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Since mid 2000s uniprocessor performance increase 
slows down: 

diminishing returns in exploiting ILP 

growing concern over power 

diminishing performance improvement of transistors    

Since 1990s designers sought a way to build servers 
and supercomputers achieving higher performance 
than a single microprocessor. 

A new era in computer architecture, where 
multiprocessors play a major role. 
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Flynn [1966] proposed four categories: 

1. Single Instruction stream, Single Data stream 
(SISD)—Ordinary uniprocessor. 

2. Single Instruction stream, Multiple Data streams 
(SIMD)—Same instruction executed by multiple 
processors using different data streams. 

Each processor has its own data memory, but there is a 
single instruction memory and control processor, which 
fetches and dispatches instructions. 

Popular in multimedia, graphics, vector operations. 

Taxonomy 
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3. Multiple Instruction streams, Single Data stream 
(MISD)—Not practical, no commercial. 

4. Multiple Instruction streams, Multiple Data streams 
(MIMD)—Each processor fetches its own instructions 
and operates on its own data. 

Exploits thread-level parallelism , since multiple 
threads operate in parallel. 

Thread-level parallelism is more flexible than data-level 
parallelism and thus more generally applicable. 
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MIMD is the most popular. The increasing silicon 
capacity enables placing multiple processors on a single 
die, called multicore. 

Multicore share L2, L3 cache or memory and I/O buses. 

2000’s processors, as IBM Power5, Sun T1, and Intel 
Pentium D and Xeon-MP, are multicore. 

Multicore which relies on replication is advantageous 
over wide superscalar. 

Each processor is executing its own instruction stream.  
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To take advantage of a MIMD multiprocessor with 𝑛 
processors, we should have at least 𝑛  threads or 
processes to execute. 

The independent threads within a single process are 
typically identified by the programmer or created by 
the compiler. 

The threads may come from large-scale, independent 
processes scheduled and manipulated by OS.  
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Centralized Shared-Memory 
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With large caches, a single memory can satisfy the 
memory demands of a small number of processors. 

By using appropriate network it can be scaled to a few 
dozen processors.  

Because the main memory is symmetric to all 
processors, these are called Symmetric (shared-
memory) Multiprocessors (SMPs). 

Due to the uniform access time from any processor, it is 
sometimes called Uniform Memory Access (UMA). 

Another group consists of multiprocessors with 
physically distributed memory.  
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To support many processors, memory is distributed 
among the processors rather than centralized. 

Distributed Memory 
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Otherwise the memory system would not be able to 
support the bandwidth demands without incurring 
excessively long access latency. 

The larger number of processors also raises the need 
for a high-bandwidth interconnect. 

Distributed memory is a cost-effective way to scale the 
memory bandwidth if most of the accesses are to the 
local memory in the node. 

A disadvantage is that communicating data between 
processors becomes complex, requiring more effort in 
the SW. 
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In Distributed Shared-Memory (DSM) architectures, 
communication occurs through a shared address space, 
as in a symmetric shared-memory. 

The physically separate memories are addressed as 
one logical address space, so memory reference can be 
made by any processor to any memory location. 

Alternatively, the address space can consist of multiple, 
logically disjoint, private address spaces, which cannot 
be addressed by a remote processor.  

Communication in Distributed Memory 
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The same physical address in different processors refers 
to different locations in different memories. 

For a multiprocessor with a shared address space, the 
address space is used to communicate data implicitly 
via load and store operations. 

Multiprocessor with multiple address spaces 
communicates data by explicitly passing messages 
among the processors, called message-passing 
multiprocessors. 

Amdahl’s Law makes parallel processing challenging. A 
hurdle is the limited parallelism in programs. 



June 2016 Multi Processing 13 

Example.  We want to achieve a speedup of 80 with 
100 processors. What fraction of the original 
computation can be sequential? 

The program operates in two modes: 

• parallel with all processors fully used (enhanced) or 

• serial with only one processor in use.  

 
Answer. Amdahl’s Law states 

Speedup =
1

Frac parallel
Speedup parallel

+(1−Frac parallel)
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0.8 ×  Frac parallel + 80 × 1 − Frac parallel = 1 

Frac parallel = 0.9975! 

To achieve a speedup of 80 with 100 processors, only 
0.25% of original computation can be sequential. ∎ 

To achieve linear speedup, the entire program must be 
parallel with no serial portions. Not realistic. 
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A second hurdle arises from the relatively high cost of 
communications, from 50 to over 1000 clock cycles. 

It depends on the communication mechanism, the type 
of interconnection network, and the scale of the 
multiprocessor. 

Symmetric shared-memory machines support the 
caching of both shared and private data. 

Private data are used by a single processor.  
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shared data are used by multiple processors, providing 
communication among the processors through reads 
and writes of the shared data. 

When a private item is cached, since no other 
processor uses the data, the program behavior is 
identical to uniprocessor.  

When shared data are cached, the shared value may be 
replicated in multiple caches.  
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Advantages: 

• Reduction in access latency 

• Reduction in required memory bandwidth 

• Reduction in contention that exists for shared data 
items read by multiple processors simultaneously. 

New problem: cache coherence.  

The view of memory held by two different processors is 
through their individual caches, which could end up 
seeing two different values. 
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A memory system is coherent if: 

1. Preserves program order. A read by 𝑃1 to 𝑋 after a 
write by 𝑃1 to 𝑋, with no intervening writes of 𝑋 by 
𝑃2, always returns the value written by 𝑃1. 

It is expect also in uniprocessors. 

2. A read by 𝑃1 to 𝑋 after a write by 𝑃2 to 𝑋 returns 
the value written by 𝑃2 if the read and write are 
sufficiently separated in time and no other writes 
to 𝑋 interven. 

Cache Coherence 
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If a write of 𝑋  on 𝑃1  and read of 𝑋  on 𝑃2 are 
insufficiently separated in time, it may be impossible 
to ensure that 𝑃2 read returns 𝑋 written by 𝑃1, since 𝑋 
may not have left 𝑃1 yet. 

3. Serialization. Two writes to the same location by 
any two processors are seen in the same order by 
all processors. 

The issue of exactly when a written value must be seen 
by a reader is defined by memory consistency model. 

We assume that a write does not complete (allow next 
write) until all processors see the effect of that write. 
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We assume that the processor does not change the 
order of any write with respect to any other memory 
access (different memory locations). 

These two conditions mean that if a processor writes 
location 𝐴 followed by location 𝐵, any processor seeing 
the new value of 𝐵 must also see the new value of 𝐴. 

These restrictions allow the processor to reorder reads, 
but forces it to finish a write in program order. 
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Memory Consistency 

strict consistency x 
sequential consistency v 

strict consistency v 
sequential consistency v 
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Consistency Implications 

Sequential consistency allows 0 or 1 processes to be 
killed, but not both.  

P1 will only try to kill P2 if P1’s read to B occurs before 
P2’s write to B. 

The in-order execution of memory events implies that 
P1’s write to A must come before P2’s read of A. 
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P1 and P2 try to kill each other, disallowed by 
sequential model. 
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Sequential consistency must delay all memory 
operations following a write until the write is observed 
by all other clients. 
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Can also be solved by speculation. 

Execute memory instructions subsequent to write, but 
hold commitment long enough after write to ensure 
that all processor cores observe the write.  

If the write observed conflicts with an early read, that 
instruction’s commitment must be halted, its results 
must be discarded, and the instruction must be re 
executed in light of the new data. 
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A program running on multiple processors will normally 
have copies of the same data in several caches. 

The protocols to maintain coherence for multiple 
processors are called cache coherence protocols. 

Cache coherence protocol implementation must track 
the state of any sharing of a data block. 

Two classes of protocols. A directory based keeps the 
sharing status a block of physical memory in one 
location, called the directory (not discussed). 

Coherence Enforcement 
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Snooping protocols have no centralized state. 

Every cache having a copy of a block of physical 
memory has a copy of the block’s sharing status (status 
bits).  

All caches are accessible via a bus or switch, and all 
cache controllers snoop (monitor) to determine 
whether or not they have a copy of a block that is 
requested for access. 

Write invalidate protocol is a method ensuring that a 
processor has exclusive access to a data item before it 
writes that item, invalidating other copies on a write.  
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Exclusive access ensures that no other readable or 
writable copies of an item exist when the write occurs. 
All other cached copies of the item are invalidated. 

Consider a write followed by a read by another 
processor. 
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If two processors do attempt to write the same data 
simultaneously, one of them wins the race, invalidating 
the other processor’s copy. 

To complete its write the other processor must obtain a 
new copy of the data, now containing the new value. 
This protocol enforces write serialization. 

The alternative to an invalidate protocol is to update 
all the cached copies of a data item when that item is 
written. This type of protocol is called a write update 
or write broadcast protocol.  
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For invalidation, the writing processor acquires bus 
access and broadcasts the address to be invalidated. 
All processors continuously snoop on the bus, watching 
the addresses. 

The processors check whether the address on the bus 
is in their cache. If so, the corresponding data in the 
cache are invalidated. 

If two processors attempt to write shared blocks at the 
same time, their attempts to broadcast invalidation are 
serialized when they arbitrate for the bus. 

Write Invalidate Implementation 
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We also need to locate a data item when a cache miss 
occurs. In a write-through cache, it is easy to find the 
recent value in the memory.  

The problem of finding the most recent data value in 
write-back cache is harder, since most recent data item 
is in a cache. Write-back caches use snooping both for 
cache misses and for writes. 

Each processor snoops every address placed on the 
bus. If it finds to have a dirty copy of the requested 
block, it provides that block in response to the read 
request and aborts the memory access. 
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A snooping coherence protocol is implemented by 
incorporating a finite state controller in each node. 

The controller responds to requests from the processor 
and the bus, changing the state of the selected block 
and using the bus to access data or to invalidate it. 

The protocol has three states: invalid, shared, and 
modified. 

The shared state indicates that the block is potentially 
shared. The modified state indicates that the block has 
been updated in the cache, implying that it is exclusive.  

Snooping Protocol Example  
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Cache block state transitions for CPU requests 
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Cache block state transitions for bus requests 
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This protocol is for a write-back cache but is easily 
modified for a write through cache.  
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The normal cache tags can be used to implement the 
snooping and the valid bit to implement invalidation.  

Read misses, whether generated by an invalidation or 
by some other event, are also straightforward since 
they simply rely on the snooping capability. 

Writes like to know whether any other copies of the 
block are cached because otherwise the write need not 
be placed on the bus in a write-back cache. 

Not sending the write on the bus reduces both the time 
taken by the write and the required bandwidth. 
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A bit indicating whether the block is shared enables to 
decide whether a write must generate an invalidate. 

The cache generates an invalidation on the bus and 
marks the block as exclusive. 

The processor with the sole copy of a cache block is 
normally called the owner of the cache block. 

Since our snooping cache also sees any misses, it knows 
when the exclusive cache block has been requested by 
another processor and the state should be made 
shared. 
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Shared Memory Example 

Assumes A1 and A2 map to same cache block 
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Misses arising from inter-processor communication, 
called coherence misses, are broken into two sources. 

The first is true sharing misses, arising from data 
communication through cache coherence mechanism.  

In an invalidation-based protocol, the first write by a 
processor to a shared block causes an invalidation to 
establish ownership of that block. 

Additionally, when another processor attempts to read 
a modified word in that cache block, a miss occurs and 
the resultant block is transferred. 

Performance of SMP (Shared Memory) 
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The second effect, called false sharing, occurs when a 
block is invalidated (subsequent reference causes a 
miss) because some word in the block, other than the 
one being read, is written into (at another processor). 

If the word being written and the word read are 
different and the invalidation does not cause a new 
value to be communicated, but only causes an extra 
cache miss, then it is a false sharing miss. 

In a false sharing miss, the block is shared, but no word 
in the cache is actually shared. The miss is always true 
if the block size were a single word. 
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Example: The words 𝑥1 and 𝑥2 are in the same cache 
block, which is in the shared state in the caches of both 
𝐏𝟏 and 𝐏𝟐. 

For the following sequence of events, identify each 
miss as a true or a false sharing miss, or a hit. 

Any miss would be true 
sharing miss if the block 
size were one word. 

1. True sharing miss, since 
𝑥1 is in 𝐏𝟐 and needs to be 
invalidated from 𝐏𝟐. 
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2. False sharing miss, since 
𝑥2 was invalidated by the 
write of 𝑥1 in P1, but that 
value of 𝑥1 is not used in 
𝐏𝟐. 

3. False sharing miss, since the block containing 𝑥1 is 
marked shared due to the read in 𝐏𝟐, but 𝐏𝟐 did not 
read 𝑥1. 

The cache block containing 𝑥1 will be in the shared 
state after the read by P2; a write miss is required to 
obtain exclusive access to the block. 
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4. False sharing miss for 
the same reason as step 3.  

5. True sharing miss, since 
the value being read was 
written by P2. 

The role of coherence misses is more significant for 
tightly coupled applications that share significant 
amounts of user data. 


