandwidth transfer. Both polling and interrupt -driven
transfers put the burden of moving data and m anaging the transfer on the proces
so r. After looking at these two schemes, we will examine a scheme mo re suitable
for higher-perfo rmance devices o r collections of devices.

We ca n use the processor to transfer data between a device and memory based
on polling. In real-time applications, the processor loads data fro m I/O device
registers and sto res them into memory.

An alternative mechanism is to make the transfer of data interrupt driven. In
this case, the OS would still transfer data in small numbers of bytes from or to the
device. But because the I/O operation is interrupt driven, the OS simply works on
other tasks while data is being read from or written to the device. When the OS
recognizes an interrupt from the device, it reads the staniS to check for errors. If
there are none, the OS can supply the next piece of data, fo r example, by a
sequence of mem ory-mapped writes. When the last byte of an I/O request has
been transmitted and the I/O operation is completed, the OS ca n inform the pro
gram. The processor and OS do all the work in this process, accessing the device
and memory for each data item transferred.

Interrupt-driven I/O rel ieves the processor from having to wa it for every I/O
event, alth ough if we used this method for transferring data from o r to a hard
disk, the overhead could still be intolerable, since it could consume a large frac
tion of the processo r when the disk was transferring. For high -bandwidth devices
like hard disks, the transfers consist primarily of relatively large blocks of data
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(hundreds to thousand s of bytes). Thus, computer designers invented a mecha
nism for offioading the processor and having the device controller transfer data
directly to or from the memo ry without involving the processo r. This mechanism
is called direct memory access (OM A). The interrupt mechanism is still used by
the device to communicate with the processor, but only on completion of the I/O
tran sfer or when an error occurs.

DM A is implemented with a specialized cont roller that transfers data between
an I/O device and memory independent of the processor. The DM A controller
becomes the bus master and directs the reads or writes between itself and mem 
o ry. There are three steps in a DM A transfer:

I. The processor sets up the DM A by supplying the identity of the device, the
operation to perfo rm on the device, the memo ry address that is the source
or destill3tion of the data to be transferred, and the number of bytes to
transfer.

2. The DM A starts the operation on the device and arbitrates for the bus.
When the data is ava ilable (from the device o r memory), it transfers the
data. The DM A device supplies the memory address for the read or the
write. If the request requires more than one transfer on the bus, the DMA
unit generates the next memory address and initiates the next transfer.
Using this mechanism , a DM A unit ca n complete an entire transfer, which
may be th ousands of bytes in length , without bothering the processor.
Many DM A controllers contain some memory to allow them to dea l flexi
bly with delays either in transfer or those incurred while waiting to become
bus master.

3. Once the DM A transfer is complete, the cont roller interrupts the processo r,
which can then determine by interrogating the DM A device or exa mining
memory whether the entire operation completed successfully.

There may be multiple DMA devices in a computer system. For example, in a
system with a single processo r-memory bus and multiple I/O buses, each I/O bus
cont roller will often contain a DM A processo r that handles any transfers between
a device on the I/O bus and the memory.

Unlike either polling or interrupt -driven I/O, DM A ca n be used to interface a
hard disk without consuming all the processo r cycles fo r a single I/O. Of course, if
the processor is also contending for memory, it will be delayed when the memory
is busy doing a DMA transfer. By using caches, the processo r ca n avoid having to
access memory most of the time, thereby leaving m ost of the memory bandwidth
free for use by I/O devices.

Elaboration: To further reduce the need to interrupt the processor and occupy it in
handling an I/O request that may involve doing several actual operations . the I/O con
t roller can be made more intelligent. Intelligent controllers are often called I/O proces-
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sors (as well as I/O controllers or channel controllers) . These specialized processors
basically execute a series of I/O operations, called an I/O program. The program may
be stored in the I/O processor, or it may be stored in memory and fetched by the I/O
processor. When using an I/O processor, the operating system typically sets up an
I/O program that indicates the I/O operations to be done as well as the s ize and
transfer address for any reads or writes . The I/O processor then takes the operations
from the I/O program and interrupts the processor only when the entire program is
completed. DMA processors are essentially special-purpose processors (usually s ingle
chip and nonprogrammable), while I/O processors are often implemented with general
purpose microprocessors , which run a spec ialized I/O program .

Direct Memory Access and the Memory System

When OM A is incorporated into an I/O system, the relationship between the
memory system and processo r changes. Without OM A, all accesses to the memory
system come from the processo r and thus proceed th rough address translation
and cache access as if the processo r generated the references. With DMA, there is
another path to the memory system-one that does not go through the address
translation mechanism or the cache hierarchy. This difference generates some
problems in both virtual memory systems and systems with caches. These prob
lems are usually solved with a combination of hardwa re techniques and softwa re
support.

The difficulties in having DMA in a virtual memory system arise because pages
have both a physical and a virtual address. DMA also creates problems for systems
with caches because there ca n be two copies of a data item: one in the cache and
one in memory. Because the DMA processor issues memory requests directly to
the memo ry rather than th rough the processor cache, the value of a memory loca
tion seen by the OM A unit and the processo r may differ. Consider a read from
disk that the OMA unit places directly into memory. If some of the locations into
which the DM A writes are in the cache, the processo r will receive the old value
when it does a read. Similarly, if the cache is write-back, the DM A may rea d a
value directly from memory when a newer va lue is in the cache, and the va lue has
not been written back. This is ca lled the stale data problem or coherence problem.

In a system with virtual memory, should DM A wo rk with virtual addresses or
physical addresses? The obvious problem with virtual addresses is that the DM A
unit will need to translate the virtual addresses to physical addresses. The major
p roblem with the use of a physica l address in a DMA transfer is that the transfer
ca nnot easily cross a page boundary. If an I/O request crossed a page boundary,
then the memory locations to which it was being transferred would not necessa r
ily be contiguous in the virtual memo ry. Consequently, if we use physical
addresses, we must constrain all DMA transfers to stay within one page.

Hardware
Software
Interface
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One method to allow the system to initiate DM A transfers that cross page
boundaries is to make the DM A work on virtual addresses. In such a system , the
DM A unit has a small number of map entries th at provide virtual-to-physical
mapping for a transfer. The operating system provides the mapping when the I/O
is initiated. By using this mapping, the DM A unit need not worry about the loca
tion of the virtual pages involved in the transfer.

Another technique is for the operating system to break the DM A transfer into a
series of transfers, each confined within a single physical page. The transfers are
then chained together and handed to an I/O p rocessor or intelligent DM A unit
that executes the entire sequence of transfers; alternatively, the operating system
ca n individually request the transfers.

Whichever method is used, the operating system must still cooperate by not
remapping pages while a DM A transfer involving that page is in progress.

We have looked at three different methods for transferring data between an I/O
device and memory. In moving from polling to an interrupt-driven to a DM A
interface, we shift the burden for managing an I/O operation from the processor
to a progressively more intelligent I/O cont roller. These methods have the advan
tage of freeing up processor cycles. Their disa dva ntage is that they increase the
cost of the I/O system. Because of this, a given computer system ca n choose which
point along this spectrum is appropriate for the I/O devices connected to it.

Before discussing the design of I/O systems, let's look briefly at performance
measures of them.

The coherency problem for I/O data is avoided by using one of three major tech
niques. One approach is to route the I/O activity th rough the cache. This ensures
that reads see the latest value while writes update any data in the cache. Routing all
I/O th rough the cache is expensive and potentially has a large negative perfor
mance impact on the processor, since the I/O data is rarely used immediately and
may displace useful data that a running program needs. A second choice is to have
the OS selectively invalidate the cache fo r an I/O read or force write-backs to
occur for an I/O write (often called cachej1ushillg) . This approach requires some
small amount of hardwa re support and is probably mo re effi cient if the soft wa re
ca n perfo rm the function easily and effi ciently. Because this flushing of large parts
of the cache need only happen on DM A block accesses, it will be relatively infre
quent. The third approach is to provide a hardware mechanism for selectively
flushing (or invalidating) cache entries. Hardwa re invalidation to ensure cache
coherence is typical in multip rocesso r system s, and the sa me technique ca n be
used for I/O; we discuss this topic in detail in Chapter 9.
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In ranking of the three ways of doing I/O, which statements are true?

I. If we wa nt the lowest latency for an I/O operation to a single I/O device, the
order is polling, DMA, and interrupt driven.

2. In terms of lowest impact on processo r utiliza tion from a single I/O device,
the order is DMA, interrupt driven, and polling

Check
Yourself
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I/O Performance Measures: Examples
from Disk and File Systems

How should we compare I/O systems? This is a complex question because I/O
performance depends on many aspects of the system and different applications
st ress different aspects of the I/O system. Furtherm ore, a design ca n make com 
plex trade-offs between response time and th roughput , making it impossible to
measure just one aspect in isolation. For example, handling a request as ea rly as
possible generally minimizes response time, although greater th roughput can be
achieved if we try to handle related requests together. Acco rdingly, we may
increase th roughput on a disk by grouping requests th at access loca tions that are
close together. Such a policy will in crease the response time for some requests,
probably leading to a larger va riation in response time. Although th roughput will
be higher, some benchmarks constrain the maximum response time to any
request, making such optimiza tions potentially p roblematic.

In this section, we give so me examples of measurements proposed fo r deter
mining the performance of disk systems. These benchmarks are affected by a
va riety of system features, including the disk technology, how disks are con
nected, the memory system , the processo r, and the fil e system provided by the
operating system.

Before we discuss these benchmarks, we need to address a confusing point
about termin ology and units. The perform ance of I/O systems depends on the
rate at which the system transfers data. The transfer rate depend s on the clock
rate, which is typically given in GHz = 109 cycles per second. The transfer rate is
usually quoted in GB/sec. In I/O systems, GBs are measured using base 10 (i.e., 1
GB = 109 = 1,000,000,000 bytes), unlike main memory where base 2 is used (i.e., 1
GB = 230 = 1,073,741 ,824). In addition to adding confusion , this difference intro 
duces the need to convert between base 10 (l K = 1000) and base 2 ( IK = 1024)
because many I/O accesses are for data blocks that have a size that is a power of
two. Rather than complica te all our examples by accurately converting one of the
two measurements, we make note here of this distinction and the fact that treating
the two measu res as if the units were identica l int roduces a small er ror. We illus
trate this error in Section 8.9.
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transaction processing A type
of application that involves han
dling small short operations
(called transactions) that typi
cally require both I/O and com 
putation. Transaction
processing applications typi
cally have both response time
requirements and a perfor
m ance m easurem ent based on
the throughput of transactions .

ItO rate Performance m easure
of VOs per unit time, such as
reads per second.

data rate Performance mea
sure of bytes per unit time, such
as GB/second.
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Transaction Processing I/O Benchmarks

Transaction processing (TP) applications involve both a response time require
ment and a performance measurement based on th roughput. Furthermore, most
of the I/O accesses are small. Because of this, TP applications are chiefl y con
cerned with I/O rate, measured as the number of disk accesses per second, as
opposed to data rate, measured as bytes of data per second. TP applications gen
erally involve changes to a large database, with the system meeting some response
time requirements as well as gracefully handling certain types of failures. These
applications are extremely crit ical and cost-sensitive. For exa mple, banks nor
mally use TP systems because they are concerned about a range of characteristics.
These include making sure transactions aren't lost, handling transactions quickly,
and minimizing the cost of processing each transaction. Although depend ability
in the face of failure is an absolute requirement in such systems, both response
time and th roughput are crit ical to building cost-effective systems.

A number of transaction processing benchmarks have been developed. The
best-known set of benchm arks is a series developed by the Transaction Processing
Coun cil (TPC).

TPC-C, initially created in 1992, simulates a complex query environment.
TPC- H models ad hoc decision support- the queries are unrelated and knowl
edge of past queries cannot be used to optimize future queries; the result is that
query execution times ca n be very long. TPC- R simulates a business decision sup 
port system where users run a standard set of queries. In TPC- R, prekn owledge of
the queries is taken fo r granted , and the DBMS ca n be optimized to run these que
ries. TPC-W is a Web-based transaction benchmark that simulates the activities of
a business-oriented transactional Web server. It exercises the database system as
well as the underlying Web server softwa re. The TPC benchmarks are described at
www.tpc.org.

All the TPC benchmarks measure perfo rm ance in transactions per second. In
addition , they include a response time requi rement , so that th roughput perfor
mance is measured only when the response time limit is met. To model rea l-wo rld
systems, higher transaction rates are also associated with larger systems, both in
terms of users and the size of the database that the transactions are applied to.
Finally, the system cost fo r a benchmark system must also be included, allowing
accurate comparisons of cost-performance.

File System and Web I/O Benchmarks

File system s, which are stored on disks, have a different access pattern. For exa m
ple, measurements of UNIX file systems in an engineering environment have
found that 80% of accesses are to fil es of less than 10 KB and that 90% of all fil e
accesses are to data with sequential addresses on the disk. Furthermore, 67% of
the accesses were reads, 27% were writes, and 6% were read -modify-write
accesses, which read data, modify it , and then rewrite the sa me location. Such
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measurements have led to the creation of synthetic fil e system benchmarks. One
of the most popular of such benchmarks has five phases, using 70 fil es:

• MakeDir: Constructs a directory subtree that is identical in structure to the
given directory subtree

• Copy: Copies every fil e from the source subtree to the target subtree

• SCIlllDir: Recursively traverses a directo ry subtree and examines the staniS
of every fil e in it

• ReadA Il: Scans every byte of every file in a subtree once

• Make: Compiles and links all the fil es in a subtree

As we will see in Section 8.7, the design of an I/O system involves kn owing what
the wo rkload is.

In addition to processor benchmarks, SPEC offers both a file server benchmark
(SPECS FS) and a Web server benchmark (S PECWeb). SPECSFS is a benchmark
for measuring NFS (Netwo rk File System) performance using a script of fil e server
requests; it tests the perfo rmance of the I/O system , including both disk and net
work I/O, as well as the processo r. SPECS FS is a throughput -oriented benchm ark
but with important response time requirements. SPECWeb is a Web server bench
mark that simulates multiple clients requesting both static and dynamic pages
from a server, as well as clients posting data to the server.

I/O Performance versus Processor Performance

Amdahl's law in Chapter 2 reminds us that neglecting I/O is dangerous. A simple
example demonstrates this.

Impact of I/O on System Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed time,
where 90 seconds is CPU time and the rest is I/O time. If CPU time improves
by 50% per yea r for the next fi ve years but I/O time doesn't improve, how
much faster will our program run at the end of fi ve yea rs?

EXAMPLE
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We know that

Elapsed time

100

I/O time

CPU time + I/O time

90 + I/O time

10 seconds
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The new CPU times and the resulting elapsed times are computed in the fol
lowing table:

After II years CPU time I/O time Elapsed time % I/O time

0 90 seconds 10 seconds 100 seconds 10%

1 jUl ~ 60 seconds 10 seconds 70 seconds 14%
1.5

2 ..6.ll " 40 seconds 10 seconds 50 seconds 20%
1.5

3 ~ " 27 seconds 10 seconds 37 seconds 27%

4 ~ " 18 seconds 10 seconds 28 seconds 36%

5 ..11i " 12 seconds 10 seconds 22 seconds 45%
1.5

The improvement in CPU performance over five years is

90 = 7.5
12

However, the improvement in elapsed time is only

100 = 4.5
22

and the I/O time has increased from 10% to 45% of the elapsed time.

Are the following true or false? Unlike processor benchmarks, I/O benchmarks

I. concentrate on throughput rather than latency

2. ca n require that the data set scale in size or number of users to achieve per
formance milestones

3. come from organizations rather than from individuals

Designing an I/O System

There are two primary types of specifica tions that designers encounter in I/O sys
tems: latency constraints and bandwidth constraints. In both cases, knowledge of
the traffic pattern affects the design and analysis.

Latency constraints involve ensuring that the latency to complete an I/O opera
tion is bounded by a certain amount. In the simple case, the system may be
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unloaded , and the designer must ensure that some latency bound is met either
because it is critical to the application or because the device must receive certain
guaranteed service to prevent errors. Examples of the latter are similar to the anal
ysis we looked at in the previous section. Likewise, determining the latency on an
unloaded system is relatively easy, sin ce it involves tracing the path of the I/O
operation and summing the individual latencies.

Finding the average latency (o r distribution of latency) under a load is a much
more complex problem. Such problems are ta ckled either by queuing theory
(when the behavior of the workload requests and I/O service times can be approx
imated by simple distributions) o r by simulation (when the behavior of I/O events
is complex). Both topics are beyond the limits of this text.

Designing an I/O system to meet a set of bandwidth constraints given a work
load is the other typical problem designers face. Alternatively, the designer may be
given a partially configured I/O system and be asked to balance the system to main 
tain the ma ximum bandwidth achievable as dictated by the preconfigured portion
of the system. This latter design problem is a simplified version of the first.

The genera l approach to designing such a system is as follows:

I. Find the weakest link in the I/O system, which is the component in the I/O
path that will constrain the design. Depending on the workload, this com 
ponent ca n be anywhere, including the CPU, the memory system , the back
plane bus, the I/O controllers, or the devices. Both the workload and
configuration limits may dictate where the weakest link is located.

2. Configure this component to sustain the required bandwidth.

3. Determine the requirements for the rest of the system and configure them
to support this bandwidth.

The easiest way to understand this methodology is with an exa mple.

I/O System Design

Consider the following computer system:

• A CPU that sustains 3 billion in structions per second and averages
100,000 instructions in the operating system per I/O operation

• A memory backplane bus capable of sustaining a transfer rate of 1000
MB/sec

• SCSI Ultra320 controllers with a transfer rate of 320 MB/sec and accom
modating up to 7 disks

• Disk drives with a read/write bandwidth of 75 MB/sec and an average
seek plus rotational latency of 6 ms

EXAMPLE
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If the workload consists of 64 KB reads (where the block is sequential on a
tra ck) and the user program needs 200,000 in structions per I/O operation ,
find the maximum sustainable I/O rate and the number of disks and SCSI
controllers required. Assume that the reads ca n always be done on an idle
disk if one exists (i.e., ignore disk conflicts).

The two fixed components of the system are the memory bus and the CPU.
Let's first find the I/O rate that these two components ca n sustain and deter
mine which of these is the bottleneck. Each I/O takes 200,000 user instruc
tions and 100,000 OS instructions, so

Maximum I/O rate of CPU =

In struction execution pte
Instructions per I/O

Ea ch I/O transfers 64 KB, so

3 X I.!LQ'_--:

(200 + 100) X 10
3

10,000 --lL.Q.L
second

Maximum I/O rate ofbus = Bus bandwidtb = 1DOD X IJf = IS 625-.lLili....,
Bytes per I/O 64 X 10 3 second

The CPU is the bottleneck, so we ca n now configure the rest of the system to
perform at the level dictated by the CPU, 10,000 I/Os per second.

Let's determine how many disks we need to be able to accommodate 10,000
I/Os per second. To find the number of disks, we first find the time per I/O op
eration at the disk:

Time per I/O at disk = Seek + rotational time + Transfer time

= 6 ms +~ = 6.9 ms
75 MB/sec

Thus, each disk ca n complete 1000 ms/6.9 ms or 146 I/Os per second. To sat 
urate the CPU requires 10,000 I/Os per second, or 10,000/ 146'" 69 disks.

To compute the number of SCSI buses, we need to check the average trans
fer rate per disk to see if we ca n sa nlfate the bus, which is given by

Transfer rate = Transfer size = 64 KB '" 9.56 MB/sec
Transfer time 6.9 ms

The maximum number of disks per SCSI bus is 7, which won't saturate this
bus. This mea ns we will need 69/7, or 10 SCSI buses and controllers.
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Notice the significa nt number of simpli fying assumptions that are needed to do
this exa mple. In practice, many of these simplifications might not hold for critical
I/O-intensive applications (such as databases). For this reason, simulation is often
the only rea listic way to pred ict the I/O performance of a rea list ic workload.
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Real Stuff: A Digital Camera

Digital ca meras are basica lly embedded computers with removable, writable, non
volatile, storage, and interesting I/O devices. Figure 8. 14 shows our example.

FtGURE 8.14 The Sanyo VPC·SXSOO with Flash memory card and IBM Mlcrodrlve.
Although newer cameras offer more pixels per picture, the principles are the same. This 1360 x 1024 pixel
digital camera stores pictures either using CompactFlash memory or using a IBM Microorive. This photo
was taken using a 340 MB microorive and a 8 MB CompactFlash memory. As Figure 8.15 shows, in 2004 the
cap.1cities are as large as 1 GB to 4 GRit is 4.3 inches wide x 2.5 inches high x 1.6 inches deep, and it weighs
7.4 ounces. In addition to taking a still picture and converting it to !pEG format every 0.9 seconds, it can
record a Quick Time video dip at VGA size (640 x 480). One technological advantage is the use of a custom
system on a chip to reduce size and power, so the camera only needs two AA batteries to operate versus four
in other digital cameras.
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\Vhen powered on, the microprocessor first runs diagnostics on all compo
nents and writes any erro r messages to the liquid crystal display (LCD) on the
back of the camera. This ca mera uses a 1.8- in ch low-temperature polysilicon TFT
color LCD. When photographers take picnlfes, they first hold the shutter halfway
so that the microprocessor can take a light reading. The microprocesso r then
keeps the shutter open to get the necessary light, which is ca ptured by a charged 
couple device (CeO) as red , green , and blue pixels.

For the ca mera in Figure 8.14, the ceo is a 1/2-inch , 1360 X 1024 pixel, pro
gressive-sca n chip. The pixels are sca nned out row by row and then passed
th rough routines for white balance, color, and aliasing co rrection , and then stored
in a 4 MB frame buffer. The next step is to compress the image into a standard for
mat, such as IPEG, and store it in the removable Flash memory. The photographer
picks the compression, in this camera called either fine or normal, with a com
pression ratio of 10 to 20 times. A fine-quality compressed image takes less than
0.5 MB, and a normal-quality compressed image takes about 0.25 MB. The micro
processor then updates the LCD display to show that there is room for one less
pictu re.

Although the previous paragraph covers the basics of a digital camera, there are
many more features that are included: showing the recorded images on the color
LCD display; sleep mode to save battery life; monito ring battery energy; buffering
to allow reco rding a rapid sequence of uncompressed images; and , in this camera,
video recording using MPEG format and audio recording using WAY format.

This camera allows the photographer to use a Microdrive disk instea d of Com
pactFlash memory. Figure 8.1 5 compares CompactFlash and the IBM Microdrive.

Sandlsk Type I Sandlsk Type II Hitachi 4 GB
CompactFlash CompactFlash Mlcrodrlve

Characteristics SDCFB·128·768 SDCFB·I0000768 DSCM·I0340

Fonnatted data capacity (MB) 128 1000 4000

Bytes per sector 512 512 512

Data transfer rate (MB/sec) 4 (burst) 4 (burst) 4- 7

Link speed to buffer (MB/sec) 6 6 33

Power standbyloperating (W) 0 .15/0.66 0 .1 5/0.66 0 .07/0.83

Size: height x width x depth (inches) 1.43 x 1.68 x 0.13 1.43 x 1.68 x 0 .1 3 1.43 x 1.68 x 0.16

Weight in grams (454 grams/pound) 11.4 13.5 16

Write cycles before sector wear-out 300 .000 300.000 not applicable

Mean time between failures (hours) > 1.000.000 > 1 .000.000 (see caption)

Best price (2004) $40 $200 $480

FIGURE 8.15 Characteristics of three storage alternatives for digital cameras. Hitachi
matches the Type II form factor in the Microdrive, while the Com pactFlash card uses that space to include
many more Flash chips. Hitachi does not quote MTTF for the 1.0·inch drives, bU1 the service life is five
years or 8800 powered-on hours, whichever is first. They rotate at 3600 RPM and have 12 ms seek t imes.
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The Compact Flash standard package was proposed by Sa ndisk Corporation in
1994 for the PCMCIA-ATA ca rds of portable PCs. Beca use it follows the ATA
interface, it simulates a disk interface including seek commands, logical tracks,
and so on. It includes a built-in controller to support many types of Flash memory
and to help with chip yield for Flash memories by mapping out bad blocks.

The elect ronic brain of this ca mera is an embedded com puter with several spe
cial functions embedded on the chip. Figure 8. 16 shows the block diagram of a
chip similar to the one in the ca mera. Such chips have been called systems on a
chip (SOC) beca use they essent ia lly integrate into a single chip all the parts that
were found on a small printed circuit boa rd of the past. SOC generally reduces
size and lowers power com pa red to less integrated solutions. The manufacturer
cla ims the SOC enables the ca mera to operate on half the number of batteries and
to offer a smaller fo rm factor than competitors' ca meras.

2-channel
video D/A LCDITV

10 bits

NTSCJPAL V 16 bitsCCD Signal

16b~s l SDRAM I processor MJPEG encoder

SDRAM I
Icontroller I 32 b~s Signal bus

Bus bridge

Smart SSFDC Audio MIC
Media controller RISC D/A. AID Speaker16 bits

Flash DRAM UART PCMCIA
SlO

DMA CPU bus
(program) controller , 2 IrDA

controller
PlO

controller
PWM, -- ,, ,

1 DRAM ,, ,
1_____ 1

RS-232 IrCA PCMCIA Others
port card

FtGURE 8.16 The syst em on a chip (SOC) found In Sanyo dig ita l cameras. This block dia
gram is for the predecessor of the SOC in the camera in Figure 8.14. The successor SOC, called Super
Advanced IC, uses three buses instead of two, operates at 60 MHz, consumes 800 mW, and fits 3.IM transis
tors in a 10.2 x 10.2 mm die using a 0.35-micron process. Note that this embedded system has twice as
many transistors as the state-of-the-art, high-performance microprocessor in 1990! The SOC in the figure is
limited to processing 1024 x 768 pixels, but its su((;essor supports 1360 x 1024 pixels. (See Okada, M.11suda,
Yamada, and Kobayashi [19991).
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For higher performance, it has two buses. The 16-bit bus is for the many slower
I/O devices: Smart Media interface, program and data memory, and DM A. The
32-bit bus is for the SDRAM, the signal p rocesso r (which is connected to the
CeO), the Motion IPEG encoder, and the NTSC/PAL encoder (which is con
nected to the LCD). Unlike desktop microprocessors, note the large va riety of I/O
buses that this chip must integrate. The 32-bit RIse MPU is a proprietary design
and runs at 28.8 MH z, the sa me clock rate as the buses. This 700 mW chip con
tains 1.8M transistors in a 10.5 X 10.5 mm die implemented using a O.35-micron
process.

Fallacies and Pitfalls

Fallacy: The rated mean time to failure ofdisks is 1,200,000 hours or almost 140
years, 50 disks practically never fail.

The current marketing practices of disk manufacturers ca n mislea d users. How is
such an MTTF calculated? Early in the process manufacturers will put thousands
of disks in a room , run them for a few months, and count the number that fail.
They compute MTIF as the total number of hours that the disks were cumula
tively up divided by the number that fail ed.

One problem is that this number far exceeds the lifetime of a disk, which is
commonly assumed to be fi ve yea rs or 43,800 hours. For this large MTTF to make
some sense, disk manufacturers argue that the calculation co rresponds to a user
who buys a disk, and then keeps replacing the disk every five years-the planned
lifetime of the disk. The claim is that if m any customers (a nd their great 
grand children ) did this for the next century, on average they would replace a disk
27 times before a failure, o r about 140 yea rs.

A mo re useful measure would be percentage of disks that fail. Assume 1000
disks with a 1,200,000-hour MTTF and that the disks are used 24 hours a day. If
you replaced failed disks with a new one having the same reliability characteristics,
the number that would fail over five yea rs (43,800 hours) is

Failed disks = 1000 drives X43.800 hours/drive = 36
1,200,000 hours/failure

Stated alternatively, 3.6% would fail over the 5-year period.

Pitfall: Using the peak transfer rate ofa portion of the I/O system to make perfor
mance projections or performance comparisons.

Many of the components of an I/O system , from the devices to the cont rollers to
the buses, are specified using their pea k bandwidths. In practice, these peak band
width measurements are oft en based on unrea listic assumptions about the system
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or are unattainable beca use of other system limitations. For exa mple, in quoting
bus performance, the pea k transfer rate is sometimes specified using a memory
system that is impossible to build. For networked systems, the software overhea d
of initiating communication is ignored.

The 32-bit, 33 MHz PCI bus has a peak bandwidth of about 133 MB/sec. In
practice, even for long transfers, it is difficult to sustain m ore th an about 80
MB/sec for realistic memory systems. As mentioned above, users of wireless net 
works typically achieve only about a third of the peak bandwidth.

Amdahl's law also reminds us that the th roughput of an I/O system will be lim 
ited by the lowest-performance component in the I/O path.

Fallacy: Magnetic disk storage is on its last legs and will be replaced shortly.

This is both a fallacy and a pitfall. Such claims have been made constantly for the
past 20 yea rs, though the string of failed altern atives in recent yea rs seems to have
reduced the level of claims for the death of magnetic storage. Among the un suc
cessful contenders are magnetic bubble memories, optica l storage, and holo
graphic storage. None of these systems has matched the combination of
characteristics that favo r magnetic disks: high reliability, nonvolatility, low cost,
reaso nable access time, and rapid imp rovement. Magnetic storage techn ology
continues to improve at the same-or faster- pace that it has sustained over the
past 25 yea rs.

Pitfall: Using magnetic tapes to back lip disks.

Once again , this is both a fallacy and a pitfall.
Magnetic tapes have been part of computer systems as long as disks because

they use similar technology as disks, and hence historically have followed the sa me
density improvements. The historic cost -performance difference between disks
and tapes is based on a sealed, rotating disk having lower access time than sequen 
tial tape access but removable spools of magnetic tape mea n many tapes ca n be
used per rea der and they can be very long and so have high capacity. Hence, in the
past a single m agnetic tape could hold the contents of many disks, and since it was
10 to 100 times cheaper per gigabyte th an disks, it was a useful backup medium.

The claim was that magnetic tapes must track disks since innovations in disks
must help tapes. This claim was important beca use tapes were a small market and
could not afford a separate large research and development effort. One reason the
market is small is that desktop owners generally do not back up disks onto tape,
and so while desktops are by far the largest market for disks, desktops are a small
market for tapes.

Alas, the larger market has led disks to improve much more quickly th an tapes.
Starting in 2000 to 2002, the largest popular disk was larger than the largest popu
lar tape. In that sa me time frame, the price per gigabyte of ATA disks dropped
below that of tapes. Tape apologists now claim that tapes have compatibility
requirements that are not imposed on disks; tape readers must rea d or write the
current and previous generation of tapes, and must rea d the last four generations
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of tapes. As disks are closed systems, disk heads need only read the platters
enclosed with them, and this advantage explains why disks are improving much
more rapidly.

Today, so me orga nizations have dropped tapes altogether, using networks and
remote disks to replicate the data geographically. The sites are picked so that disas
ters would not take out both sites, enabling instantaneous recovery time. (Long
recovery time is another serious drawback to the serial nature of magnetic tapes.)
Such a solution depends on adva nces in disk capacity and network bandwidth to
make economic sense, but these two are getting much greater investment and
hence have better recent records of accomplishment than tape.

Fallacy: A 100 ME/sec blls can transfer 100 MB ofdata in 1 second.

First, you genera lly ca nnot use 100% of any computer resource. For a bus, you
would be fortunate to get 70% to 80% of the peak bandwidth. Time to send the
address, time to acknowledge the signa ls, and stalls while wa iting to use a busy bus
are among the reasons you ca nn ot use 100% of a bus.

Second , the definition of a megabyte of storage and a megabyte per second of
bandwidth do not agree. As we discussed on page 597, I/O bandwidth measures
are usually quoted in base 10 (Le., 1 MB/sec = 106 bytes/sec), while 1 MB of data
is typically a base 2 measure (Le., 1 MB = 220 bytes). How significa nt is this dis
tinction? If we could use 100% of the bus for data tran sfer, the time to tran sfer 100
MB of data on a lOO-MB/sec bus is actually

"JOQ X 2 =~ = 1.048576'" 1.05 second
100 X 106 1,000,000

A similar but larger error is introduced when we treat a gigabyte of data trans
ferred or stored as equiva lent, meaning 109 versus 230 bytes.

Pitfall: Trying to provide featllres only within the network versus end to end.

The concern is providing at a lower level features that ca n only be accomplished at
the highest level, thus only partially satisfying the communication demand.
Sa ltzer, Reed, and Clark [1984 ) give the end-to-end argument as

The function in question can completely and correctly be specified only with the
knowledge and help of the application standing at the endpoints of the commu
nication system. Therefore, providing that questioned function as a featllre of
the communication system itself is not possible.

Their exa mple of the pitfall was a network at MIT that used several gateways, each
of which added a checksum from one gateway to the next. The programmers of
the application assumed the checksum guaranteed accuracy, incorrectly believing
that the message was protected while stored in the memory of each ga teway. One
gateway developed a transient failure that swapped one pair of bytes per million
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bytes transferred. Over time the source code of one operating system was repeat
edly passed th rough the gateway, thereby corrupting the code. The only solution
was to correct the infected source fil es by comparing to paper listings and repair
ing the code by hand! Had the checksums been calculated and checked by the
application running on the end systems, sa fety would have been assured.

There is a useful role fo r intermediate checks, however, provided th at end -to
end checking is ava ilable. End-to-end checking may show that something is b roken
between two nodes, but it doesn't point to where the problem is. Intermediate
checks ca n discover what is broken. You need both for repair.

Pitfall: Movingfunctions from the CPU to the I/O processor, expecting to improve
performance without a careful analysis.

There are many examples of this pitfall trapping people, although I/O processo rs,
when properly used, ca n certainly enhance performance. A frequent instance of
this fa llacy is the use of intelligent I/O interfaces, which , because of the higher
overhead to set up an I/O request, ca n turn out to have wo rse latency than a pro
cesso r-directed I/O activity (although if the processo r is freed up sufficiently, sys
tem th roughput may still increase). Frequently, performance falls when the I/O
processo r has much lower performance than the main processor. Consequently, a
small a tTI ount of main processo r time is replaced with a larger amount of I/O pro
cessor time. Workstation designers have seen both these phenomena repeatedly.

Myer and Sutherland [1968 ) wrote a classic paper on the trade-off of complex
ity and performance in I/O cont rollers. Borrowing the religious concept of the
"wheel of rein ca rnation," they eventually noticed they were caught in a loop of
continuously increasing the power of an I/O processo r until it needed its own sim
pler coprocessor:

We approached the task by starting with a simple scheme and then adding com
mands and features that we felt would enhance the power of the machine.
Gradually the {display] processor became more complex . ... Finally the display
processor came to resemble a fllll-fiedged computer with some special graphics
featllres. A nd then a strange thing happened. We felt compelled to add to the
processor a second, subsidiary processor, which, itself, began to grow in com
plexity. It was then that we discovered the disturbing truth. Design ing a display
processor can become a never-ending cyclical process. In fact, we found the pro
cess 50 frustrating that we have come to call it the "wheel of reincarnation."
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I/O systems are eva luated on several different characteristics: dependability; the
variety of I/O devices supported; the maximum number of I/O devices; cost; and
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performance, measured both in latency and in throughput. These goa ls lea d to
widely va rying schemes for interfacing I/O devices. In the low-end and midrange
systems, buffered DM A is likely to be the dominant transfer mechanism. In the
high-end systems, latency and bandwidth may both be important, and cost may
be secondary. Multiple paths to I/O devices with limited buffering often charac
terize high-end I/O systems. Typically, being able to access the data on an I/O
device at any time (high availability) becomes more impo rtant as systems grow. As
a result, red undan cy and erro r co rrection mechanisms become mo re and mo re
prevalent as we enlarge the system.

Storage and networking demands are growing at unprecedented rates, in part
because of increasing demands for all information to be at your fingertips. One
estimate is that the amount of information created in 2002 was 5 exabytes
equiva lent to 500,000 copies of the text in the U.S. Library of Congress-and that
the total amount of information in the world doubled in the last three years
(Lyman and Va rian 2003J.

Future directions of I/O include expanding the reach of wired and wireless net
works, with nea rly every device potentially having an IP address , and the continu 
ing transformation from parallel buses to serial networks and switches. However,
consolidation in the disk industry may lead to a slowdown in improvement in disk
capacity to ea rlier rates, which have doubled every yea r between 2000 and 2004.

The performance of an I/O system, whether measured by bandwidth or latency,
depends on all the elements in the path between the device and memory, includ 
ing the operating system that generates the I/O commands. The bandwidth of the
buses, the memory, and the device determine the maximum tran sfer rate from or
to the device. Similarly, the latency depends on the device latency, together with
any latency imposed by the memory system or buses. The effective bandwidth and
response latency also depend on other I/O requests that may cause contention for
some resource in the path. Finally, the operating system is a bottleneck. In some
cases, the OS takes a long time to deliver an I/O request from a user program to an
I/O device, leading to high latency. In other cases, the opera ting system effectively
limits the I/O bandwidth because of limitations in the number of concurrent I/O
operations it ca n support.

Keep in mind that while performance ca n help sell an I/O system, users over
whelmingly demand dependability and capacity from their I/O systems.
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Historical Perspective and Further
Reading

The history of I/O systems is a fascinating one. This II Section 8.11 gives a brief
history of magnetic disks, RAID, databases, the Internet, the Wo rld Wide Web,
and how Ethernet continues to triumph over its challengers.

Exercises

8.1 [ 10] <§§8.1-8.2> Here are two different I/O systems intended for use III

transaction processing:

• System A ca n suppo rt 1500 I/O operations per second.

• System B can support 1000 I/O operations per second.

The systems use the same processor that executes 500 million instructions per sec
ond. Assume th at each transaction requires 5 I/O operations and that each I/O
operation requi res 10,000 instructions. Ignoring response time and assuming that
transactions may be arbitrarily overlapped, what is the maximum transaction 
per-second rate that each machine ca n sustain?

8.2 [ 15] <§§8.1-8.2> The latency of an I/O operation for the two systems in Exer
cise 8.1 differs. The latency for an I/O on system A is equal to 20 m s, while for sys
tem B the latency is 18 ms for the first 500 I/Ds per second and 25 ms per I/O for
each I/O between 500 and 1000 I/Ds per second. In the workload, every 10th trans
action depends on the immediately preceding transaction and must wait for its
completion. What is the maximum tratlsa ction rate that still allows every transac
tion to complete in I second and that does not exceed the I/O bandwidth of the
machine? (For simplicity, assume that all transaction requests arrive at the begin 
ning of a I-second interva l.)

8.3 [5] <§§8.1-8.2> Suppose we wa nt to use a laptop to send 100 files of approx
imately 40 MB each to another computer over a 5 Mbit/sec wireless connection.
The laptop battery currently holds 100,000 oules of energy. The wireless netwo rk
ing ca rd alone consumes 5 wa tts while transmitting, while the rest of the laptop
always consumes 35 watts. Before each fil e transfer we need 10 seconds to choose
which file to send. How many complete fil es ca n we transfer before the laptop's
battery runs down to zero?
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8.4 [ IO J <§§8.1-8.2> Consider the laptop's hard disk power consumption in
Exercise 8.3 . Assume that it is no longer constant, but va ries between 6 wa tts when
it is spinning and 1watt when it is not spinning. The power consumed by the lap 
top apart from the hard disk and wireless ca rd is a constant 32 watts. Suppose that
the hard disk's transfer rate is 50 MB/sec, its delay before it can begin transfer is 20
ms, and at all other times it does not spin. How many complete files ca n we t ra nsfer
before the laptop's battery runs down to zero? How much energy would we need
to send all 100 fil es? (Consider that the wireless card cannot send data until it is in
memory. )

8.5 [5J <§8.3> The following simplified diagram shows two potential ways of
numbering the sectors of data on a disk (only two tracks are shown and each t rack
has eight secto rs) . Assuming that typica l reads a re contiguous (e.g., all 16 secto rs
a re read in order), which way of numbering the sectors will be likely to result in
high er perfo rmance? W hy?

o

4

2

o

4

2

8.6 [20 J < §8.3> In this exercise, we will run a program to evaluate the behavior of
a disk drive. Disk sectors are addressed sequentially within a track, tracks sequen 
tially within cylinders, and cylinders sequentially within the disk. Determining
head switch time and cylinder switch time is difficult because of rotational effects.
Even determining platter count , sectors/ track, and rotational delay is difficult
based on observation of typical disk wo rkloa ds.

The key is to fac to r out disk rotational effects by m aking consecutive seeks to indi
vidual sectors with addresses that differ by a linea rly increasing am ount sta rting
with 0, 1, 2, and so forth. The Skippy algorithm, from work by Nisha Talagala and
colleagues of u.c. Berkeley [2000J, is
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fd = open( "r aw disk device " ) ;
fo r (i = 0 ; i < measuremen t s ; i ++ ) (

Ii t ime t he f ollowing sequence , and ou t pu t <i , t ime>
lsee k(fd , i * SINGL E_S ECTOR , SEE K_CUR) ;
wri t e(fd , bu ffer , SI NGL E_S ECTOR) ;

I
close( f d) ;

The basic algo rithm skips th rough the disk, increasing the distance of the seek by
one sector before every write, and outputs the distance and time for each write.
The raw device interface is used to avoid fil e system optimizations. SI NGL E_
SECT OR is the size of a single secto r in bytes. The SEE K_CU Rargument to 1see k
moves the fil e pointer an amount relative to the current pointer. A technical
repo rt describing Skippy and two other disk drive benchmarks (run in seconds or
minutes rather than hours o r days) is at http://su nsite.berkeley.edli/DienstIUI/2.01
Describe/ncstrl.lIcb/CSD-99-1063.

Run the Skippy algo rithm on a disk drive of your choosing.

a. What is the number of heads?

b. The number of platters?

c. What is the rotational latency?

d. What is the head switch time (the time to switch the head that is reading
from one disk surfa ce to another without moving the arm; that is, in the
same cylinder)?

e. What is the cylinder switch time? (It is the time to move the arm to the next
sequential cylinder.)

8.7 (20J <§8.3> Figure 8.1 7 shows the output from running the benchmark
Skippy on a disk.

a. What is the number of heads?

b. The number of platters?

c. What is the rotational latency?

d. What is the head switch time (the time to switch the head that is reading
from one disk surface to another without moving the arm; that is, in the
sa me cylinder)?

e. What is the cylinder switch time (the time to move the arm to the next
sequential cylinder)?
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MOCK DISK
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FIGURE 8.17 Example output of Skippy for a hypothetical disk.

8.8 [ IO J <§8.3> Consider two RAID disk systems that are meant to store 10 ter
abytes of data (not counting any redund ancy). System A uses RAID 1 technology,
and System B uses RAID 5 technology with four disks in a "protection group."

3 . How m any mo re terabytes of storage are needed in System A than in System
81

b. Suppose an application writes one block of data to the disk. If reading or
writing a block takes 30 inS, how much time will the write take on System A
in the worst case? How about on System B in the wo rst case?

c. Is System A mo re reliable that System B? Why o r why not?

8.9 ( 15J <§8.3> What ca n happen to a RAID 5 system if the power fails between
the write update to the data block and the write update to the check block so that
only one of the two is successfully written? What could be done to prevent this
from happening?

8.10 [5J <§8.3> The speed of light is approximately 3 X 108 meters per second ,
and electrica l signals travel at about 50% of this speed in a conductor. When the



8.12 Exercises

term high speed is applied to a netwo rk, it is the bandwidth that is higher, not nec
essarily the velocity of the electrical signals. How much of a factor is the actual
"flight time" fo r the electrical signals? Consider two computers that are 20 meters
apart and two computers that are 2000 kilometers apart. Compare your results to
the latencies reported in the example on page 8.3-7 in " Section 8.3.

8.11 [5J <§8.3> The number of bytes in transit on a network is defined as the
flight time (described in Exercise 8.10) multiplied by the delivered bandwidth. Ca l
culate the number of bytes in transit for the two networks described in Exercise
8.1 0, assuming a del ivered bandwidth of 6 MB/sec.

8.12 [5 J <§8.3> A secret agency simultaneously monitors 100 cellular phone con
versa tions and multiplexes the data onto a network with a bandwidth of 5 MB/sec
and an overhead latency of 150 ps per 1 KB message. Ca lculate the transmission
time per message and determine whether there is sufficient bandwidth to support
this application. Assume that the phone conversation data consists of 2 bytes sa m
pled at a rate of 4 KHz.

8.13 [5 J <§8.3> Wireless networking has a much higher bit erro r rate (BER) than
wired netwo rking. One way to cope with a higher BER is to use an error co rrecting
code (ECC) on the transmitted data. A very simple ECC is to triplicate each bit ,
encoding each zero as 000 and each one as 111. When an encoded 3-bit pattern is
received, the system chooses the most likely original bit.

a. If the system received 00 1, what is the most likely value of the original bit?

b. If 000 was sent but a double-bit erro r causes it to be received as 110, what
will the receiver believe was the origin al bit 's value?

c. How many bit errors can this simple ECC co rrect?

d. How many bit errors can this ECC detect?

e. If l out of every 100 bits sent over the netwo rk is inco rrect, what percentage
of bit errors would a receiver using this ECC not detect?

8.14 [5 J <§8.3> There are two types of parity: even and odd. A bina ry word with
even parity and no errors will have an even number of Is in it, while a word with
odd parity and no erro rs will have an odd number of 1's in it. Compute the parity
bit fo r each of the following 8-bit wo rds if even parity is used:

a. 0 1100111

b. 0 1010101

8.15 [ 101<,8.3>

a. If a system uses even parity, and the wo rd 0111 is read from the disk, ca n we
tell if there is a single-bit error?

615
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b. If :l system uses odd pa rity, and the word 010 1 appears on the processor
memory bus, we suspect that a single-bit error has occurred. Ca n we tell
which bit the erro r occurs in? \-Vhy o r why not?

c. If a system uses even parity and the word 010 1 appea rs on the processor-
memory bus, can we tell if there is a double-bit er ror?

8.16 (10 ) <§8.3> A program repea tedly performs a three-step process: It rea ds in
a 4 KB block of data from disk, does some processing on th at data, and then writes
out the result as another 4 KB block elsewhere on the disk. Each block is contiguous
and randomly located on a single track on the disk. The disk drive rotates at 10,000
RPM , has an average seek time of8 ms, and has a transfer rate of 50 MB/sec. The
controller overhea d is 2 m s. No o ther progra m is using the disk o r processo r, and
there is no overlapping of disk o peration with processing. The processing step
takes 20 million clock cycles, a nd the clock rate is 5 GH z. W hat is the overall speed
of the system in blocks processed per second?

8.17 [5] <§8.4> The O SI network protocol is a hiera rchy of layers of abst raction ,
creating a n interface between network applications and the physica l wires. This is
similar to the levels of abstraction used in the ISA interface between softwa re and
ha rdwa re. Na me three ad va ntages to using abstraction in netwo rk p rotocol design.

8.18 [5] <§§8.3, 8.5> Suppose we have a system with the fo llowing cha racteris
tics:

I. A m em ory and bus system supporting block access of 4 to 16 32-bit words.

2. A 64-bit synch ronous bus clocked at 200 MHz, with each 64-bit transfer
taking 1 clock cycle, and 1 clock cycle required to send an address to m em 
ory.

3. Two clock cycles needed between each bus operation. (Assume the bus is
idle befo re an access.)

4. A m em ory access time for the first four words of 200 ns; each additional set
o f four wo rds ca n be rea d in 20 ns.

Assume th at the bus and m em ory system s described above are used to handle disk
accesses from disks like the one described in the exa mple on page 570. If the I/O is
allowed to consume 100% of the bus and m em ory bandwidth, what is the m axi
mum number of simultaneous disk transfers that ca n be sustained fo r the two
block sizes?

8.19 [5] <§8.5> In the system described in Exercise 8.18 , the mem ory system
took 200 ns to rea d the first four words, a nd each additional four words required
20 ns. Assuming th at the m em ory system takes 150 ns to rea d the first four words
and 30 ns to read each additional four words, find the sustained bandwidth and the
latency for a read of 256 words for transfers that u se 4-word blocks and fo r trans-
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fers that use 16-word blocks. Also compute the effective number of bus transac
tions per second for each case.

8.20 [5 J <§8.5> Exercise 8.19 demonstrates that using larger block sizes results in
an increase in the maximum sustained bandwidth that can be achieved. Under
what conditions might a designer tend to favor smaller block sizes? Specifically,
why would a designer choose a block size of 4 instead of 16 (assuming all of the
chara cteristics are as identified in Exercise 8.19)?

8.21 [15) <§8.5> This question exa mines in more detail how increasing the block
size for bus transactions decreases the total latency required and increases the max
imum sustainable bandwidth. In Exercise 8.19 , two different block sizes are con
sidered (4 words and 16 words). Compute the total latency and the maximum
bandwidth for all of the possible block sizes (between 4 and 16) and plot your
results. Summarize what you lea rn by looking at your graph.

8.22 [15) <§8.5> This exercise is similar to Exercise 8.21. This time fix the block
size at 4 and 16 (as in Exercise 8.19), but compute latencies and bandwidths for
reads of different sizes. Speci fi ca lly, consider reads of from 4 to 256 words, and use
as many data points as you need to construct a mea ningful graph. Use your graph
to help determine at what point block sizes of 16 result in a reduced latency when
compared with block sizes of 4.

8.23 (10 ) <§8.S> This exercise examines a design alternative to the system
described in Exercise 8.18 that may improve the performance ofwrites. For writes,
assume all of the characteristics reported in Exercise 8.18 as well as the following:

The first 4 words are written 200 ns after the address is available, and each
new write takes 20 ns. Assume a bus transfer of the most recent data to
write, and a write of the previous 4 words ca n be overlapped.

The performance analysis reported in the exa mple would thus remain unchanged
for writes (in actuality, some minor changes might exist due to the need to com 
pute error correction codes, etc., but we' ll ignore this). An alternative bus scheme
relies on separate 32-bit address and data lines. This will permit an address and
data to be tran smitted in the sa me cycle. For this bus alternative, what will the
latency of the entire 256-word transfer be? What is the sustained bandwidth? Con
sider block sizes of 4 and 8 words. When do you think the alternative scheme
would be heavily favored?

8.24 <20> <§8.5> Consid er an asynchronous bus used to interfa ce an I/O
device to the memory system described in Exercise 8.18. Each I/O request asks
for 16 wo rds of data from the mem ory, which , along with th e I/O device, has a
4-word bus. Assume the same type of handshaking protocol as appears in Figure
8.10 on page 584 except that it is extended so that the memory ca n co ntinue th e

617



618 Chapter 8

transa ction by sending additional blocks of data until the transaction is co m 
plete. Modify Figure 8.10 (both the steps and diagram) to indica te how such a
transfer might take place. Assuming that each handshaking step takes 20 tlS and
memory access takes 60 ns, how long does it take to co mplete a transfer? What is
the maximum sustained bandwidth for this asynchronous bus, and how does it
compare to the synch ronous bus in the exa mple?

8.25 (1 day-l weekI <§§8.2-8.S> II For Mo re Practice: Writing Code to Bench 
mark I/O Performance

8.26 (3 days-l weekI <§§8.3-8.S> . In Mo re Depth: Ethernet Simulation

8.27 (151 <§8.S > We wa nt to compare the maximum bandwidth for a synchro
nous and an asynchronous bus. The synchronous bus has a clock cycle time of
50 ns, and each bus transmission takes 1clock cycle. The asynchronous bus requires
40 ns per handshake. The data portion of both buses is 32 bits wide. Find the band
width for each bus when performing one-word reads from a 2oo-ns memory.

8.28 (20) <§8.S> Suppose we have a system with the following characteristics:

1. A memory and bus system supporting block access of 4 to 16 32-bit words.

2. A 64-bit synchronous bus clocked at 200 MHz, with each 64-bit transfer
taking 1 clock cycle, and 1 clock cycle required to send an address to mem 
ory.

3. Two clock cycles needed between each bus operation. (Assume the bus is
idle before an access.)

4. A memory access time for the first four words of 200 ns; each additional set
of four words can be read in 20 ns. Assume that a bus transfer of the most
recently read data and a read of the next four words ca n be overlapped.

Find the sustained bandwidth and the latency for a read of 2S6 words for transfers
that use 4-word blocks and for transfers th at use 16-word blocks. Also compute
the effective number of bus transactions per second for each case. Recall that a
single bus tran saction consists of an address transmission followed by data.

8.29 (10 ) <§8.S> Let's determine the impact of polling overhead forthree differ
ent devices. Assume that the number of clock cycles for a polling opera tion
including tran sferring to the polling routine, accessing the device, and restarting
the user program-is 400 and that the processor executes with a Soo-M Hz clock.

Determine the fraction of CPU time consumed for the following three cases,
assuming that you poll often enough so that no data is ever lost and assuming that
the devices are potentially always busy:

1. The mouse must be polled 30 times per second to ensure that we do not
miss any movement made by the user.
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2. The floppy disk transfers data to the processor in 16-bit units and has a data
rate of 50 KB/sec. No data transfer can be missed.

3. The hard disk transfers data in four-word chunks and ca n transfer at
4 MB/sec. Again, no transfer can be missed.

8.30 [ IS) <§§8.3-8.6> For the I/O system described in Exercise 8.45, find the
ma ximum instantaneous bandwidth at which data can be transferred from disk to
memory using as many disks as needed. How many disks and I/O buses (the min
imum ofeach) do you need to achieve the bandwidth? Since you need only achieve
this bandwidth for an instant, latencies need not be considered.

8.31 (20) <§§8.3-8.6> II In More Depth: Disk Arrays versus Single Disk

8.32 (10 ) <§§8.3-8.6> II In More Depth: Disk Arrays Bandwidth

8.33 [5] <§8.6> Suppose you are designing a microprocessor that uses special
instructions to access I/O devices (instead of mapping the devices to memory
addresses). What specia l instructions would you need to include? What additional
bus lines would you need this microprocessor to support in order to address I/O
devices?

8.34 <§8.6> An important advantage of interrupts over polling is the ability of
the processor to perform other tasks while waiting for communication from an I/O
device. Suppose that a I GHz processor needs to read 1000 bytes of data from a par
ticular I/O device. The I/O device supplies I byte of data every 0.02 ms. The code
to process the data and store it in a buffer takes 1000 cycles.

a. If the processor detects that a byte of data is ready through polling, and a
polling iteration takes 60 cycles, how many cycles does the entire operation
take?

b. If instead, the processor is interrupted when a byte is ready, and the proces
sor spends the time between interrupts on another ta sk, how many cycles of
this other ta sk ca n the processor complete while the I/O communication is
taking place? The overhead for handling an interrupt is 200 cycles.

8.35 (20) <§§8.3-8.6> II For More Pra ctice: Finding I/O Bandwidth Bottlenecks

8.36 [ IS) <§§8.3-8.6> II For More Pra ctice: Finding I/O Bandwidth Bottlenecks

8.37 [ IS) <§§7.3, 7.5, 8.5, 8.6> II For More Practice: I/O System Operation

8.38 (10 ) <§8.6> Write a paragraph identifying some of the simplifying assump
tions made in the analysis below:

Suppose we have a processor that executes with a Soo-M Hz clock and the number
of clock cycles for a polling operation- including transferring to the polling rou
tine, accessing the devise, and restarting the user program-is 400. The hard disk
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tran sfers data in four-wo rd chunks and ca n transfer at 4 MB/sec. Assume that you
poll oft en enough that no data is ever lost and assume that the hard disk is poten
tially always busy. The initial senlp of a DMA transfer takes 1000 clock cycles for
the processor, and the handling of the interrupt at DM A completion requires 500
clock cycles for the processor. The hard disk has a transfer rate of 4 MB/sec and
uses DMA. Ignore any impact from bus contention between the processor and the
DM A controller. Therefore, if the average transfer from the disk is 8 KB, the frac
tion of the 500-MHz processor consumed if the disk is actively transferring 100%
of the time is 0.2%.

8.39 (81 <§8.6> Suppose we have the same hard disk and processor we used in
Exercise 8.18, but we use interrupt-driven I/O. The overhead for each transfer,
including the interrupt, is 500 clock cycles. Find the fra ction of the processor con
sumed if the hard disk is only transferring data 5% of the time.

8.40 [8] <§8.6> Suppose we have the sa me processor and hard disk as in Exercise
8.18. Assume that the initial setup of a DMA transfer takes 1000 clock cycles for the
processor, and assume the handling of the interrupt at DM A completion requires
500 clock cycles for the processor. The hard disk has a transfer rate of 4 MB/sec and
uses DMA. If the average transfer from the disk is 8 KB, what fraction of the 500
MHz processor is consumed if the disk is actively transferring 100% of the time?
Ignore any impa ct from bus contention between the processo r and DM A control
ler.

8.41 [2 days-I week] <§8.6, Appendix A> . For Mo re Practice: Using SPIM to
Explore I/O

8.42 [3 days-I week] <§8.6, Appendix A> tel For More Practice: Writing Code
to Perform I/O

8.43 [3 days-I week] <§8.6, Appendix A> II For More Practice: Writing Code
to Perform I/O

8.44 [ IS) <§§8.3--8.7> Redo the exa mple on page 60 1, but instead assume that
the reads are random 8-KB reads. You ca n assume that the reads are always to an
idle disk, if one is available.

8.45 (20) <§§8.3-8.7> Here are a variety of building blocks used in an I/O system
that has a synchronous processor-memory bus running at 800 MHz and one or
more I/O adapters that interface I/O buses to the processor-memory bus.

• Memory system: The memory system has a 32-bit interface and handles
four-word transfers. The memory system ha s separate address and data lines
and , for writes to memory, accepts a word every clock cycle for 4 clock cycles
and then takes an additional 4 clock cycles before the words have been
stored and it ca n accept another transaction.
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• DMA in terfaces: The I/O adapters use DM A to transfer the data between the
I/O buses and the processor- memory bus. The DMA unit arbitrates for the
p rocesso r-memory bus and sends/receives four-word blocks from/to the
memo ry system. The DM A cont roller ca n accommodate up to eight disks.
Initiating a new I/O operation (including the seek and access) takes 0.1 ms,
during which another I/O ca nnot be initiated by this cont roller (but out 
standing operations ca n be handled).

• I/O bus: The I/O bus is a synchronous bus with a sustainable bandwidth of
100 MB/sec; each tran sfer is one wo rd long.

• Disks: The disks have a measured average seek plus rotational latency of 8
m s. The disks have a read/write bandwidth of 40 MB/sec, when they are
transferring.

Find the time required to read a 16 KB sector from a disk to memory, assuming
that this is the only activity on the bus.

8.46 [5 J <§8.7> In order to perfo rm a disk o r network access, it is typically nec
essary fo r the user to have the operating system communicate with the disk or net
work controllers. Suppose that in a particular 5 GHz computer, it takes 10,000
cycles to trap to the as, 20 ms for the OS to perform a disk access, and 25 fls for
the as to perfo rm a network access. In a disk access, what percentage of the delay
time is spent in trapping to the aS? How about in a network access?

8.47 [5 J <§8.7> Suppose th at in the computer in Exercise 8.46 we can somehow
reduce the time for the OS to communica te with the disk cont roller by 60%, and
we ca n reduce the time for the OS to communicate with the netwo rk by 40%. By
what percentage ca n we reduce the total time for a netwo rk access? By what per
centage can we reduce the total time for a disk access? Is it worthwhile for us to
spend a lot of effo rt improving the as trap latency in a computer that performs
many disk accesses? How about in a computer that perfo rm s many network
accesses?

§8.2, Page 580: Dependability: 2 and 3. RAID: All are true.
§8.3, Page 8.3- 10: 1.

§8.4, Page 587: 1 and 2.
§8.5, Page 597: 1 and 2.
§8.6, Page 600: 1 and 2.

Answers To
Check
Yourself
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MRiImag&s of a human brain, In two-dImensional view

Saving Lives through
Better Diagnosis

low. The development of MRI has allowed the

scanning of soft tissues, such as the brain, for

which X-rays are not as effective and explor

atory surgery is dangerous. Without a cost

effective computing capability, MRI would

remain slow and expensive.

The two illustrations shows a series of MRI

images of the human brain; the images below

represent two-dimensional slices, while those on

the facing page show a three-dimensional recon

struction. Once an image is in digital form, a

physician can manipulate the image, removing

outer layers, examining the image from different

viewpoints, or looking at the three-dimensional

structure to help in diagnosis.

The major benefits of MRI are twofold:

• It can reduce the need for unnecessary

exploratory surgery. A physician may be

able to determine whether a patient ex-

Computers
in the

Real World

Problem: Find a way to examme internal

organs to diagnose psychological problems

without the use of invasive surgery or harmful

radiation.

Solution: The development of magnetic res

onance imaging (MRI), a three-dimensional

scanning technology, has been one of the most

important breakthroughs in modern medical

technology. MRI uses a combination of radio

frequency pulses and magnetic fields to scan

tissue. The organ to be imaged is scanned in a

series of two-dimensional slices, which are

then composed to create a three-dimensional
tillage.

In addit ion to this computationa lly inten

sive task of composing the slices to create a

volumetric image, extensive computation is

used to extract the initial two-dimensional

images, since the signal-to-noise ratio is often



periencing headaches has a brain tumor,

which requires surgery, or simply needs

medication for a headache.

• By providing a smgeon with an accmate

three-dimensional image, MRI can im

prove the smgical planning process and

hence the outcome. For example, in oper

ating on the brain to remove a tumor with

out accurate images of the tumor, the

surgeon likely would have to enter the

brain and then create a plan on the fly de

pending on the size and exact placement of

the tumor. Fwthermore, minimally inva

sive techniques (e.g. endoscopic surgery),

which have become quite effective, would

be impossible without accurate images.

There are many new interesting uses of MRI

technology, which rely on faster and more cost

effective computing. Some of the most prom

Ismg are

• real-time imaging of the heart and blood

vessels to enhance diagnosis of cardiac

and cardiovascular disease;

• Combining real-time images and MRI

images during surgery to help surgeons

accurately perform surgery, particularly

when using minimally invasive tech

niques.

• Functional MRI (FMRI): a new type of

application that uses MRI to examine

brain function, primarily by analyzing

blood flow in various portions of the

brain. FMRI is being used for a number of

applications, including eA"ploring the

physiological bases for cognitive problems

such as dyslexia, pain management, plan

ningfor neurosurgery, and understanding

neurological disorders.

To learn more see these references on

the II library

MRI scans from the National Institutes of Health's Visi
ble Human project

Principles of MRI and its application to medical imag
ing (long and reasonably detailed, but only a little
mathematics)

Using MRI to do real-time cardiac imaging and a ngiog
raphy (i maging of blood vessels)

Functional MRI, www.fmri.org/fmri.htm

Visualization and imaging (including MRI and CT
images): high-performance co mputing for complex
Images

MRllmages of a human brain In three dimensions
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Glossary

absolute address A variable's or routine's
actual address in memory.
abstraction A m odel that renders lower
level details of computer systems tempo
rarily invisible in order to facilitate design of
sophisticated system s.
acronym A word constructed by taking the
initial letters of string of words. For exam 
ple: RAM is an acronym for Random Access
Memory, and CPU is an acronym for Cen 
tral Processing Unit.
active matrix display A liquid crystal dis
play using a transistor to control the trans
mission of light at each individual pixeL
address translation Also called address
m apping. The process by which a virtual ad
dress is mapped to an address used to access
m em ory.
add ress A value used to delineate the loca
tion of a specific data element within a
m em ory array.
add ressing mode One of several address
ing regimes delimited by their varied use of
operands and/or addresses.
advanced load In IA-64, a speculative load
instruction with support to check for aliases
that could invalidate the load.
aliasing A situation in which the same ob
ject is accessed by two addresses; can occur
in virtual memory when there are two virtu
al addresses for the same physical page.
alignment restriction A requirement that
data be align ed in memory on natural
boundaries

Amdahl's law A rule stating that the per
formance enhancement possible with a giv
en improvement is limited by the amount
that the improved feature is used.
antid ependence Also called name depen
d ence. An ordering forced by the reuse of a
nam e, typically a register, rather then by a
true dependence that carries a value be
tween nvo instructions.
antifu se A structure in an integrated cir
cuit that when programmed makes a per
manent connection between nvo wires.
application binary int erface (ABI) The
user portion of the instructio n set plus
the operating system interfaces used by
application programmers. Defin es a
standard for binary portability across
co mputers.
architectural registers The instruction set
visible registers of a processor; for example,
in M IPS, these are the 32 integer and 16
floating-point registers.
arithmetic m ean The average of the execu
tion times that is directly proportional to
total execution time.
assem bler directive An operation that tells
the assembler how to translate a program
but does not produce machine instructions;
always begins with a period.
assembler A program that translates a
symbolic version of instructions into the bi
nary versIOn.
assembly language A symbolic language
that can be translated into binary.

G-l
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asserted sign al A signal that is (logically)
true, or 1.
asynchronou s bus A bus that uses a hand
shaking protocol for coordinating usage
rather than a clock; can accommodate a

wide variety of devices of differing speeds.
a tomic swap opera tion An operation in
which the processor can both read a loca
tion and write it in the sam e bus operation ,
preventing any other processor or I/O
device fro m reading or writing memory un
til it completes.
backpatching A method fo r translating
from assembly language to machine in
structions in which the assembler builds a
(possibly incomplete) binary representation
of every instruction in one pass over a pro
gram and then returns to fill in previously
undefined labels.
backplane bus A bus that is design ed to al
low processors, memory, and I/O devices to
coexist on a single bus.
barrier synchronization A synchroniza
tion schem e in which processors wait at the
barrier and do not proceed until every pro
cessor has reached it.
basic block A sequence of instructions
without bran ches (except possibly at the
end ) and witho ut branch targets or
branch labels (except possibly at the
beginning).
behavioral specification Describes how a
digi tal system operates functionally.
biased notation A notation that represents
the m ost negative value byOO ooolWOand
the most positive value by II Il lwo, with
otypically having the value 10 OOt....u'
thereby biasing the number such that the
number plus the bias has a nonnegative
representation.
binary digit Also called a bit. One of the
two numbers in base 2 (0 or I) that are the
components of info rmation.

bit error rate The fr action in bits of a
message or collection of messages that is
incorrect.
block The minimum unit of information
that can be either present or not present in
the two-level hierarchy.
blocking assignment In Verilog, an assign
ment that com pletes before the execution of
the neA1: statem ent.
branch delay slot The slot directly aft er a
delayed branch instruction, which in the
M IPS architecture is filled by an instruction
that does not affect the branch.
branch not taken A branch where the
branch condition is false and the program
counter (PC) becomes the address of the in

struction that sequentially follows the
branch.
branch prediction A m ethod of resolving a
branch hazard that assumes a given out
com e fo r the branch and proceeds fro m that
assumption rather than waiting to ascertain
the actual outcome.
branch prediction buffer Also called
branch history table. A small memory that
is indexed by the lower portion of the ad
dress of the branch instruction and that
contains one or m ore bits indicating wheth
er the branch was recently taken or not.
branch taken A branch where the branch
condition is satisfied and the program
counter (PC) becomes the branch target.A11
unconditional branches are taken branches.
branch target address The address speci
fi ed in a branch, which becom es the new
program counter (PC) if the branch is tak
en. ln the M IPS architecture the branch tar

get is given by the sum of the offset field of
the instruction and the address of the in

struction following the branch.
branch target buffer A structure that cach
es the destination PC or destination instruc

tion for a branch. It is usually organized as a



Glossary

cache with tags, m aking it more costly than
a simple prediction buffer.
bu s In logic design , a collection of data
lines that is treated together as a single logi
cal signal; also, a shared collection oflines
with multiple sources and uses.
bu s master A unit on the bus that can ini
tiate bus requests.
bu s tran saction A sequence of bus opera
tions that includes a request and m ay in
clude a response, either of which m ay carry
data. A transaction is initiated by a single re
quest and may take many individual bus op
erations.
cache coherency Consistency in the value
of data benveen the versions in the caches of
several processors.
cache coherent NUMACC-NUMA A non

uniform memory access multiprocessor
that maintains coherence for all caches.
cach e memory A sm all, fast memory that
acts as a buffer for a slower, larger m em ory.
cach e miss A request for data from the
cache that cannot be filled because the data
is not present in the cache.
callee A procedure that executes a series of
stored instructions based on parameters
provided by the caller and then returns con
trol to the caller.
callee-saved register A register saved by
the routine making a procedure calL
caller The program that instigates a proce
dure and provides the necessary param eter
values.
caller-saved register A register saved by
the routine being called.
capacity miss A cache miss that occurs be
cause the cache, even with full associativity,
cannot contain all the block needed to satis

fy the request.
carrier signal A continuous sign al of a sin
gle frequency capable of being m odulated
by a second data-carrying signaL

cathode ray tube (CRT) display A display,
such as a television set, that displays an im
age using an electron beam scanned across a
screen.
central processor unit (CP U) Also called
processor. The active part of the computer,
which contains the datapath and control
and which adds numbers, tests numbers,
sign als I/O devices to activate, and so on.
clock cycle Also called tick, clock tick,
clock period, clock, cycle. The time for one
clock period, usually of the processor clock,
which nms at a constant rate.
clock cycles per instruction (CPI) Average
number of clock cycles per instruction for a
program or program fra gm ent.
clock period The length of each clock cycle.
clock skew The difference in absolute time
between the times when two state elements
see a clock edge.
clocking m ethodology The approach used
to determine when data is valid and stable
relative to the clock.
cluster A set of computers connected over
a local area network (LAN) that function as
a single large multiprocessor.
combinational logic A logic system whose
blocks do not contain m em ory and hence
compute the same output given the sam e
input.
commit unit The unit in a dynamic or out
of-order execution pipeline that decides
when it is safe to release the result of an op
eration to programmer-visible registers and
memory.
compiler A program that translates high
level language statem ents into assembly
language statem ents.
compulsory miss Also called cold start
miss. A cache miss caused by the first access
to a block that has never been in the cache.
conditional branch An instruction that re

quires the comparison of two values and
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that allows for a subsequent t ransfer of con
t rol to a new address in the program based
on the outcome of the comparison.
confli ct miss Also called collision miss. A
cache miss that occu rs in a set-associative or

direct-mapped cache when multiple blocks
compete for the sam e set and that are elim
inated in a fully associative cache of the
sam e Size.
con stellation A cluster that uses an SMP as
the building block.
context switch A changing of the internal
state of the processor to allow a different
process to use the processor that includes
saving the state needed to return to the cur
rently executing process.
cont rol The component of the processor
that commands the datapath, memory, and
I/O devices according to the instructions of
the program .
cont rol hazard Also called branch hazard .
An occurrence in which the proper instruc
tion cannot execute in the proper clock cy
cle because the instruction that was fetched
is not the one that is needed; that is, the flow
of instruction addresses is not what the
pipeline expected.
cont rol signal A sign al used for multiplex
or selection or for directing the operation of
a functional unit; contrasts with a data sig
nal, which contains information that is op
erated on by a functional unit.
cor relating predictor A branch predicto r
that combines local behavior of a particular
branch and global information about the
behavio r of som e recent number of execut
ed branches.
CPU execution time Also called CPU time.
The actual time the CPU spends computing
for a specific task.
crossbar network A network that allows
any node to communicate with any other
node in one pass through the network.

D flip -fl op A flip-flop with one data input
that sto res the value of that input signal in
the internal memory when the clock edge
occurs.
d ata hazard Also called pipeline data haz
ard. An occurrence in which a planned in
struction cannot execute in the proper clock
cycle because data that is needed to execute
the instruction is no t yet available.
d ata parallel ism Parallelism achieved by
having m assive data.
d ata rate Performance m easure of bytes
per unit time, such as GB/second.
d ata segm ent The segment of a UNIX ob
ject or executable file that contains a binary
representation of the initialized data used
by the program .
d ata t ransfer inst ruction A command that
moves data between m em ory and registers.
d atapath The component of the processor
that performs arithmetic operations.
d atapath elem ent A fun ctional unit used
to operate on or hold data within a proces
sor. In the M IPS implementation the datap
ath elements include the instruction and
data memories, the register file, the arith

metic logic unit (ALU), and adders.
d easserted signal A sign al that is (logically)
false, o r O.
decoder A logic block that has an II-bit in
put and 2/1 outputs where only one output
is asserted for each input combination.
defect A microscopic flaw in a wafer or in
patterning steps that can result in the failure
of the die containing that defect.
delayed branch A type of branch where the
instruction immediately fo llowing the
branch is always executed, independent of
whether the branch condition is true or false.
d esktop com puter A computer design ed
for use by an individual, usually incorporat
ing a graphics display, keyboard, and
mouse.
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die The individual rectangular sections
that are cut from a wafer, more informally
known as chips.
DIMM (dual inline m em ory mod ule) A
sm all board that contains DRAM chips on
both sides. SIMMs have DRAMs on only
one side. Both DlMMs and SIMMs are
m eant to be plugged into memory slots,
usually on a m otherboard.
di rect m emor y access (DMA) A mechanism
that provides a device controller the ability to
transfer data directly to or from the memory
without involving the processor.
direct-m apped cache A cache structure in
which each memory location is mapped to
exactly one location in the cache.
directory A repository for information on
the state of every block in m ain memory, in
cluding which caches have copies of the
block, whether it is dirty, and so on. Used
for cache coherence.
dispatch An operation in a micropro
grammed control unit in which the next mi
croinstruction is selected on thebasisofoneor
more fields of a macroinstruction, usually by
creating a table containing the addresses of the
target microinstmctions and indexing the ta
ble using a field of the macroinstmction. The
dispatch tables are typically implemented in
ROM or programmable logic array (PLA).
The term dispatch is also used in dynamically
scheduled processors to refer to the process of
sending an instruction to a queue.
dist r ibuted memory Physical m emory that
is divided into modules, with som e placed
near each processor in a multiprocessor.
distributed shared m emory (DSM) A
memory scheme that uses addresses to access
remote data when demanded rather than re

trieving the data in case it might be used.
dividend A number being divided.
divisor A number that the dividend is di

vided by.

don't-care term An element of a logical
function in which the output does not de
pend on the values of all the inputs. Don't

care terms may be specified in different ways.
double p recision A floating-point value
represented in two 32-bit words.
dynamic branch prediction Prediction of
branches at runtime using runtime infor
mation.
dynamic multiple issu e An approach to
implementing a multiple-issue processor
where m any decisions are made during exe
cution by the processor.
dynamic pipeline scheduling Hardware
support for reordering the order of instruc
tion execution so as to avoid stalls.
d ynamic rando m access m emor y
(DRAM) M em ory built as an integrated
circuit , it provides random access to any
location.
edge-t r iggered d ocking A clocking
schem e in which all state changes occur on
a clock edge.
embedd ed computer A computer inside
another device used for running one pre
determined application or collection of
software.
error-d etecting cod e A code that enables
the detection of an error in data, but not the
precise location , and hence correction of the
error.
Ethernet A computer network whose
length is limited to about a kilom eter. Orig
inally capable of transferring up to 10 mil
lion bits per second, nelver versions can run
up to 100 million bits per second and even
1000 million bits per second. It treats the
wire like a bus with multiple m asters and
uses collision detection and a back-off

schem e for handling simultaneous accesses.
exception Also called interrupt. An un
scheduled event that disrupts program exe
cution; used to detect overflow.
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exception enable Also called intermpt en 
able. A signal or action that controls wheth
er the process responds to an exception or
not; necessary for preventing the occur
rence of exceptions during intervals before
the processor has safely saved the state
needed to restart.
executable fil e A functional program in the
format of an object file that contains no un
resolved references, relocation information ,
symbol table, or debugging information.
exponent In the numerical representation
system of floating-point arithmetic, the val
ue that is placed in the eAvonent field.
external label Also called global labeLA la
bel referring to an object that can be refer
enced from files other than the one in which
it is defined.
fal se sharing A sharing situation in which
two unrelated shared variables are located in
the same cache block and the full block is ex

changed between processors even though the
processors are accessing different variables.
field programma ble devices (FPD) An in

tegrated circuit containing combinational
logic, and possibly memory devices, that is

configurable by the end user.
field programma ble gate array A config
urable integrated circuit containing bo th

combinational logic blocks and flip -flops.
finite state machine A sequential logic
functio n consisting of a set o f inputs and

outputs, a next-state functio n that maps the
current state and the inputs to a nelV state,

and an output functio n that maps the
current state and possibly the inputs to a set
o f asserted outputs.

firmware Microcode implemented in a
m em ory structure, typically ROM o r RAM.

flat panel display, liquid crystal display A
display technology using a thin layer o fliquid
polymers that can be used to transmit or block

light according to whether a charge is applied.

flip-flop A memory element fo r which the
output is equal to the value of the stored state
inside the element and fo r which the internal

state is changed o nly o n a clock edge.
floa ting point Computer arithmetic that

represents numbers in which the binary
point is not fixed .
floppy disk A portable fo rm of secondary

memory composed of a rotating mylar plat 
ter coated with a magn etic recording
materiaL
flush (in structio n s) To discard instruc

tio ns in a pipeline, usually due to an unex

pected event.
formal parameter A variable that is the ar
gument to a procedure or macro; replaced by

that argument o nce the macro is eAl'anded.
fo rward reference A label that is used be

fo re it is defined.
forwarding Also called bypassing. A meth
od of resolving a data hazard by retrieving the

missing data element fro m internal buffers
rather than waiting fo r it to arrive from
programmer-visible registers or mem ory.

fraction The value, generally between 0
and 1, placed in the fractio n fi eld.

frame pointer A value deno ting the loca
tio n of the saved registers and local variables
fo r a given procedure.

fully associative cach e A cache structure in
which a block can be placed in any location
in the cache.

fully connected network A network that
connects processor-memory nodes by sup

plying a dedicated communication link be
tween every node.
gate A device that implem ents basic logic

functio ns, such as AND or O R.
general-purpose register (GPR) A register

that can be used fo r addresses or fo r data
with virtually any instruction.
globa l miss ra te The frac tio n of references

that miss in all levels o f a multilevel cache.
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global pointer The register that is reserved
to point to static data.
guard The first of two eA1:ra bits kept on the
right during intermediate calculations of
floating-point numbers; used to improve
rounding accuracy.
handler Name of a software routine in
voked to "handle" an exception or interrupt.

handshaking protocol A series of steps used
to coordinate asynchronous bus transfers in
which the sender and receiver proceed to the
neA1: step only when both parties agree that
the current step has been completed.
hardware description language A pro
gramming language for describing hardware
used for generating simulations of a hard
ware design and also as input to synthesis
tools that can generate actual hardware.
hardware synthesis tools Computer-aided
design software that can generate a gate-lev
el design based on behavioral descriptions
of a digital system.
hardwired control An implem entation of
finite state machine control typically using
programmable logic arrays (PLAs) or col
lections of PLAs and random logic.
h exadecimal Numbers in base 16.
high-level programming language A por
table language such as C, Fortran, or Java
composed of words and algebraic notation
that can be translated by a compiler into as
sembly language.
hit rate The fraction of memory accesses
found in a cache.
hit time The time required to access a level
of the m em ory hierarchy, including the
time needed to determine whether the ac

cess is a hit or a miss.
hold time The minimum time during
which the input must be valid after the clock
edge.
hot swapping Replacing a hardware com 
ponent while the system is running.

ItO instru ctions A dedicated instruction
that is used to give a command to an 110 de
vice and that specifies both the device num
ber and the command word (or the location
of the command word in m em ory).
ItO rate Performance measure ofllOs per
unit time, such as reads per second.
ItO requests Reads or writes to 110 devices.
implementation Hardware that obeys the
architecture abstraction.
imprecise interrupt Also called imprecise
exception. Interrupts or exceptions in pipe
lined computers that are not associated with
the exact instruction that was the cause of
the interrupt or exception.
in-order commit A commit in which the

results of pipelined execution are written to
the programmer-visible state in the same
order that instructions are fetched.
input device A m echanism through which
the computer is fed information , such as the
keyboard or mouse.
instruction format A form of representa
tion of an instruction composed of fields of
binary numbers.
instruction group In IA-64, a sequence of
consecutive instructions with no register
data dependences am ong them.
instruction latency The inherent execu
tion time for an instruction.
instruction mix A measure of the dynamic
frequency of instructions across one or
many program s.
instruction set architecture Also called ar

chitecture. An abstract interface between
the hardware and the lowest level software
of a machine that encompasses all the infor
mation necessary to write a m achine
language program that will run correctly,
including instructions, registers, m em ory
access, 110, and so on.
instruction set The vocabulary of com 
mands understood by a given architecture.
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instruction -level parallelism The parallel
ism among instructions.
integrated circuit Also called chip. A device
combining dozens to millions of transisto rs.
interrupt An exception that comes from
outside of the processor. (Some architectures
use the teon interrupt fo r all exceptions.)
interrupt-driven 110 An I/O schem e that
employs interrupts to indicate to the pro
cessor that an I/O device needs attention.
interrupt handler A piece of code that is run
as a result of an exception or an interrupt.
issue packet The set of instructions that is
sues together in 1 d ock cycle; the packet
m ay be determined statically by the compil
er or dynamically by the processor.
issue slots The positions fr om which in
structions could issue in a given d ock cycle;
by analogy these correspond to positions at
the sta rting blocks for a sprint.
Java bytecod e Instruction from an instruc
tion set designed to interpret Java programs.
Java Vir tual Machine OVM ) The program
that interprets Java bytecodes.
j ump address table Also called jump table.
A table of addresses of alternative instruc

tion sequences.
jump-and-link instruction An instruction
that jumps to an address and simultaneous
ly saves the address of the following instruc
tion in a register ( $ r a in M IPS).
Just In Tinle Compiler (JIT) The name com 
monly given to a compiler that operates at
runtime, translating the interpreted code seg
ments into the native code of the computer.
kernel mod e Also called super visor mode.
A mode indicating that a running process is
an operating system process.
latch A memory element in which the out
put is equal to the value of the stored state
inside the element and the state is changed
whenever the appropriate inputs change
and the d ock is asserted.

latency (pipeline) The number of stages in
a pipeline or the number of stages between
two instructions during execution.
least recently used (LRU) A replacem ent
schem e in which the block replaced is the one
that has been unused for the longest time.
least significant bit The rightmost bit in a
M IPS word.
level-sen sitive d ocking A timing method
ology in which state changes occur at either
high or low clock levels but are not instanta
neous, as such changes are in edge-triggered
design s.
linker Also called link edito r. A system s
program that combines independently as
sembled machine language program s and
resolves all undefined labels into an execut
able file.
loader A system s program that places an
object program in main memory so that it is
ready to execute.
load-store machine Also called register
register machine. An instruction set archi
tecture in which all operations are benveen
registers and data memory may only be ac
cessed via loads or stores.
load-use data hazard A specific form of
data hazard in which the data requested by
a load instruction has not yet become avail
able when it is requested.
local area network (LAN) A network de
sign ed to carry data within a geographically
confined area, typically within a single
building.
local label A label referring to an object
that can be used only within the file in
which it is defin ed.
local miss rate The fraction of references to
one level of a cache that miss; used in multi
level hierarchies.
lock A synchronization device that allows
access to data to only one processor at a
time.
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lookup tables (lUIs) In a field program
mable device, the name given to the cells be
cause they consist of a small amount oflogic
and RAM.
loop unrolling A technique to get more
performance from loops that access arrays,
in which multiple copies of the loop body
are made and instructions from different it
erations are scheduled together.
machine language Binary representation
used for communication within a computer
system.
macro A pattern-matching and replace
ment facility that provides a simple mecha
nism to name a frequently used sequence of
instructions.
magnetic disk (also called hard disk) A
form of nonvolatile secondary memory
composed of rotating platters coated with a
magnetic recording material.
megabyte Traditionally 1,048,576 (220)
bytes, although some communications and
secondary storage systems have redefined it
to mean 1,000,000 (106) bytes.
memory The storage area in which pro
grams are kept when they are running and
that contains the data needed by the run
IlIng programs.
memory hierarchy A structure that uses
multiple levels of memories; as the dis
tance from the CPU increases, the size of
the memories and the access time both
IIlcrease.
memory-mapped I/O An I/O scheme in
which portions of address space are as
signed to I/O devices and reads and writes
to those addresses are interpreted as com
mands to the I/O device.
MESI cache coherency protocol A
write-invalidate protocol whose name is
an acronym for the four states of the pro 
tocol: Modified , Exclusive, Shared ,
Invalid.

message passing Communicating between
multiple processors by explicitly sending
and receiving information.
metastability A situation that occurs if a
sign al is sampled when it is not stable for the
required set-up and hold times, possibly
causing the sampled value to fall in the inde
terminate region bet"veen a high and low
value.
microarchitecture The organization of the
processor, including the major fun ctional
units, their interconnection, and control.
microcode The set of microinstructions
that control a processor.
microinstruction A representation of
control using low- level instructions, each
of which asserts a set of control signals
that are active on a given clock cycle as
well as specifies what microinstruction to
execute next.
micro-operations The RI SC-like instruc
tions directly executed by the hardware in
recent Pentium implementations.
microprogram A symbolic representation
of control in the form of instructions, called
microinstructions, that are executed on a
simple micromachine.
microprogrammed control A method of
specifying control that uses microcode rath
er than a finite state representation.
million instructions per second (MI PS) A
measurement of program execution speed
based on the number of millions of instruc
tions. MIPS is computed as the instruction
count divided by the product of the execu
tion time and 106.
minterms Also called product terms. A set
oflogic inputs joined by conjunction (AND
operations); the product terms form the
first logic stage of the programmable logic
array (PLA).
mirroring Writing the identical data to
multiple disks to increase data availability.
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miss penalty The time required to fetch a
block into a level of the memory hierarchy
fro m the lower level, including the time to
access the block, transmit it from one level
to the other, and insert it in the level that ex

perienced the miss.
miss rate The fraction of memory accesses
not fo und in a level ofthe memory hierarchy.
most significant bit The leftmost bit in a
M IPS word.
motherboard A plastic board containing
packages of integrated circuits or chips, in
cluding processor, cache, memory, and
connectors fo r I/O devices such as networks
and disks.
multicomputer Parallel processors with
multiple private addresses.
multicyde implementation Also called
multiple clock cycle implementation. An
implementation in which an instruction is
executed in multiple clock cycles.
multilevel cache A memory hierarchy with
multiple levels of caches, rather than just a
cache and main mem ory.
multiple issue A scheme whereby multiple
instructions are launched in I clock cycle.
multiprocessor Parallel processors with a
single shared address.
multistage network A network that sup
plies a sm all switch at each node.
NAND gate An inverted AND gate.
network bandwidth Infor mally, the peak
transfer rate of a network; can refer to the
speed of a single link or the collective t rans
fer rate of all links in the network.
next-sta te function A combinationalli.lllc
tion that , given the inputs and the current
state, determines the next state of a finite
state machine.
nonblocking assignment An assignment
that continues after evalua ting the right-hand
side, assigning the left-hand side the value
only after all right-hand sides are evaluated.

nonblockingcache A cache that allows the
processor to make references to the cache
while the cache is handling an earlier miss.
nonuniform m emory access (NUMA) A
type of single-address space multiprocessor
in which some m em ory accesses are faster
than others depending which processor asks
for which word.
nonvolatile m emory A form of m emory
that retains data even in the absence of a
power source and that is used to store pro
grams between runs. Magn etic disk is non
volatile and DRAM is not.
nonvolatile Storage device where data re
tains its value even when power is removed.
nop An instruction that does no operation
to change state.
NOR A logical bit-by-bit operation with
two operands that calculates the N OT of the
OR of the two operands.
NOR gate An inverted O R gate.
normalized A number in floating-point
no tation that has no leading Os.
NOT A logical bit-by-bit operation with
on e operand tha t inverts the bits; that is,
it replaces every 1 with a 0, and every 0
with a I.
object-oriented language A programming
language that is oriented around objects
rather than actions, o r data versus logic.
opcode The field that denotes the opera
tion and format of an instruction.
operating system Supervising program
that manages the resources of a computer
for the benefit of the programs that run on
that machine.
out-of-order execution A situation in

pipelined execution when an instruction
blocked from executing does not cause the
following instructions to wait.
output d evice A mechanism that conveys
the result of a computation to a user or an
o ther computer.



Glossary

overflow (floa ting-point) A situation in
which a positive exponent becomes too
large to fit in the exponent field.
package Basically a directo ry that contains
a group of related classes.
page fault An event that occurs when an ac
cessed page is not present in main memory.
page table The table containing the virtual
to physical address translations in a virtual
memory system. The table, which is stored in
memory, is typically indexed by the virtual
page number;each entry in the table contains
the physical page number for that virtual
page if the page is currently in memory.
parallel processing program A single pro
gram that runs on multiple processors si
multaneously.
PC- relative addressing An addressing re
gime in which the address is the sum of the
program counter (PC) and a constant in the
instruction.
physical address An address in main
m emory.
physically addressed cache A cache that is
addressed by a physical address.
pipeline stall Also called bubble. A stall
initiated in order to resolve a hazard.
pipelining An implementation technique
in which multiple instructions are over
lapped in execution, much like to an assem
bly line.
pixel The smallest individual picture ele
m ent. Screen are composed of hundreds of
thousands to millions ofpixels, o rganized in
a matrix.
poison A result generated when a specula
tive load yields an exception, o r an instruc
tion uses a poisoned operand.
polling The process of periodically check
ing the status of an I/O device to determine
the need to service the device.
precise interrupt Also called precise ex
ception. An interrupt or exception that is

alway associated with the correct instruc
tion in pipelined computers.
predication A technique to make instruc
tions dependent on predicates rather than
on branches.
prefetching A technique in which data
blocks needed in the future are brought into
the cache early by the use of special instruc
tions that specify the address of the block.
primary memory Also called m ain m em o
ry. Volatile memory used to hold programs
while they are running; typically consists of
DRAM in today's computers.
procedure A stored subroutine that per
fo rms a specific task based on the parame
ters with which it is provided.
procedure call frame A block of memory
that is used to hold values passed to a proce
dure as arguments, to save registers that a pro
cedure may modify but that the procedure's
caller does not want changed, and to provide
space for variables local to a procedure.
procedure frame Also called activation
record. The segm ent of the stack conta in
ing a procedure's saved registers and local
variables.
processor-m emory bus A bus that con
nects processor and memory and that is
short , generally high speed , and m atched to
the memory system so as to maximize
memory-processor bandwidth.
program counter (PC) The register con
taining the address of the instruction in the
program being executed
programmable array logic
(PAL) Contains a programmable and
plane followed by a fixed or-plane.
programmable logic array (PLA) A struc
tured-logic element composed of a set of in
puts and corresponding input complements
and two stages oflogic: the first generating
product terms of the inputs and input com
plements and the second generating sum
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terms of the product terms. Hence, PLAs im
plement logic functions as a sum ofproducts.
programmable logic d evice (PLO) An in
tegrated circuit containing combinational
logic whose function is configured by the
end user.
programmable ROM (PROM) A form of
read-only memory that can be programmed
when a designer knows its contents.
propagation time The time required for an
input to a flip -flop to propagate to the out
puts of the flip -flop.
protected A Java keyword that restricts in
vocation of a method to other methods in
that package.
protection A set of mechanisms for ensur
ing that multiple processes sharing the pro
cessor, memory, or I/O devices cannot

interfere, intentionally or unintentionally,
with one another by reading or writing each
other 's data. These mechanisms also isolate

the operating system from a user process.
protection group The group of data disks
or blocks that share a common check disk
or block.
pseudo instruction A common variation of
assembly language instmctions often treat
ed as if it were an instmction in its own
right.
publk A Java keyword that allows a meth
od to be invoked by any other method.
quotient The primary result of a division; a
number that when multiplied by the divisor
and added to the remainder produces the
dividend.
read-only m emor y (ROM ) A memory
whose contents are designated at creation
time, after which the contents can only be
read. ROM is used as stmctured logic to im
plem ent a set oflogic functions by using the
terms in the logic functions as address in
puts and the outputs as bits in each word of
the m em ory.

receive m essage routine A routine used
by a processor in machines with private
memories to accept a m essage from anoth
er processor.
recursive procedures Procedures that call
themselves either directly or indirectly
through a chain of calls.
redundant arrays of inexpensive disks
(RAID) An organization of disks that uses
an array of small and inexpensive disks so as
to increase both perfonnance and reliability.
reference bit Also called use bit. A field
that is set whenever a page is accessed and
that is used to implem ent LRU or other re
placement schemes.
reg In Verilog, a register.
register fil e A state elem ent that consists of a
set of registers that can be read and written by
supplying a register number to be accessed.
register renaming The renaming of regis
ters, by the compiler or hardware, to re
move antidependences.
register-use convention Also called proce
du re call convention. A software protocol
goveming the use of registers by procedures.
relocation info rmation The segment of a
UN IX object file that identifies instmc
tions and data words that depend on abso
lute addresses.
remainder The secondary result of a divi
sion; a number that when added to the
product of the quotient and the divisor pro
duces the dividend.
reorder buffer The buffer that holds results
in a dynamically scheduled processor until
it is safe to store the results to memory or a
register.
reservation station A buffer within a fun c
tional unit that holds the operands and the
operation.
response time Also called execution time.
The total time required for the computer to
complete a task, including disk accesses,
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memory accesses, I/O activi ties, operating
system overhead, CPU execution time, and
so on.
restartable instruction An instmction that
can resume execution aft er an exception is
resolved without the exception 's affecting
the result of the instruction.
return address A link to the calling site that
allows a procedure to retum to the proper
address; in MIPS it is stored in register $ r a.
rotation latency Also called delay. The
time required fo r the desired sector of a disk
to rotate under the read/write head; usually
assumed to be half the rotation time.
round Method to make the intermediate
floating-point result fit the floating-point
format; the goal is typically to find the near
est number that can be represented in the
format.
scientific notation A notation that renders
numbers with a single digit to the left of the
decimal point.
secondary memory Nonvolatile memory
used to store programs and data between
mns; typically consists of magnetic disks in
today's computers.
sector One of the segm ents that make up a
track on a magnetic disk; a sector is the
smallest amount of infor mation that is read
or written on a disk.
seek The process of positioning a read/write
head over the proper track on a disk.
segmentation A variable-size address
mapping scheme in which an address con
sists oftwo parts: a segment number, which
is mapped to a physical address, and a seg
ment offset.
selector value Also called control value.
The control sign al that is used to select one
of the inp ut values of a multiplexor as the
output of the multiplexor.
semiconductor A substance that does not
conduct electricity welL

send message routine A routine used by a
processor in machines with private memo
ries to pass to another processor.
sensitivity list The list of signals that spec
ifies when an always block should be
reevaluated.
separate compilation Splitting a program
across many files, each of which can be
com piled without knowledge of what is in
the other files.
sequential logic A group oflogic elements
that contain memory and hence whose val
ue depends on the inputs as well as the cur
rent contents of the memory.
Server A com puter used for mnning larger
programs fo r multiple users often simulta
neously and typically accessed only via a
network.
set-associative cach e A cache that has a
fixed number oflocations (at least two)
where each block can be placed.
set-up time The minimum time that the
input to a memory device must be valid be
fo re the clock edge.
sh ared memory A memory for a parallel
processor with a single address space, im
plying implicit communication with loads
and stores.
sign-extend To increase the size of a data
item by replicating the high-order sign bit
of the original data item in the high-order
bits of the larger, destination data item.
silicon A natural element which is a semi
conductor.
silicon crystal ingot A rod com posed of a
silicon crystal that is between 6 and 12 inch 
es in diameter and about 12 to 24 inches
long.
simple programmable logic d evice
(SPLD) Programmable logic device usually
containing either a single PAi or PLA.
single precision A fl oating-point value
represented in a single 32-bit word.
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single-cycle implementation Also called
single clock cycle implementation. An im
plementation in which an instruction is ex
ecuted in one clock cycle.
small computer systems interface (SCSI) A
bus lIsed as a standard for I/O devices.
snooping carne coherency A method for
m aintaining cache coherency in which all
cache controllers m onitor or snoop on the
bus to detennine whether or not they have a
copy of the desired block.
source language The high-level language
in which a program is originally written.
spatial locality The locality principle stat
ing that if a data location is referenced , data
locations with nearby addresses will tend to
be referenced soon.
speculation An approach whereby the
compiler or processor guesses the outcome
of an instruction to remove it as a depen
dence in executing other instructions.
split cache A scheme in which a level of the
m em ory hierarchy is composed of two in
dependent caches that operate in parallel
with each other with one handling instruc
tions and one handling data.
split transaction protocol A protocol in
which the bus is released during a bus trans
action while the requester is waiting for the
data to be transmitted , which frees the bus
for access by another requester.
stack pointer A value denoting the m ost
recently allocated address in a stack that
shows where registers should be spilled or
where old register values can be found.
stack segment The portion of mem ory
used by a program to hold procedure call
fram es.
stack A data structure for spilling registers
organized as a last-in-first-out queue.

standby spares Reserve hardware resourc
es that can immediately take the place of a
failed component.

state element A memory element.
static data The portion of memory that
contains data whose size is known to the
compiler and whose lifetime is the pro
gram's entire execution.

static method A method that applies to the
whole class rather to an individual object. It
is unrelated to static in C.
static multiple issue An approach to im
plementing a multiple-issue processor
where many decisions are made by the com 
piler before execution.
static random access m emory (SRAM ) A
memory where data is stored statically (as in
flip -flops) rather than dynamically (as in
DRAM). SRAMs are faster than DRAMs,

but less dense and more expensive per bit.
sticky bit A bit used in rounding in addi
tion to guard and round that is set whenever
there are nonzero bits to the right of the
round bit.
stop In IA-64, an explicit indicator ofa
break between independent and dependent
instructions.
stored-program concept The idea that in
structions and data of m any types can be
stored in m em ory as numbers, leading to
the stored program computer.
striping Allocation of logically sequential
blocks to separate disks to allow higher per
formance than a single disk can deliver.
structural hazard An occurrence in which a
planned instruction cannot execute in the
proper clock cycle because the hardware can
not support the combination of instructions
that are set to execute in the given clock cycle.
stru ctural specification Describes how a
digital system is organized in terms of a hi
erarchical connection of elem ents.
sum of products A form of logical repre
sentation that employs a logical sum (OR)
of products (ten ns joined using the AND
operator).
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supercomputer A class of computers with
the highest performance and cost; they are
configured as servers and typically cost mil
lions of dollars.
superscalar An advanced pipelining tech 
nique that enables the processor to execute
more than one instruction per clock cycle.
swap space The space on the disk reserved
for the full virtual mem ory space of a process.
switch ed n etwork A network of dedicated
point-to-point links that are connected to
each other with a switch.
symbol table A table that matches names
oflabels to the addresses of the memory
words that instructions occupy.
symmetric multiprocessor (SMP) or
uniform m emory access (UMA) A multi
processor in which accesses to main memo
ry take the sam e amount of time no matter
which processor requests the access and no
matter which word is asked.
synchronization The process of coordi
nating the behavior of two or more process
es, which may be running on different
processors.
synch ronizer failure A situation in which a
flip -flop enters a metastable state and where
some logic blocks reading the output of the
flip -flop see a 0 while others see a 1.
synchronous bus A bus that includes a clock
in the control lines and a fixed protocol for
communicating that is relative to the clock.
synchronous system A memory system
that employs clocks and where data signals
are read only when the clock indicates that
the signal values are stable.
system call A special instruction that trans
fers control from user mode to a dedicated
location in supervisor code space, invoking
the exception m echanism in the process.
system CPU time The CPU time spent in
the operating system performing tasks on
behalf of the program.

system performance evaluation coopera
tive (SPEC) benchmark A set of standard
CPU-intensive, integer and floating point
benchmarks based on real programs.
system s software Soft""are that provides
services that are commonly useful , includ
ing operating systems, compilers, and as
semblers.
tag A field in a table used for a m em ory hi
erarchy that contains the address informa
tion required to identify whether the
associated block in the hierarchy corre
sponds to a requested word.
temporal locality The principle stating
that if a data location is referenced then it
will tend to be referenced again soon.
terabyte Originally 1,099,5 11 ,627,776 (240)
bytes, although some communications and
secondary storage systems have redefined it to
mean 1,000,000,000,000 (1012) bytes.
text segm ent The segm ent of a UN IX ob
ject file that contains the m achine language
code for routines in the source file.
three Cs model A cache model in which all
cache misses are classified into one of three
categories: compulsory misses, capacity
misses, and conflict misses.
tournament branch predictor A branch pre
dictor with multiple predictions for each

branch and a selection mechanism that chooses
which predictor to enable for a given branch
trace cadle An instruction cache that
holds a sequence of instructions with a given
starting address; in recent Pentium imple
mentations the trace cache holds microoper
ations rather than lA-32 instructions.
track One of thousands of concentric cir

cles that m akes up the surface of a magn etic
disk.
transaction processing A type of applica
tion that involves handling small short op
erations (called transactions) that typically
require both I/O and computation. Trans-
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action processing applications typically
have both response time requirements and a
performance measurement based on the
throughput of transactions.
tran sistor An on/off switch controlled by
an electric sign aL
translation-Iookaside buffer (TLB) A
cache that keeps track of recently used ad
dress mappings to avoid an access to the
page table.
underflow (floating- point) A situation in
which a negative exponent becom es too
large to fit in the exponent fi eld.
units in the last place (ulp) The number of
bits in error in the least significant bits of the
significand between the actual number and
the number that can be prepresented.
unmapped A portion of the address space
that cannot have page faults.
unresolved refereO(;e A reference that re
quires m ore information from an outside
source in order to be complete.
untaken branch One that falls through to
the successive instruction. A taken branch is
one that causes transfer to the branch target.
user CPU time The CPU time spent in a
program itself.
vacuum tube An electronic component,
predecessor of the transistor, that consists
of a hollow glass tube about 5 to 10 cm long
from which as much air has been removed
as possible and which uses an electron beam
to transfer data.
valid bit A field in the tables of a memory
hierarchy that indicates that the associated
block in the hierarchy contains valid data.
vector processor An architecture and com 
piler model that was popularized by super
computers in which high-level operations
work on linear arrays of numbers.
vectored interrupt An interrupt for which
the address to which control is t ransferred is

determined by the cause of the exception.
verilog One of the two m ost common
hardware description languages.
very large scale integrated (VLSI)
circuit A device containing hundreds of
thousands to millions of transistors.
VHDL One of the two most common
hardware description languages.
virtual address An address that corre
sponds to a location in virtual space and is
translated by address mapping to a physical
address when memory is accessed.
virtual machine A virtual computer that
appears to have nondelayed branches and
loads and a richer instruction set than the
actual hardware.
virtual memory A technique that uses
main memory as a "cache" for secondary
storage.
virtually addressed cache A cache that is
accessed with a virtual address rather than a
physical address.
volatile m emor y Storage, such as DRAM ,
that only retains data only if it is receiving
power.
wafer A slice from a silicon ingot no more
than 0.1 inch thick, used to create chips.
weighted arithmetic mean An average of
the execution time of a workload with
weighting factors designed to reflect the
presence of the programs in a workload;
computed as the sum of the products of
weighting factors and execution times.
wide area network A network extended
over hundreds ofkilom eters which can span
a continent.
wire In Verilog, specifies a combinational
sign aL
word The natural unit of access in a com 
puter, usually a group of 32 bits; corre
sponds to the size of a register in the M IPS
architecture.
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workload A set of programs run on a com 
puter that is either the actual collection of
applications run by a user or is constructed
from real programs to approximate such a
m ix. A typical workload specifies both the
programs as well as the relative frequencies.
write buffer A queue that holds data while
the data are waiting to be written to memory.
write-back A scheme that handles writes
by updating values only to the block in the
cache, then writing the modified block to
the lower level of the hierarchy when the
block is replaced.

write- invalidate A type of snooping proto
col in which the writing processor causes all
copies in other caches to be invalidated be
fore changing its local copy, which allows it
to update the local data until another pro
cessor asks for it.
write-through A schem e in which writes
always update both the cache and the mem 
ory, ensuring that data is always consistent
between the two.
yield The percentage of good dies from the
total number of dies on the wafer.
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Burks, Arthur \Y., 48, CDI.7:3, CD3.10: I
Buses, 291-292

advantages/disadvantages of, 581
asynchronous, 582-583
backplane, 582
basics of, 581-585
defined,581,BI8-19
master, 594
Pentium 4, 585-587
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processor-memory or I/O, 582
shared,322-324

synchronous, 582-583
transaction, 582

Bypassing, 376-377
Byte addressing, 56
Byte order, A4J

c
c

bit fields, IMD2:13- 14

converting floating points to MIPS
3£Sembly code, 209-213

development of, CD2.19:7
logical operations, 68-71
overflows, 172
procedures, 81-88
sort example, 121-129
strings, 92-93
translating hierarchy, 106-111
while loop in, 74-75

Cache coherency
multiprocessor, CD9.3: 12- 20

protocols, CD9.3:13, 16--18
snooping, CD9.3:13
synchronization using, CD9.J: 18-20

Cache-coherent nonuniform memory
access (CC-NUMA), CD9.4:22

Caches
accessing, 47~82

associativity, 499--502

basics of, 473-491
bits in, 479
blocks, locating in, 502-504
blocks used to reduce misses,

496-502
defined,473
direct-mapped, 474-475, 497
example of simple, 474-476

fully associative, 497

lntrinsity FastMATH processor
example, 485-487

mapping address to multiword
block,480

memory, 20
memory system design to support,

487-491
misses, handling, 482--483, 496--502
multilevel,492,505-510

nonblocking, 445, 548
performance, measuring and

improving, 492-51 I

performance with increased clock
rate, 495-496

reducing miss penalty using multi-
level,505-509

set associative, 497, 504
split, 487
tags, 475, 504

three Cs model, 543-545
valid bit, 476
writes, handling, 483--485

Callee, 80, A23
Caller, 80, A23
Cal TSS, CD7.9:8

Capacity misses, 543
Carnegie Mellon University, CD6.13:5
Carrier signal, CD8.3:8

Carrylookahead, B38-47
Carry save adders, 181, lMD3:17-18
Case statement, 76

Cathode ray tubes (CRTs), 18
Cause register, 342
CauseWrite, 342

Central processor unit (CPU), 20
execution time, 244-245
performance, 245, 246--253

time, 244-245
Cerf, Vint,CD8.11:7
Chamberlin, Donald, CD8.11:5

Characters, Java, 93-95
Chavin de Huantar, 236-237
Chips, 20, 30

Clearing words in memory
arrays and, 130-132
comparing both methods, 133-134
pointers and, 132-133

Clock cycles, 245, 847
finite state machines, 332

multicycle implementation, 31S--340
single-cycle implementation,

300-318
Clock cycles, breaking execution into

arithmetic-logical instruction,

327,329
branches, 327-328
decode instruction and register fetch,

326--327
fetch instruction, 325-326
jump, 328
memory read, 329

memory reference, 327, 328
Clock cycles per instruction (CPI),

248-251
in multicycle CPU, 330-331

Clocking methodology, 290-292, 847
edge-triggered, 290-291, B47

level-sensitive, B74-75
timing methodologies, B72-77

Clock period, 245, B47

Clock rate, 245
Clocks, B47-49
Clock skew, B73-74

CLU, CD2.19:7
Clusters, CD9.1:4, CD9.5:25-26
CMOS (Complementary Metal Oxide

Semiconductor), 31, 264
Coarse-grained multithreading,

CD9.7:31-33
Cobol, CD2.19:6, CD8.11:4
Cocke, John, CD2.19:8, CD6.13:2, 4
Codd, Ted, CD8.11:4, 5
Code generation, CD2.12:9

Code motion, 119
Code size, fallacy of using, IMD4:18- 19
Coherence problem, 595

Cold-start misses, 543
Collision misses, 543
Color, 292

Colossus, CD 1.7:3
Combinational control units, C4---8
Combinational elements, 289

Combinational logic, B5, 8-20, 23-25
Compact disks (CDs), 25
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Compaq Computers, CD8.11:6
Comments, 50
Commit unit, 443
Common subexpression

elimination, 117

Compilers
C,107
functions of, 11-12
historical development of,

CD2.19:7-8
how they work, CD2.12:1 -9

Java, 114-115
optimization, 116-121
structure of, 116
translating high-level language into

instructions that hardware can
execute,12-15,A5--6

Compulsory misses, 543

Computers
applications, 5- 7
components of, 15-16
historical development of,

CD1.7:1- 1O
organization of, 16
what it looks like inside, 18-22

Computer technology, advances in, 4
Conditional branches, 72-73
Condition codes, 140
Conflict misses, 543
Constant folding, 118
Constant propagation, 118
Constants, 57, 58

loading 32-bit, 96
Constellations, CD9.5:26
Context switch, 530
Control,20

hardwired, 348, CD5.12:2
pipelined,399-402

Control Data Corp. (CDC), CDI.7:5,
CD6.13:2

Control hazards. See Branch hazards
Controller time, 570
Control signals

list of, 306, 324
write, 290, 294

Colltrol unit
adding, 299
combinational, C4--8
designing main, 303-312
exceptions, 340- 346
fallacies and pitfalls, 350--352
finite state machines, 330, 331-340,

C8-20
interrupts, 340--341
jumps,313-314
microprogramming, 330,

CD5.7:4-10
multicycle implementation, 318-340
single-cycle implementation,

300-318
Coonen, Jerome T., CD3.10:7
Copy back, 521
Copy propagation, 118
Corbato, John, CD7.9:7, II
Correlating predictors, 423
Cosmic Cube, CD9.11 :52

C++,CD2.19:7
CPU. See Central processor unit
Cray, Seymour, CD1.7:5, CD3.1O:4,

CD6.13:2
Cray Research, Inc., CDI.7:5,

CD3.1O:4-5, CD6.13:5
Critical word first, 482
Crossbar network, CD9.6:30
CTSS (Compatible Time-Sharing Sys-

tem), CD7.9:7- 11
Culler, David, 157
Culler Scientific, CD6.13:4
Cutler, David, CD7.9:9
Cydrome Co., CD6.13:4, 5
Cylinder, use of term, 569

D

Dahl, Ole-Johan, CD2.19:7
Databases, history of, CD8.11:4-5
Data General, CD8.11:6
Data hazards

defined,376--379
forwarding, 402--412

1-4

load-use, 377
stalls, 413-416

Data parallelism, CD9.11:48
Datapath,20

building a, 292-300
elements, 292
fallacies and pitfalls, 350--352
jumps, 313-314
logic design conventions, 289-292
multicycle implementation, 318-340
operation of, 306-312
pipelined,384-399
single-cycle implementation,

300-318
Data rate, 598
Data segment, A13, 20
Data selector, 286
Data transfer instructions, 54-55
Data types, Verilog, B21-22
Dawson, Todd, 157
Dead code elimination, 118
Dead store elimination, 118
Deasserted signal, 290, B4
Deassert signal, 290
Debugging information, A13
DEC (Digital Equipment Corp.),

CDI.7:5, CD4. 7:2, CD7.9:9,

CD8.11:11
Decimal numbers, 60,161

converting binary numbers to, 164

converting binary to decimal floating
point, 196

dividing, 183
multiplying, 176--177
scientific notation, 189

Decision-making instructions, 72-74
Decoders, B8-9
Decoding, 333
Dedicated register, CD2.19:2
Defects, 30
Delayed branch, 297, 382, 418-419, A41
Dell Computer Corp.

SPEC CPU benchmarks, 254-255,

259-266
SPECweb99 benchmark, 262-266
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DeMorgan's laws, 86
DeMorgan's theorems, 811
Dependability, disk, 569-580
Dependence detection, 406
Dependent instructions, 403
Desktop computers,S

performance benchmarks, 255
Destination register, 64
Deutsch, Peter, CD7.9:8
D flip-flop, 851-53
Dhrystone synthetic benchmark,

CD4.7:2, IMD4:11- 12
Dies, 30
Digital cameras, 236- 237,603--606
Digital signal-processing extensions, D19

DIMMs. See Dual inline memory modules
Directives, data layout, A 14---15
Direct-mapped cache, 474--475, 497

Direct memory access (DMA), 594-596
Directories, CD9.4:24
Dirty bit, 521
Disabled people, technology for, 366- 367
Disk(s)

arrays, IMD8:2

controller, 570, 571
drives, 19, 20
fallacies and pitfalls, 606-609

read time, 570-571
storage and dependability, 569-580,

CD8.11:1-4
Dispatch, 350
Displacement addressing, 100

Distributed block-interleaved parity
(RAID 5), 578

Distributed memory, CD9.4:22
Distributed shared memory (DSM),

CD9.4:24
divide, 188-189
Dividend,183
divide unsigned, 188--189

Division, 183-189
Divisor, 183
Don't-care terms, 303, B16-18

Double, 192
Double extended precision, 218

Double precision, 192

Double data rate synchronous DRAMs
(DDD SDRAMs), 490-491

DRAM. See Dynamic random access
memory

Dual inline memory modules
(DIMMs),22

DVD drive, 19,20

DVDs (digital video disks), 25
Dynamically linked libraries (DLLs),

112-114
Dynamic branch prediction, 382,

421-423
Dynamic data, A22
Dynamic multiple issue, 433, 442-445

Dynamic pipeline scheduling, 443--445

Dynamic random access memory
(DRAM), 20, 469, 487-488,

49D-491,513,B60,63-65
historical development of, CD7.9:3-4

E

Early restart, 481-482

Eckert, J. Presper, CD 1.7:1,2,4, CD7.9: I
Eckert-Mauch1y Computer Corp., CDI.7:4
Edge-triggered clocking methodology,

290-291, B47
EDSAC (Electronic Delay Storage Auto

matic Calculator), CDI.7:2,

CD5.12:1
EDVAC ( Electronic Discrete Variable

Automatic Computer), CDI.7:1-2

EEMBC benchmarks, 255, IMD4: 17- 18
802.11 standard, CD8.3:9-10
Eispack, CD3.1O:3
Elaborations, 8

Elapsed time, 244
Ellison, Larry, CD8.11:5
Embedded computers, 6-8, CDI.7:8--9,A7

performance benchmarks, 255,

IMD4:17- 18
EMC,CD8.11:6

Emulation, CD5.12:1-2
Encoder, B9

Energy efficiency problems, 263- 265
Engelbart, Doug, 16

ENIAC (Electronic Numerical Integrator
and Calculator), CDI.7: 1- 2, 3,

CD7.9:1
Environmental problems, tedUlology

and,156-157
EPc\Vrite, 342

Error-correcting codes, B65
Error-detecting codes, B65--67
Ethernet, 26, CD8.3:5, CD8.11 :7-8,

IMD8:1 - 2
Evolution versus revolution,

CD9.1O:45-47
Exception enable, 532

Exception program counter (EPC), 173,
341- 342,429-431

Exceptions,173,A33-38

address, 342-343
control checking of, 343-346
defined,340-341

handling of, 341-343, A35, 36-38
imprecise, 432
pipeline, 427-432

Executable file, 109
Execution time, 242, 244---245

use of total, 257- 259

Executive process, 529
Exponent, 191
Extended accumulator, CD2.19:2

External labels, A II

F

Failures
mean time between failures

(MTBF),573
mean time to failure (MTTF), 573, 574
mean time to repair (MTTR), 573, 574
reasons for, 574

synchronizer, B76
Fallacies, 33
False sharing, CD9.3: 14

Fanout, 32
Fast carry, B38-47
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Fetch-on-missfwrite,484
Field programmable devices (FPDs),

877-78
Field programmable gate arrays

( FPGAs),877

Fields
defined,61
M IPS, 63--64

File system benchmarks, 598-599
Fine-grained multithreading,

CD9.7:31-33
Finite state machines, 330, 331-340,

847-72, C8-20
Firewire, 582, 583
Firmware, CD5.12:2

Fisher, Josh, CD6.13:4
Fishman, Harvey, 366-367
Flags, 140

FLASH , 23, 25
Flat-panel display, 18
Flip-flops, 290, 850--53

Floating point, 189, 191-220
addition, 197-201

converting binary to decimal floating
point, 196

defined, 191
historical development of,

CD3.1O:1-9
IA-32,217-220
M IPS, 206- 213

multiplication, 202- 205
representation, 191-197
rounding, 214--215

Floating Point Systems, CD6.13:4, 5
Floating vectors, CD3.10:2
Floppy disks, 25, CDI.7:6
Floppy drives, 25

Flush instructions, 418
Flynn, Michael, CD6.13:3
Formal parameter,Al6

Forrester, J., CD7.9: I
FORTRAN, CD2.19:6, 7-8

overflows, 172, 173

Forwarding, 376--377,402--412, CD6.7:3
Forward reference, All

Fraction, 191, 193
Frame buffer, 18

Frame pointer, 86
Front end of compiles, CD2.12:1-9
Fully associative cache, 497

Fully connected network, CD9.6:28
Function code, 63

G

Gates, 87-8, C4--8

Gateways, CD8.3:6
General-purpose register (GPR), 135,

138,CD2.19:2-3
Generate, carry lookahead, 839--47

Geometric mean, IMD4:9-11
Gibson, Garth, CD8.11:6

Global common subexpression elimina-
tion,118

Global labels, All
Global miss rate, 509

Global optimization, 117-121,

CD2.12:4-6
Global pointer, 85

Goldstine, Herman H., 48, CD 1.7:1 - 2, 3,

CD3.1O:1
Google, CD9.8:34---39

News, 465

Gosling, James, CD2.19:7
Graph coloring, CD2.12:7-8

Graphics display, 18

Gray, Jim, CD8.11:5
Gray-scale display, 18

Guard,214-215

H

Half words, 94
Hamming code, 867
Handler, 533

Handshaking protocol, 583-584
Hard disk, magnetic, 23
Hard drive, 19,20

Hardware
description language, 820-25

1-6

functions of, IS
performance affected by, 10

synthesis tools, 821
Hardwired control, 348, CD5.12:2
Harvard architecture, CD 1.7:3

Hazards
See a/50 Pipelining hazards
detection unit,413--415

Heap,allocating space for data on, 87-88
Heat sink, 22
Held, Gerald, CD8.11:5
Hewlett-Packard, CD2.19:5,

CD3.1O:6-7, CD4.7:2
PA-RISC 2.0, D34-36

Hexadecimal-binary conversion table, 62

Hi,181
High-level optimization, 116-117

High-level programming languages
advantages of, 14 -IS
architectures, CD2.19:4
defined,13

translating into instructions that
hardware can exeulte, 12- 15

Hit(s)

Average Memory Access Time
(AMAT), IMD7: I

defined,470

rate/ratio, 470--471
time, 471

Hitachi, SuperH , D39-40

Hold time, 8 53
Hot swapping, 579
Hubs, CD8.3:7

I

IBM
disk storage, CD8.11: 1--4
early computers, CDI.7:5
floating points, CD3.1O:2, 3--4

floppy disks, CDI.7:6, CD8.11:2
history of programming languages,

CD2.19:6
microprogramming, CD5.12: 1-2
multiple issue, CD6.13:4
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PowrPC, 032- 33, IMD2: I7-20,
IMD3:1O

RAID, CD8.l1:6
Stretch computer, CD6.13: 1- 2
virtual memory, CD7.9:5-7, 10
Winchester disks, CD8.11 :2, 4

IEEE 754 f1oation-point standard,
193---196, CD3.10:7-9

If-then-else statements, compiling into
conditional branches, 72-73

Immediate addressing, 100
Implementation, 22, 24
Imprecise interrupts/exceptions, 432,

CD6.13:3
IMS, CD8.11:4
Induction variable elimination, 119-120
Infinity, 193
Ingres, CD8.11:5
In-order commit, 445
In-order completion, 445
Input devices, 15,566, AJ8--40
Input don't cares, B16
Input operation, 582
Inputs, asynchronous, B75-77
Instruction decode, 385, 390, 392, 402
Instruction encoding, MIPS f1oating-

point, 208
Instruction group, 440
Instruction fetch, 385, 388-389, 392, 400
Instruction format, 61
Instruction latency, 452
Instruction-level parallelism (I LP),

CD9.7:33,433, CD6.13:5
Instruction mix, 253
Instruction register (IR), 319, 321
Instruction sets

addressing, 95-1 05
architecture, 22, 24
compiler optimization, 116-121
decision-making instructions, 72-74
defined,48
designing, for pipelining, 374-375
historical development of,

CD2.19:1-9
logical operations, 68-71

operands of hardware, 52--60
operations of hardware, 49-52
to process text, 90-95
representing instructions to com-

puter, 60-68
styles, IMD2:7- 9
supporting procedures, 79-90
translating and starting a program,

106--115
Integers, signed versus unsigned, 165
Integrated cirruits (ICs)

costs, IMDI:I- 2
defined, 20, 27-28
how they are manufactured, 28--33

Integrated Data Store (IDS), CD8.11:4
Intel, CD 1.7:5, 6, CD8.11:8

See a/50 Pentium 4
8086,135,CD2.19:2,4,5
8087,135, CD3.1O:7
80286,135, CD2.19:5
80386, CD2.19:5
80486,135, CD2.19:5
iSC 860 and Paragon, CD9.11 :52
Pentium and Pentium Pro, 135,

CD2.19:5,448-450
SPEC CPU benchmarks, 254--255,

259-266
SPECweb99 benchmark, 262-266

Intel IA-32, 59
addressing modes, 138
complexity of, 347-348
conclusions, 142- 143
fallacies and pitfalls, 143-144
floating point, 217-220
historical development of, 134-137,

CD2.19:4-5
instruction encoding, 140-142
integer operations, 138-140
registers, 137- 138

Intel IA-64, 435, CD5.12:3
architecture, 440-442, CD6.13:4-5

Intel Streaming SIMD Extensions (SSE),
135-136

Intel Streaming SIMD Extension 2
(SSE2),136

floating points, 220
Interface message processor (IMP),

CD8.3:5
Interference graph, CD2.12:7
Interleaving, 489
Intermediate representation,

CD2.12:2-3
Internet, CD8.11:7

news services, 464-465
Internetworking, CD8.3:1-4
Interrupt-driven I/O, 590-591
Interrupts,173,A33-38

handler, A33
imprecise, 432, CD6.13:3
priority levels, 591 - 593
use of term, 340-341

Intrinsity FastMATH processor example,
485-487,524

Invalid operations, 193
I/O

buses, 582
communicating with processor,

590-591
designing a system, 60Q.-603
devices, 15,566, A38-40
digital camera example, 603--606
diversity of, 568
fallacies and pitfalls, 606--609
giving commands to devices, 589-590
historical development of,

CD8.11:1-9
instructions, 590
interfacing devices to processor, mem-

ory, and operating system, 588- 596
interrupt-driven, 590-591
interrupt priority levels, 591-593
measuring performance, 567
memory-mapped,589-590
performance, 597--600
rate, 598
requests, 568
transferring data between devices and

memory, 593-595
Issue packet,435
Issue slots, 434
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J

Java
bytecode, 114, CD2.14: I, 2
characters and strings, 93-95
compiling, CD2.14:4-6
development of, CD2.19:7
interpreting, CD2.14:1 - 3
invoking methods, CD2.14:6
logical operations, 68-71
translating hierarchy, 114-115
sort and swap, CD2.14:6--13
while loop, CD2.14;3-4, 5--6

Java Virtual Machine (JVM), 115,
CD2.14:3

Jhai Foundation, PC network, 44-45
Jobs, Steven, CDI.7;5
Johnson, Reynold B., CD8.11;1

Joy, Bill, CD7.9:9
J-type,97
jump, 73, 77, 80, 89, 296

addressing in, 97-99
datapath and control and, 3 I3-3 14,

321,328,336
Jump address table, 76, 77,

IMD2:15-16
jump-and-link, 79--80, 89
jump register, 76
Just-in-Time (lIT) compiler, 115

K

Kahan, William, CD3.1O:5-7, 8, 9
Kahn, Robert, CD8.11:7
Karnaugh maps, BI8
Katz, Randy, CD8.11:6
Kay, Alan, CD2.19:7
Kernel benchmarks, CD4.7:2, IMD4:7-8
Kernel process, 529
Knuth, Donald, CD2.19:8

L

Labels, externallglobal and local, All
Lampson, Butler, CD7.9:8, II

Laptop computers, performance versus
power versus energy efficiency,

263-265
Latches, B59-53
Latency

instruction, 452
pipeline, 383

Leaf procedures, 83, 93
Least recently used (LRU ), 504,

518,519
Least significant bit, 161
Level-sensitive docking, B74-75
Link editor, 109
Linkers, 108-1 11,A4, 18-19
Linpack, CD3.1O;3, CD4.7:2
Linux, 11, CD7.9;11
Liquid crystal displays (LeDs), 18
Lisp,CD2.19:6
Little Endian, 56, A43
Live range, CD2.12;7
Livermore Loops, CD4.7:2
LO,181
Load, 54, 57

advanced,442
byte,91,164
byte unsigned, 164
half,94,164
halfword unsigned, 164
linked, CD9.3: 19
locked, CD9.3:19
upper immediate, 95
word, 54, 57, 59, 294, 300-3 18

Loader, 112
Loading,AI9-20
Loading 32-bit constant, 96
Load-use data hazard, 377
Local area networks (LANs), 26,

CD8.3:5-8, CD8.11 :7-8
Locality, principle of, 468-469
Local labels, All
Local miss rate, 509
Local optimization, 117-121,

CD2.12;3-4
Lock, CD9.1:5
Lock variables, CD9.3; 18

Logic
arrays of logic elements, 818-19
combinational, 85, 8-20, 23-25
equations, 86--7, C 12-1J
sequential, 85, 55-57
two-level,810-14

Logical operations, 68-71, 86,
IMD2;21-22

Logic design conventions, 289-292
Long-haul networks, CD8.3:5
Long instruction word (LIW),

CD6.13:4
Lookup tables (LUTs), 878
Loops, 74-75

branch, 421-422
unrolling, 117,438-440

Lorie, Raymond, CD8.11:5

M

Machine code, 61
Machine language, 61, A3

decoding, 100--104
MIPS floating-point, 207
object file and, 108

MacOS, II
Macros,A4,15-17
Magnetic disks, 23, 569

differences between main memory
and,24

memory hierarchies and, 469, 513
Magnetic resonance imaging (MRI),

622--623
Magnetic tape, 25
Main memory, 23

differences between magnetic disks
and,24

Make the common case fast, 267, 285
Mark machines, CD 1.7:3
Mask,70
Mauchly, John, CD 1.7: 1,2,4
McCarthy, John, CD2.19:6, CD7.9:7, II
McKeeman, William, CD2.19:8
Mealy, George, 338
Mealy machine, 338, 340, 868
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Mean time between failures (MTBF), 573
Mean time to failure (MTTF), 573,

574,606
Mean time to repair (MTTR), 573, 574
Megabyte, 23

Memories, 290
Memory,S

access, 385, 390, 392, 402

allocation, 87-88
Average Memory Access Time

(AMAT), IM07:!
board,20
cache, 20
cards, 25
consistency model, CD9.3: 15

defined, 20, 23
direct memory access (DMA),

594-596
distributed, CD9.4:22, 24
dynamic random access (DRAM), 20,

469,487-488,490-491,513,860,
63--65

historical development of, CD7.9: 1-12
main, 23

mapping, 512
nonvolatile, 23
operands, 54-55
primary, 23
random access (RAM), 20
read only (ROM ), 814, 16, C13-19
secondary, 23
shared, CD9.! :4-5, CD9.4:22, 24
static random access (SRAM), 20,

469,857--60
transferring data between devices

and,593-595
unit, 292

usage, A20-22
virtual,511-538
volatile, 23

Memory data register (MDR), 319, 328

Memory elements
latches, flip-flops, and register files,

849-57
SRAMs and DRAMs, 857-67

Memory hierarchy
caches, 473-51 I

defined,469
fallacies and pitfalls, 550-552
framework for, 538-545

historical development of, CD7.9:S--7
levels, 470-471
methods for building, 469-470

overall operation of, 527-528
Pentium P4 and AMD Opteron,

546-550
trends for, 553-555

virtual,511-538

Memory-mapped I/O, 589-590
Memory-memory instructions, IMD2:8

Memory reference, 327, 328, 334-335
MESI cache coherency protocol,

CD9.3;16,18

Message passing, CD9.1 :6, CD9.4:22- 23
Metastability, 875-76
MFWPS (million floating-point opera-

tions per second), IMD4: 15-17
Microarchitecture,448
Microcode, 348

Microinstructions, 348--349, CD5.7;1
fields, CD5.?;3, 5-9
format, CD5.7:2--4

Microoperations, 348

Microprocessors
first, CDI.7;5

future of, CD9.10;44-45

Microprogramming
controller, 348, CD5.12:2

creating a program, CD5.7;4-1 0
defined, 330, 346
fallacies and pitfalls, 350-352
historical development of,

CD5.12:1-4
implementing the program,

CD5.?;10-12

microinstruction format defined,
CD5.7;2-4

simplifying design with, CD5.7:1-13

Microsoft Corp., CDI.7:5, CD7.9;1 0,
CD8.11:5,6

Minicomputers, first, CD 1.7:5
Minterms, 812

M IPS, 49
addressing,9S--105
allocation of memory, 87

arithmetic logic unit (ALU), 832-38
compiling statements into, 50-51
decision-making instructions, 72- 73
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subtract unsigned, 172
summary of, 51, 59, 67,71,77,89,

105,169,175,190,207,226-228
xor, IMD2:21-22

M IPS assembly language, R2000
addressing modes, A45-47
arithmetic and logical instructions,

A51-57
assembler syntax, A47-49
branch instructions, A59-63
comparison instructions, A57-59
constant manipulating instructions,A57
data movement instructions,

A70- 73
encoding instructions, A49
exception and interrupt instructions,

A80-81
floating-point instructions, A73-80
instruction format, A49-5 I
jump instructions, A63--64
load instructions, A66-68
store instructions, A68-70
trap instructions,A64-66

M IPS (million instructions per second)
equation, 268
peak versus relative, IMD4: 13-14
problem with using as a performance

measure, 268-270
Mirroring, 575
Miss, 470
Misses

Average Memory Access Time
(AMAT), IMD7: I

cache,482-483,496-502
capacity,543
cold-start, 543
collision, 543
compulsory, 543
conflict, 543
TBL,531

Miss penalty, 471
reducing, using multilevel caches,

505-509
Miss ratefratio, 471

global, 509
local,509

Mitsubishi, M32R, D4O-41
Moore, Edward, 338
Moore, Gordon, 28
Moore machine, 338, B68
Moore's law, 28, 181
Mosaic, CD8.11:7
Most significant bit, 161
Motherboard, 19,20

Motorola
PowrPC, D32-33, IMD2:17-20,

IMD3:1O
68881, CD3.10:8

Mouse, 16--17
move from hi, 181
move from 10,181
Move from system control, 173
M32R, D40-41
Multicomputers, CD9.11 :52
MULTICS (Multiplexed Information

and Computing Service), CD7.9:8
Multicyc1e implementation, 318-340
Multiflow Co., CD6.13:4
Multilevel caching, 492, 505-510
Multimedia extensions of desk-

top/server RIses, DI6--19
Multiple instruction multiple data

(MIMD), CD9.11 :51- 53
Multiple instruction single data (M ISD),

CD9.11:51
Multiple issue

defined,433
dynamic, 433, 442--445

1-10

IBM's work on, CD6.13:4
static, 433, 435-442

Multiplexors, 286, 89-10
Multiplicand, 176
Multiplication, 176-182

floating point, 202- 205
Multiplier, 176
multiply, 181
multiply unsigned, 181
Multiprocessors

connected by a network,
CD9.4:2Q-.-25

connected by a single bus,
CD9.3:11-20

defined, CD9.1 :4, CD9.11 :52
future of, CD9.1 0:43-44
history development of,

CD9.11:47- 55
inside a chip and multithreading,

CD9.7:3Q-.-34
networks, CD9.4:2Q-.-25,

CD9.6:27-30
programming, CD9.2:8- 1O
types of, CD9.1:4--8

Multistage network, CD9.6:29-30
Multithreading, CD9.7:30-34

N

Name dependence, 439
NaN (Not a Number), 193
NAND gate, B8
NCR,CD8.11:6
Negation shortcut, 166
Nested procedures, 83-85
Netscape, CD8.11:7
Network bandwidth

defined, CD9.6:27
fully connected, CD9.6:28
total, CD9.6:27-28

Networks,25-27
characteristics of, CD8.3: I
crossbar, CD9.6:30
internetworking, CD8.3: 1-4
local area, CD8.3:5-8



1·11 Index

long-haul, CD8.3:5
multiprocessors connected by,

CD9.4:20-25, CD9.6:27-30
multistaged, CD9.6:29-30
Pentium 4, 585--587
wireless local area, CD8.3:8-1O

Next-state function, 331, B67, C 12- 13,
21- 27

No-a1locate-on-write,484
No-fetch-on-write, 484
Nonblocking assignment, 824
Nonblocking caches, 445, 548
Nonuniform memory access (NUMA)

multiprocessors, CD9.1 :6,
CD9.4:22

Nonvolatile memory, 23
Nonvolatile storage device, 569
Nop, 413-414
nor (NOR), 70, 301, 88
Normalized number, 189
Northrop, CD 1.7:4
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CD6.7:5---7
Pipelining

advanced methods for extracting
more performance, 432-445

control, 399-402
datapath,384--399
defined,370
designing instruction sets for,

374--375
exceptions, 427-432
fallacies and pitfalls, 451-384
forwarding, 376-377, 402-412,

CD6.7:3
graphic representation, 395-399
historical development of,

CD6.13:1-13
instruction execution sped up by,

372-374
latency, 383
overview of, 370
Pentium 4 example, 448
stalls, 377- 379, 413-416, CD6.7:5- 7
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Procedures
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Ripple carry, B39, 44-45

RISe. See Reduced instruction set computer
Ritchie, Dennis, CD2.19:7, CD7.9:8, II
Rotational delay, 570
Rotational latency, 570
Rounding, 214--215, CD3.10:2--4
Routers, CD8.3:6
R-type instructions, 292-293, 298

5

Sandisk Corp., 605
ScalUling, CD2.12: I
Scientific notation, 189, 191
Secondary memory, 23
Sectors, 569
Seek,569
Seek time, 569-570
Segmentation, 514--515

Selector value, B9
Selinger, Patricia, CD8.11:5
Semantic analysis, CD2.12: I
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code for the body of, 122-123
full procedure, 123
Java, CD2.14:6-14
register allocation, 122
space, 517

Switched networks, CD8.3:5
Switches, CD8.3:7
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We quote extensively from it in Chapter J. It sinlllltaneously explained computers to the world and was a source
ofcontroversy because the first dmft did not give credit to frkeN and Mauchly.

Campbell-Kelly, M., and W. Aspray [1996). Computer: A History of the Information Machine, Basic Books,
NewYork.

Two historiall5 chronicle the dmmatic story. The New York Times calls it »'ell writtell and authoritative.

Cernzzi, P. F. [1998) A Historyof Modern Computing. MIT Press, Cambridge, MA.

COil/aim a good description of the I<lter history of computing: the integrmed circuit and its impact, personal
computers, UNIX, and the Internet.

Goldstine, H. H. [1972 ). The Computer: From Paual to YOIl Neumallll, Princeton University Press, Prince
ton, NJ.

A personal view ofcomputing by olle of the piolleers who worked with yon Newnamt.

Hennessy, J. L., and D. A. Patterson [2()()J ). Sections 1.3 and 1.4 of Computer Architecture: A Quantit<ttive
Approach, third edition, Morgan Kaufmann Publishers, San Francisco.

These sectiolls coll/ain much more detail on the cost of integrated circuits mtd explaill the reasoltS for the differ
ence betweell price and cost.

B.W. Lampson. Personal distribllled computing; The Alto and Ethernet software. In ACM Conference on the
History of Personal Workstations, January 1986.

C. R Thacker. Persollal distributed computing; The Alto alld Ethernet hardware. In ACM Conference on the
History of Personal Workstations, January 1986.

These two papers describe the softlmre and hardware ofthe kmdnt<trk Alto.
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Metropolis, N., Howlett, J, and G-C Rota, eds. [1980 ] A History ofComputing in the Twentieth cenrury,Aca
demic Press, New York.

A collection ofessays that describe the people, software, computers, mtd l<lboratories involved in the first experi
mental mtd commerci<ll computers. Most of the authors were perso,wlly involved in the projects. An excellent
bibliography ofe<lrly reports concludes this interesting book.

Public Broadcasting System [1992 ]. The Machine thm Changed the World, videotapes.

These five one-hour programs include rare foowge ,md interviews with pioneers ofthe computer industry.

Slater, R. [1987]. PortmilS in Silicon, MIT Press, Cambridge, MA.

Short biographies of31 computer pioneers.

Stern, N. [1980 ]. "Who invented the first electronic digital computer?" A,mals of the History of Computing
2:4 (October) 375--76.

A historian's perspective on Atanasoffvs. Eckert and M,mchly.

Wilkes, M. V. [1985 ]. Memoirs ofa Computer Pioneer, MIT Press, Cambridge, MA.

A personal view ofcomputing by one ofthe pioneers.

Chapter 2

Bayko, J. [1996 ]. "Great Microprocessors of the Past and Present," available at www.mkp.comlbooksJ<lwlogi
cod/links.hun.

A personal view of the history of represemative or lUlUSlIal microprocessors, from the Imel 4004 to the Patriot
Scientific ShBoom!

Kane, G., and J. Heinrich [1992 ]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, NJ.

This book describes the MIPS architecture in greater detail than AppendixA.

Levy, H., and R. Eckhouse [1989 ]. Computer Progmmming and Architecture: The \cU, Digital Press, Bos
ton.

This book concentrates on the VAX, but also includes desaiptions ofthe Intel80x86, IBM 360, and CDC 6600.

Morse, S., B. Ravenal, S. Mawr, and W. Pohlman [1980]. "Intel Microprocessors---8080 to 8086," Computer
13:10 (October).

The architecture history of the Intel from the 4004 to the 8086, according to the people who participated in the
designs.

Wakerly, J. [1989]. Microcomputer Architecture and Progrmmning, Wiley, New York.

The Motorol<l 680xO is the nmin focus of the book, bllt it covers the Intel 8086, Motorol<l 6809, T1 99QO, and
Zilog U()()().
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Chapter 3

Burks,A. W., H. H. Goldstine, and J. von NeuJll.1nn [1946 ]. "Preliminary discussion of the logical design of
an electronic computing instrument," Report to the u.s. Army Ordmmce Dept., p. 1; also in AlperS ofJohn
von Neumann, W. Aspray and A. Burks, eds., MIT Press, Cambridge, MA, and Tomash Publishers, Los
Angeles, 97- 146, 1987.

This cI<lssic paper includes <lrgmnellts <lgainst jloming-point hardw<lre.

Goldberg, D. [1991 ]. "What every computer scientist should know about floating-point arithmetic," ACM
Computing Surveys 23(1), 5--48.

Allothergood introduction to jloating-poim arithmetic by the same 'lUthor, this time with emph<lsis on softw<lre.

Goldberg, D. 12002 ]. "Computer arithmetic," Appendix A of Computer Architecture: A Quantit<ttive
Approach, third edition, I. L. Hennessy and D. A. Patterson, Morgan Kaufmann Publishers, S,1n Francisco.
(This appendix is online.)

A more adwmced introduction to integer and jloating-point arithmetic, with emphasis 011 hardw<lre. It covers
SectiollS 3.4- 3.6 ofthis book in just 10 pages, leaving another 45 p<lges for <ldvanced topics.

Kahan, W. [1972 ]. "A survey of error-analysis," in Info. Processing 71 (Proc. IFIP Congress 71 in Ljubljana),
vol. 2, pp. 1214--39, North-HoUand Publishing, Amsterdam.

This survey is a source ofstories on the importallce ofaccurate arithmetic.

Kahan, W. [1983 ]. "M.1thematics written in sand," Proc. Amer. Stat. Assoc. Joint Summer Meetings of 1983,
Stmistical Computing Section, pp. 12- 26.

The title refers to silicon and is another source ofstories illustrating the importance ofaccurme arithmetic.

Kahan, W. [1990 ]. "On the advantage of the 8087's stack," unpublished course notes, Computer Science
Division, University of California at Berkeley.

Whm the 8087floating-point architecture could have beell.

Kahan, W. [1997 ]. Available via a link to K.1han's hontepage at www.mkp.com/books_catalog/cod/linkS-hnn.

A collection ofmemos relmed to jloating poim, including "Beastly numbers" (allother less famous Pentium bug),
"Notes on the IEEEjloating point <lrithmetic" (including commellts on how some fe<llUres <lre atrophying), alld
"The baleful effects of computing benchmarks" (on the unhealthy preoccupation on speed versus correctlless,
<lccumcy, eme ofuse, jlexibility, ...).

Koren, I. [2002 ]. Computer Arithmetic Algorithms, second edition, A. K. Peters, Natick, MA.

A textbook aimed at seniors alld first -year gradu<lte swdents thm explains fimdamental principles of ba5ic
arithmetic, as y,'ell m complex operations sw:h as logarithmic and trigonometric functions.

Wilkes, M. V. [1985 ]. Memoirs ofa Computer Pioneer, MIT Press, Cambridge, MA.

This computer pioneer's recollections include the derivation of the st<llldard hardware for multiply ,md divide
developed by VOll Neumann.
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Chapter 4

Curnow, H. J., and B. A. WichJll.1JJn [19761. "A synthetic benchmark,~ The Computer J. 19 (1):80.

Describes the first major synthetic benchmark, Whetstone, and how it W<lS (re<lled.

Flemming, P. J., and J. J. WaUace [19861. "How not to lie with statistics: The correct way to summarize
benchmark resulls,~ Comm. ACM 29:3 (March) 218--21.

Describes some of the underlying principles in wing different means to summarize performance remits.

McM1hon, F. M. [1986 1. "The Livermore FORTRAN kernels: A compuler test of numerical performance
range," Tech. Rep. UCRL·55745, Lawrence Livermore National L.1boratory, Univ. of California, Livermore
(D;,>cember).

Describes the Livermore Lo0p$------IJ set ofFortran kernel benchmarks.

Smith, J. E. [19881. "Characterizing computer performance with a single number," Comm. ACM 31:10
(October) 1202--06.

Describes the difficulties ofsummarizing perfoml<mce with jWt one number and argues for total execution time
as the only consistem measure.

SPEC [2<XXl ]. SPEC Benchmark Suite Release 1.0, SPEC, Santa dara, CA, October 2.

Describes the SPEC benchnwrk suite. For up-to--date informmion, see the SPEC Web page via a link at
www.mkp.comlbooksJm.l1oglcodj/inks.htm.

Weicker, R. P. [1984 ]. "Dhrystone: A synthetic systems programming benchmark,~ Comm. ACM 27:10
(October) 1013- 30.

Describes the Dhrystone benchmark and its construction.

Chapter 5

A basic Verilog tutorial is included on the co. There are also many books both on Verilog and on digital
design using Verilog.

Kidder, T. [1981 ]. Soul ofa New Machine, Little, Brown, and Co., New York.

Describes the design of the Data General Eclipse series thm repl<lced the first DG nwchines such as the Nova.
Kidder records the intimate imemctions among architects, h<lrdv.'</re designers, microcoders, ,md project mmt
<lgemem.

Levy, H. M., and R. H. Eckhouse, Jr. [1989]. Computer Progmmming mtdArchitecmre: The VAX, Second ed.,
Digital Press, Bedford, MA.

Good description ofthe VAX <lrchitecture mtd several different microprogmmmed implemematiOlts.

Patterson, 0. A. [1983 ]. "Microprogramming," Scientific AmeriC<tn 248:3 (Much) 36--43.

Overview ofmicroprogmmming concepts.
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Thder, S. G. [I%7]. "Microprogram control for the System/360," IBM Systems j. 6:4, 222-41.

Desaibes the microprogmmmed control for the 360, the first microprogrammed commerci,1I machine.

Wilkes, M. V. [1985 ]. Memoirs ofa Computer Pioueer, MIT Press, Cambridge, MA.

lutriguing biography with mauy stories about industry pioneers and the trials and successes in buildiug e<lrly
machines.

Wilkes, M. V., and J. B. Stringer [1953]. "Microprogramming and the design of the control circuits in an elec
tronic digital contputer," Proc. Cambridge Philosophical Society 49:230--38. Also reprinted in D. P. Siewiorek, C.
G. Bell, and A. Newell, Computer Structures: Principles <lnd E:«lmples, McGraw-Hill, New York, 158- 63, 1982,
and in "The Genesis of Microprogramming," in Aunals ofthe HistoryofComputing 8:116.

These two classic p<lpers describe Wilkes's propos<ll for microcode.

Chapter 6

Bhandark.1r, D., and D. W. dark [1991 ]. "Performance from architecture: Comparing a RISC and a CISC
with similar hardware organizations," Proc. Fourth Conf on Architectural Support for Progmmming Lan
gU<lges and Oper<lting Systems, IEEE/AC M (April ), Palo Alto, CA, 310--19.

A qumltiwtive comparisou of RISC ,md CISC writteu by scholars who argued for CISCs as well as built them;
they conclude thm MIPS is betweeu 2 and 4 times faster th<ln <I V.U built with simil<lr techllology, with <I mean
of2.7.

Fisher, I. A., and B. R. Rau [1993 ]. journ,1I ofSupercomputing (January), Kluwer.

This entire issue is deYOted to the topic ofexploitiug lIP. It conwins papers ou both the architecture alld software
<lnd is <I wonderful source for further references.

Hennessy, I. L., and D. A. Patterson [2001 ]. Computer Architecture: A Quantitative Approach, third ed., San
Francisco: Morgan Kaufmann.

Chapters 3 and 4 go into considerably more detail about pipeliued processors (over 200 pages), including super
Kalar processors ,md VL/W processors.

louppi, N. P., and D. W. Wall [1989 ]. "Available instruction-level parallelism for supe=lar and superpipe
lined processors," Proc. Third Conf 011 ArchitectumlSupport for Programming Languages alld Operating Sys
tems, IEEElACM (April), Boston, 272- 82.

A comparison ofdeeply pipelined (also mlled superpipelined) ,md supersc<llar systems.

Kogge, P. M. [1981 ]. The Architecture ofPipelined Computers, New York: McGraw-Hill.

Aformal text on pipelined control, with emph<lsis on underlying principles.

Russell, R. M. [1978]. "The CRAY-I computer system," Comm. ofthe ACM 21:1 (January) 63- 72.

A short summary of <I classic computer, which uses vectors ofoperations to remove pipeline stalls.

Smith, A., and J. Lee [1984 ]. "Branch prediction strategies and branch target buffer design," Computer 17:1
(January) 6--22.

All early survey on brallch prediction.
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Smith, J. E., and A. R. Plezkun [19881. "Implementing precise interrupts in pipelined processors," IEEE
Tmns. on Computers 37:5 (May) 562- 73.

COvers the difficulties in interrupting pipelined computers.

Thornton, J. E. [19701. Design of<l Computer: The Control Data 6600, Glenview, IL: Scott, Foresman.

A classic book describing a dmsic computer, considered the first supercomputer.

Chapter 7

Conti, c., D. H. Gibson, and S. H. Pitowsky [19681. "Structural aspects of the Systemf360 Model 85, part
I: General organization,WIBM Systems J. 7:1, 2- 14.

A cl<lssic paper th<lt desaibes the first coII/merd<l1 computer to use a cache and its remlting performance.

Jason F. Cantin and Mark D. Hill [2001 1. "Cache performance for selected SPEC CPU2000 benchmarks,"
SIGARCH Compuler Architecture News, 29:4 (September), 13 - 18.

A reference paper ofcache miss rates for mallY mche sius for the SPEC2000 benchmarks.

Hennessy, J., and D. Patterson [2003 ]. Chapter 5 in Computer Architecture: A QlIamitative Approach, Third
edition, Morgan Kaufmann Publishers, San Frnnc&o.

For more ill-depth coverage: ofa variety oftopics including protection, cache performmtce ofOllt-of-order proces
sors, virwally addressed caches, mllitilevel caches, compiler optimiz.uions, additiOlwllatency tolerance: mecha
Ilisms, mtd au:he coherency.

Kilburn, T., D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner [1%2 ]. "One-level storage system," IRE
Transactions on Electrollic Computers EC-II (April ) 223- 35. Also appears in D. P. Siewiorek, C. G. Bell, and
A. Newell, Computer Structures: Principles mtd Examples, McGraw-Hill, New York, 135--48, 1982.

This classic paper is the first proposal for virtu,l! memory.

LaMarca, A. and R. E. Ladner [1996. "The influence of caches on the performance of heaps,~ ACM J. of
Experimental Algorithmics, vo!.l, www.jea.acm.org/1996/LaMarcalnfluence/.

This paper shows the difference between complexity analysis of an algorithm, instrunion coum perform,mce,
,md memory hierarchy for follr sorting algorithms.

Przybylski, S. A. [1990]. C<u:he alld Memory Hiemrchy Design: A Performance-Directed Approach, Morgan
Kaufmann Publishers, San Francisco.

A thorollgh exploration ofmultilevel memory hierarchies and their performallce.

Ritchie, D.M. and K. Thompson. "UNIX Timesharing System: The UNIX Timesharing System." Bel/System
Technical Joumal, August 1978, pp. 1991 -20 19.

A paper describing the most ekgam operating system ever invemed.

Ritchie, Dennis. "The Evolution of the UNIX Timesharing System." ATe- T Bell Labomtories Techniml Jour
Ilal, August 1984, pp. 15??-1593.

The history of UNIX from one of its inventors.
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Silberschatz,A., P. Galvin, and G. Grange[2003 ]. Operating System Concepts, sixth edition, Addison-Wesley,
Reading, MA.

All operating systems textbook with a thorough diu:ussioll of vimml memory, processes alld process mmlage
melli, alld proteetioll issues.

Smith,A.I. [1982 ]. "Cache memories,~ Computing Surveys 14:3 (September) 473- 530.

The classic survey paper 011 caches. This paper dejilled the termillology for the jield ,md has served as a reference
for mallY computer desigrlers.

Smith, D.K. and R.C. Alexander. Fumblillg the Future: How Xerm: Illvented, Then Igllored, the First Persollal
Computer. New York: Morrow, 1988.

A popular book that explaill5 the role of Xerox PARC ill layillg the foulldatioll for tod<lY's computing, which
Xerm: did not substallti<llly bellejit from.

Tanenbaum, A. [2001 ]. Moderll Operating Systems, second edition, Prentice Hall, Upper Saddle River, NI.

All opemtillg system textbook with <I good discussioll of virtu<II memory.

Wilkes, M. [1965 ]. «Slave memories and dynamic storage aUocation," IEEE Trmts. Eleetronic Computers EC
14:2 (April ) 270--71.

The jirst, classic paper 011 auhes.

Chapter 8

Bashe, C. I., L. R. Johnson, I. H. Palmer, and E. W. Pugh [1986 ]. IBM's &trly Computers, Cambridge, MA:
MIT Press.

Deu:ribes the I/O system architecwrealld devices in IBM's early computers.

Brenner, P. [1997]. A Techllical Tutorial 011 the IEEE 802.11 Protocol found on many Web sites.

A widely referenced short tutorial that outlives the starwp compmryfor which the <lwhor worked.

Chen, P. M., E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson [1994 ]. "RAID: High-performance,
reliable secondary storage," ACM Computillg Surveys 26:2 (June), 145--88.

A tutorial coverillg disk arrays mtd the adV<tllt<lges ofsuch <Ill orgallization.

Gray, I. [1990 ]."A census of Tandem system availability between 1985 and 1990," IEEE Tmll5<1ctioll5 011 Reli
<lbility 39:4 (October), 409- 18.

Glle ofthe jirst p<lpers to C<ltegorize, qU<llltify, mtd publish reasoll5 for failures. /t is still widely quoted.

Gray, I., and A. Rru.ter [1993 ]. Tmll5<1etioll Processillg: Collcepts alld Techlliques, San Francis<:o: Morgan
Kaufmann.

A descriptioll ofmmsactioll processing, illcludillg discussiolls ofbenchm<lrking <llId perform<lllce ernlootioll.

Hennessy, J., and D. Patterson [2003 ]. Computer Architecture: A Qu,mtiwtive Appro<lch, third ed., S.1n Fran
cis<:o: Morgan Kaufmann Publishers, Chapters 7 and 8.

Chapter 7 focwesOlt stomge, including all extensive discussion ofRAID techllologies alld depelld<lbility. Ch<lpter
8 focuses olllletworks.
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Kahn, R. E. [19721. "Resource-sharing computer communication networks,~ Proc. IEEE 60:11 (November),
1397- 1407.

A classic paper thm desaibes the ARPANET.

Laprie, I.-C. [19851. "Dependable computing and fault tolerance: concepts and lerminology,~ 15th Annual
Im'l Symposium on Fault· Tolerant Computing FTCS /5, Digest of Papers, Ann Arbor, MI (June 19-21 ),2
11.

The paper that imToduced standard definitions ofdependability, reliability, and avai/<lbility.

Levy, J. V. [19781. "Buses: The skeleton of computer slruC1ures,~ in Computer Engineering: A DEC View of
Hardware Systems Design, C. G. Bell, J. C. Mudge, and J. E. McNamara, eds., Bedford, MA: Digital Press.

This is a good overview olkey concepts in bus design with some examples from DEC machines.

Lyman, P., and H. R. Varian [2003 ], "How much inform<ltion? lOO3," http://w>>,w.sims.berkeley.
edu/researchlprojectslhow-much-iuj{rlOO3!.

This project esrint<ltes the <lmount ofinformation in the world from <III possible sources.

Metcalfe, R. M., and D. R. Boggs [1 976]. "Ethernet: Distributed packet switching for local computer net
works,~ Comm. ACM 19:7 (Iuly), 395--404.

A classic paper thm desaibes the Ethernet network.

Myer, T. H., and 1. E. Sutherland [1968]. "On the design of display processors," CommunicmiolJS of the ACM
11:6 (June), 410--14.

Another c1<1ssic thm notes how building powerful coprocessors can be <I never-ending cycle.

Okada, S., Y. Matsuda, T. Yamada, and A. Kobayashi [1999]. "System on a chip for digital still camera," IEEE
Trons. on Cousumer Electronics 45:3 (August ), 584--90. )

Oppenheimer, D., A. Ganapathi, and D. Patterson [2003 ]. "Why do Internet services fail, and what can be
done about it?,"4th Usenix Symposium on Internet Technologies and Systems, March 26--28, Seattle, WA.

A recem updmeon Gmy's c1<1ssic paper, this time ftxwed on Imernet sites.

Patterson, D., G. Gibson, and R. Katz [1988]. "A case for redundant arrays of inexpensive disks (RAID),"
SIGMOD Confrreuce. 109-16.

A classic paper that adl'OCmes <lrmys ofsmaller disks and imroduces RAID levels.

Saltzer, I. H., D. P. R£ed , and D. D. Clark [1984 ]. "End-to-end arguments in system design," ACM TraIlS. on
Computer Systems 2:4 (November), 277- 88.

A classic paper that defines the end-ta-end <lrgumeut.

Smotherman, M. [1989]. "A sequencing-based taxonomy of 110 systems and review of historical machines,~

Computer Architecture News 17:5 (September), 5- 15.

Describes the development of import<mt idem in I/D.

T.'I.lagala, N., R. Arpad-Dusseau, and D. Patterson [2000]. "Micro-benchmark based extraction of local and
global disk characteristics," u.c. Berkeley Techllical Report CSD-99-1063, lune 13.

Describes <I simple program to autonwtic<llly deduce key parmneters ofdisks.
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Chapter 9

Almasi, G. S., and A. Gottlieb [1989]. Highly Parallel Computing, Benjamin/Cummings, Redwood City, CA.

A textbook covering pamllel computers.

Amdahl, G. M. [1967]. "Validity of the single processor appro.tch to achieving large scale computing c.tpa
bilities,~ Proc. MIPS Spring joim Compurer Con!, Atlantic City, NJ, (April) 483--85.

Written in response to the claims of the IIliac 1\1, this three-page article describes Amdahl's law and gives the
classic reply to arguments for abandoning the currem form ofcomputing.

Andrews, G. R. [1991 ]. Concurrem Progmmming: Principles and Practice, Benjamin/Cummings, Redwood
City, CA.

A text that gives the principles ofpamlieI progmmming.

Archibald, J., and I.-L. Baer [1986]. "Cache coherence protocols: Evaluation using a multiprocessor simula
tion mooel," ACM Tmns. on Computer Systems 4:4 (November), 273--98.

CI<lssic sUrl'Cy paper ofshared-bus C<lche coherence protocols.

Arpad-Dusseau, A., R. Arpad-Dusseau, D. Culler, I. Hellerstein, and D. Patterson [1997]. "High
performance sorting on networks ofworkstations,~ Proc. ACM SIGMOD/PODS Conference 011 Management
ofData, Thcson, AZ, May 12- 15.

How a world record sort was performed 011 a cluster, including architecture critique of the workstation mId net
work interface. By April I, 1997, they pushed the record to 8.6 GB in I minute mId 2.2 secollds to sort 100 ME.

Bell, C. G. [1985 ]. "Multis: A new class of multiprocessor computers," Science 228 (April 26), 462--67.

Distinguishes sh<lred address and llOnshared address multiprocessors based on microprocessors.

Culler, D. E., and I. P. Singh, with A. Gupta [1998]. Pamllel Computer Architecture, Morgan Kaufmann, Smt
Francisco.

A textbook on pamllel computers.

Falk, H. [19761. "Reaching for the Gigaflop," IEEE Spectrum 13:10 (October), 65- 70.

Chronicles the sad story ofthe l/Iioc IV: four times the cost and less than one-temh the performance oforiginal
goals.

Flynn, M. I. [1966]. "Very high-speed computing systems," Proc. IEEE 54: 12 (December), 1901--00.

CI<lssic article showing SISD/SIMD/MISD/MIMD cI<lssijiC<ltions.

Hennessy, I., and D. Patterson !2003 ]. Chapters 6 and 8 in Compurer Architecture: A Quantitative Appro<lch,
third edition, Morgan Kaufmann Publishers, San Francisco.

A more in-depth coverage of <l rnriety of multiprocessor and cluster topics, including progmms and measure
ments.

Hord, R. M. [1982 ]. The lIIiac-IV, the First Supercomputer, Computer Science Press, Rockville, MD.

A historiC<l1 <lccounting ofthe Wi<lc IV project.
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Hwang, K. [1993 ]. Adrnnced Computer Architecture with Pllrallel Programming, McGraw-Hill, New York.

Another textbook covering parallel computers.

Kozyrakis, c., and D. Patterson [2003 ]. "Scalable vector processors for embedded systems," IEEE Micro 23:6
(November- December), 36--45.

Exmninatioll ofa wctor architecture for the MIPS illstruction set ill media and signal processing.

Menabrea, L. F. [1842 ]. "Sketch of the analytical engine invented by Charles Babbage,~ Bibliotheque VIIi
verselle de Geneve (October).

Certaillly the earliest referellce on multiprocessors, this mathem<ttician made this commem while translating
papers 011 Babbage's mech,mical computer.

pfister, G. F. [1998 ]. In Search of Clusters: The Comillg Battle ill Lowly Parallel Computillg, second edition,
Prentice-Hall, Upper Saddle River, Nl.

An entertainillg book that advoC<ltes clusters alld is critiC<l1 ofNUMA multiprocessors.

Seitz, C. [1985]. "The Cosmic Cube," Comm. ACM 28:1 (January), 22- 31.

A tutorial ,trticle on a pamllel processor cOlmected via a hypertree. The Cosmic Cube is the ancestor of the Intel
supercomputers.

Slotnick, D. L. [1982 ]. "The conception and development of parallel processors---A personal memoir,~

Annals Of the History OfComputing 4:1 ( lanuary), 20--30.

Recollections ofthe beginnillgs ofparallel processillg by the architect ofthe Wi<lc IV.

Appendix A

Sweetman, D. [1999]. See MIPS RUIl, Morgan Kaufrn.1nn Publishers, San Francisco, CA.

A complete, derailed, alld engaging illtroduction to the MIPS illstructioll set ,md <lssembly lallgu<lge program
ming 011 these machines.

Detailed documentation on the MIPS32 architecture is available on the Web:

MIPS32T1< Architecture for Progrmmners Volume I: Imroduction to the MIPS32T1< Architecture
(hnp:l!mips.com!coment!Drxumentatioll/MIPSDocumematioll/ProcessorArchitecture/
ArchiteetureProgrammingPublicatiollsforMIPS32/MD00082-2B- MIPS32INT-AFP-02.00.pdf/getDoWIl/0<ld)

MIPS32T1< Architecture for Progrmmners Volume II: The MIPS3]'" Instructioll Set
(hnp:l!mips.com!coment!Drxumentatioll/MIPSDocumematioll/ProcessorArchitecture/
ArchiteetureProgrammingPublicatiollsforMIPS32/MD00086-2B- MIPS32BIS-AFP-02.00.pdf/getDowll/oad)

MIPS32T1< Architecture for Progrmmners \vlmne Ill: The MIPS32'" Privikged Resource Architecture
(hnp:l!mips.com!colltent!Drxumentatioll/MIPSDocumematioll/ProcessorArchitecture/
ArchiteetureProgrammingPublicatiollsforMIPS32/MD()()()9().2B- MIPS32PRA-.-\FP-02.00.pdf/getDownload)
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