
Multi Processing

prepared and instructed by
 Shmuel Wimer

Eng. Faculty, Bar-Ilan University

June 2016 Multi Processing 1

Introduction

June 2016 Multi Processing 2

Since mid 2000s uniprocessor performance increase
slows down:

diminishing returns in exploiting ILP

growing concern over power

diminishing performance improvement of transistors

Since 1990s designers sought a way to build servers
and supercomputers achieving higher performance
than a single microprocessor.

A new era in computer architecture, where
multiprocessors play a major role.

June 2016 Multi Processing 3

Flynn [1966] proposed four categories:

1. Single Instruction stream, Single Data stream
(SISD)—Ordinary uniprocessor.

2. Single Instruction stream, Multiple Data streams
(SIMD)—Same instruction executed by multiple
processors using different data streams.

Each processor has its own data memory, but there is a
single instruction memory and control processor, which
fetches and dispatches instructions.

Popular in multimedia, graphics, vector operations.

Taxonomy

June 2016 Multi Processing 4

3. Multiple Instruction streams, Single Data stream
(MISD)—Not practical, no commercial.

4. Multiple Instruction streams, Multiple Data streams
(MIMD)—Each processor fetches its own instructions
and operates on its own data.

Exploits thread-level parallelism , since multiple
threads operate in parallel.

Thread-level parallelism is more flexible than data-level
parallelism and thus more generally applicable.

June 2016 Multi Processing 5

MIMD is the most popular. The increasing silicon
capacity enables placing multiple processors on a single
die, called multicore.

Multicore share L2, L3 cache or memory and I/O buses.

2000’s processors, as IBM Power5, Sun T1, and Intel
Pentium D and Xeon-MP, are multicore.

Multicore which relies on replication is advantageous
over wide superscalar.

Each processor is executing its own instruction stream.

June 2016 Multi Processing 6

To take advantage of a MIMD multiprocessor with 𝑛
processors, we should have at least 𝑛 threads or
processes to execute.

The independent threads within a single process are
typically identified by the programmer or created by
the compiler.

The threads may come from large-scale, independent
processes scheduled and manipulated by OS.

June 2016 Multi Processing 7

Centralized Shared-Memory

June 2016 Multi Processing 8

With large caches, a single memory can satisfy the
memory demands of a small number of processors.

By using appropriate network it can be scaled to a few
dozen processors.

Because the main memory is symmetric to all
processors, these are called Symmetric (shared-
memory) Multiprocessors (SMPs).

Due to the uniform access time from any processor, it is
sometimes called Uniform Memory Access (UMA).

Another group consists of multiprocessors with
physically distributed memory.

June 2016 Multi Processing 9

To support many processors, memory is distributed
among the processors rather than centralized.

Distributed Memory

June 2016 Multi Processing 10

Otherwise the memory system would not be able to
support the bandwidth demands without incurring
excessively long access latency.

The larger number of processors also raises the need
for a high-bandwidth interconnect.

Distributed memory is a cost-effective way to scale the
memory bandwidth if most of the accesses are to the
local memory in the node.

A disadvantage is that communicating data between
processors becomes complex, requiring more effort in
the SW.

June 2016 Multi Processing 11

In Distributed Shared-Memory (DSM) architectures,
communication occurs through a shared address space,
as in a symmetric shared-memory.

The physically separate memories are addressed as
one logical address space, so memory reference can be
made by any processor to any memory location.

Alternatively, the address space can consist of multiple,
logically disjoint, private address spaces, which cannot
be addressed by a remote processor.

Communication in Distributed Memory

June 2016 Multi Processing 12

The same physical address in different processors refers
to different locations in different memories.

For a multiprocessor with a shared address space, the
address space is used to communicate data implicitly
via load and store operations.

Multiprocessor with multiple address spaces
communicates data by explicitly passing messages
among the processors, called message-passing
multiprocessors.

Amdahl’s Law makes parallel processing challenging. A
hurdle is the limited parallelism in programs.

June 2016 Multi Processing 13

Example. We want to achieve a speedup of 80 with
100 processors. What fraction of the original
computation can be sequential?

The program operates in two modes:

• parallel with all processors fully used (enhanced) or

• serial with only one processor in use.

Answer. Amdahl’s Law states

Speedup =
1

Frac parallel
Speedup parallel

+(1−Frac parallel)

June 2016 Multi Processing 14

0.8 × Frac parallel + 80 × 1 − Frac parallel = 1

Frac parallel = 0.9975!

To achieve a speedup of 80 with 100 processors, only
0.25% of original computation can be sequential. ∎

To achieve linear speedup, the entire program must be
parallel with no serial portions. Not realistic.

June 2016 Multi Processing 15

A second hurdle arises from the relatively high cost of
communications, from 50 to over 1000 clock cycles.

It depends on the communication mechanism, the type
of interconnection network, and the scale of the
multiprocessor.

Symmetric shared-memory machines support the
caching of both shared and private data.

Private data are used by a single processor.

June 2016 Multi Processing 16

shared data are used by multiple processors, providing
communication among the processors through reads
and writes of the shared data.

When a private item is cached, since no other
processor uses the data, the program behavior is
identical to uniprocessor.

When shared data are cached, the shared value may be
replicated in multiple caches.

June 2016 Multi Processing 17

Advantages:

• Reduction in access latency

• Reduction in required memory bandwidth

• Reduction in contention that exists for shared data
items read by multiple processors simultaneously.

New problem: cache coherence.

The view of memory held by two different processors is
through their individual caches, which could end up
seeing two different values.

June 2016 Multi Processing 18

A memory system is coherent if:

1. Preserves program order. A read by 𝑃1 to 𝑋 after a
write by 𝑃1 to 𝑋, with no intervening writes of 𝑋 by
𝑃2, always returns the value written by 𝑃1.

It is expect also in uniprocessors.

2. A read by 𝑃1 to 𝑋 after a write by 𝑃2 to 𝑋 returns
the value written by 𝑃2 if the read and write are
sufficiently separated in time and no other writes
to 𝑋 interven.

Cache Coherence

June 2016 Multi Processing 19

If a write of 𝑋 on 𝑃1 and read of 𝑋 on 𝑃2 are
insufficiently separated in time, it may be impossible
to ensure that 𝑃2 read returns 𝑋 written by 𝑃1, since 𝑋
may not have left 𝑃1 yet.

3. Serialization. Two writes to the same location by
any two processors are seen in the same order by
all processors.

The issue of exactly when a written value must be seen
by a reader is defined by memory consistency model.

We assume that a write does not complete (allow next
write) until all processors see the effect of that write.

June 2016 Multi Processing 20

We assume that the processor does not change the
order of any write with respect to any other memory
access (different memory locations).

These two conditions mean that if a processor writes
location 𝐴 followed by location 𝐵, any processor seeing
the new value of 𝐵 must also see the new value of 𝐴.

These restrictions allow the processor to reorder reads,
but forces it to finish a write in program order.

June 2016 Multi Processing 21

Memory Consistency

strict consistency x
sequential consistency v

strict consistency v
sequential consistency v

June 2016 Multi Processing 22

Consistency Implications

Sequential consistency allows 0 or 1 processes to be
killed, but not both.

P1 will only try to kill P2 if P1’s read to B occurs before
P2’s write to B.

The in-order execution of memory events implies that
P1’s write to A must come before P2’s read of A.

June 2016 Multi Processing 23

P1 and P2 try to kill each other, disallowed by
sequential model.

June 2016 Multi Processing 24

Sequential consistency must delay all memory
operations following a write until the write is observed
by all other clients.

June 2016 Multi Processing 25

Can also be solved by speculation.

Execute memory instructions subsequent to write, but
hold commitment long enough after write to ensure
that all processor cores observe the write.

If the write observed conflicts with an early read, that
instruction’s commitment must be halted, its results
must be discarded, and the instruction must be re
executed in light of the new data.

June 2016 Multi Processing 26

A program running on multiple processors will normally
have copies of the same data in several caches.

The protocols to maintain coherence for multiple
processors are called cache coherence protocols.

Cache coherence protocol implementation must track
the state of any sharing of a data block.

Two classes of protocols. A directory based keeps the
sharing status a block of physical memory in one
location, called the directory (not discussed).

Coherence Enforcement

June 2016 Multi Processing 27

Snooping protocols have no centralized state.

Every cache having a copy of a block of physical
memory has a copy of the block’s sharing status (status
bits).

All caches are accessible via a bus or switch, and all
cache controllers snoop (monitor) to determine
whether or not they have a copy of a block that is
requested for access.

Write invalidate protocol is a method ensuring that a
processor has exclusive access to a data item before it
writes that item, invalidating other copies on a write.

June 2016 Multi Processing 28

Exclusive access ensures that no other readable or
writable copies of an item exist when the write occurs.
All other cached copies of the item are invalidated.

Consider a write followed by a read by another
processor.

June 2016 Multi Processing 29

If two processors do attempt to write the same data
simultaneously, one of them wins the race, invalidating
the other processor’s copy.

To complete its write the other processor must obtain a
new copy of the data, now containing the new value.
This protocol enforces write serialization.

The alternative to an invalidate protocol is to update
all the cached copies of a data item when that item is
written. This type of protocol is called a write update
or write broadcast protocol.

June 2016 Multi Processing 30

For invalidation, the writing processor acquires bus
access and broadcasts the address to be invalidated.
All processors continuously snoop on the bus, watching
the addresses.

The processors check whether the address on the bus
is in their cache. If so, the corresponding data in the
cache are invalidated.

If two processors attempt to write shared blocks at the
same time, their attempts to broadcast invalidation are
serialized when they arbitrate for the bus.

Write Invalidate Implementation

June 2016 Multi Processing 31

We also need to locate a data item when a cache miss
occurs. In a write-through cache, it is easy to find the
recent value in the memory.

The problem of finding the most recent data value in
write-back cache is harder, since most recent data item
is in a cache. Write-back caches use snooping both for
cache misses and for writes.

Each processor snoops every address placed on the
bus. If it finds to have a dirty copy of the requested
block, it provides that block in response to the read
request and aborts the memory access.

June 2016 Multi Processing 32

A snooping coherence protocol is implemented by
incorporating a finite state controller in each node.

The controller responds to requests from the processor
and the bus, changing the state of the selected block
and using the bus to access data or to invalidate it.

The protocol has three states: invalid, shared, and
modified.

The shared state indicates that the block is potentially
shared. The modified state indicates that the block has
been updated in the cache, implying that it is exclusive.

Snooping Protocol Example

June 2016 Multi Processing 33

Cache block state transitions for CPU requests

June 2016 Multi Processing 34

Cache block state transitions for bus requests

June 2016 Multi Processing 35

This protocol is for a write-back cache but is easily
modified for a write through cache.

June 2016 Multi Processing 36

The normal cache tags can be used to implement the
snooping and the valid bit to implement invalidation.

Read misses, whether generated by an invalidation or
by some other event, are also straightforward since
they simply rely on the snooping capability.

Writes like to know whether any other copies of the
block are cached because otherwise the write need not
be placed on the bus in a write-back cache.

Not sending the write on the bus reduces both the time
taken by the write and the required bandwidth.

June 2016 Multi Processing 37

A bit indicating whether the block is shared enables to
decide whether a write must generate an invalidate.

The cache generates an invalidation on the bus and
marks the block as exclusive.

The processor with the sole copy of a cache block is
normally called the owner of the cache block.

Since our snooping cache also sees any misses, it knows
when the exclusive cache block has been requested by
another processor and the state should be made
shared.

June 2016 Multi Processing 38

Shared Memory Example

Assumes A1 and A2 map to same cache block

June 2016 Multi Processing 39

Misses arising from inter-processor communication,
called coherence misses, are broken into two sources.

The first is true sharing misses, arising from data
communication through cache coherence mechanism.

In an invalidation-based protocol, the first write by a
processor to a shared block causes an invalidation to
establish ownership of that block.

Additionally, when another processor attempts to read
a modified word in that cache block, a miss occurs and
the resultant block is transferred.

Performance of SMP (Shared Memory)

June 2016 Multi Processing 40

The second effect, called false sharing, occurs when a
block is invalidated (subsequent reference causes a
miss) because some word in the block, other than the
one being read, is written into (at another processor).

If the word being written and the word read are
different and the invalidation does not cause a new
value to be communicated, but only causes an extra
cache miss, then it is a false sharing miss.

In a false sharing miss, the block is shared, but no word
in the cache is actually shared. The miss is always true
if the block size were a single word.

June 2016 Multi Processing 41

Example: The words 𝑥1 and 𝑥2 are in the same cache
block, which is in the shared state in the caches of both
𝐏𝟏 and 𝐏𝟐.

For the following sequence of events, identify each
miss as a true or a false sharing miss, or a hit.

Any miss would be true
sharing miss if the block
size were one word.

1. True sharing miss, since
𝑥1 is in 𝐏𝟐 and needs to be
invalidated from 𝐏𝟐.

June 2016 Multi Processing 42

2. False sharing miss, since
𝑥2 was invalidated by the
write of 𝑥1 in P1, but that
value of 𝑥1 is not used in
𝐏𝟐.

3. False sharing miss, since the block containing 𝑥1 is
marked shared due to the read in 𝐏𝟐, but 𝐏𝟐 did not
read 𝑥1.

The cache block containing 𝑥1 will be in the shared
state after the read by P2; a write miss is required to
obtain exclusive access to the block.

June 2016 Multi Processing 43

4. False sharing miss for
the same reason as step 3.

5. True sharing miss, since
the value being read was
written by P2.

The role of coherence misses is more significant for
tightly coupled applications that share significant
amounts of user data.

