
Virtual Memory
prepared and instructed by

 Shmuel Wimer
Eng. Faculty, Bar-Ilan University

March 2019 Virtual Memory 1

Motivation

March 2019 Virtual Memory 2

Virtual memory (VM): A technique using main memory
as a “cache” for secondary storage (disk).

Consider a collection of programs is simultaneously
running on a computer.

The total required memory is much larger than the
amount of main memory.

Main memory needs to contain only the active portions
of the programs.

The principle of locality applies.

March 2019 Virtual Memory 3

Virtual memory:

• Allows efficient and safe sharing of memory among multiple
programs.

• Removes the programming burdens of a small, limited
amount of main memory (past, less relevant today).

VM allows to efficiently share the processor and the
main memory.

We must be able to protect the programs from each
other.

A program can only read and write the portions of main
memory that have been assigned to it.

March 2019 Virtual Memory 4

The programs sharing the memory change dynamically
while the programs are running. The compiler sets each
program into its own address space.

VM translates the program’s address space to physical
addresses, enforcing protection of a program’s address
space from other programs.

VM allows a single user program to exceed the size of
primary memory.

A VM block is called a page, and a virtual memory miss
is called a page fault.

VM produces a virtual address, translated by a SW and
HW combination to a physical address.

March 2019 Virtual Memory 5

virtu
al p

ages

p
h

ysical p
ages

Virtual to Physical Address Mapping

March 2019 Virtual Memory 6

4KB page size 220 virtual
pages

4GB

4KB page size (frame) 218 physical
pages (frames)

1GB

Illusion of an unbounded amount of virtual memory.

March 2019 Virtual Memory 7

Design choices in VM systems are motivated by the
high cost of page fault, taking millions of clock cycles
to process.

• Pages should be large enough to amortize the high access
time. Size ranges from 1 KB (embedded), 16 KB (PC) to 64 KB
(severs).

• Organizations that reduce the page fault rate, e.g., fully
associative placement of pages in memory.

• Page faults can be handled in SW because the overhead will
be small compared to the disk access time. SW can use
smart algorithms for page placement.

• Write-through will not work for VM, since writes take too
long. VM uses write-back.

Placing a Page and Finding it Again

March 2019 Virtual Memory 8

Reducing page fault frequency is critical due to the
high page fault penalty.

The operating system (OS) maps the virtual to any
physical page (associative placement of pages).

The OS can use smart algorithms and complex data
structures to track page usage.

A page table stored in memory, indexed by the
virtual page number, contains the virtual to physical
address translations.

An entry contains the physical page number for that
virtual page if the page is currently in memory.

March 2019 Virtual Memory 9

To indicate the location of the page table in memory,
the hardware includes a page table register, pointing
to the start of the page table.

The page table + PC + registers specify the state of a
program (process). To allow another program to use
the processor, this state is saved. Restoration of this
state enables the program to continue execution.

A process is active when it is in possession of the
processor. Otherwise it is inactive.

OS activates a process by loading the process's state,
including the PC.

March 2019 Virtual Memory 10

The process’s address space, and hence all the data it
can access in memory, is defined by its page table,
residing in the memory.

The OS needs to load only the page table register
with the pointer to the table of the process to be run.

Each process has its own page table (+register), since
different processes use the same virtual addresses.

The OS allocates the physical memory and updates
the page tables, to avoid collision of the virtual
address spaces of different processes.

Separate page tables provide protection of one
process from another.

OS algorithm
determines
the physical
page number.

March 2019 Virtual Memory 11

The page table

Each process
has such
register.

March 2019 Virtual Memory 12

The OS creates the space on disk for all the pages of a
process when it creates the process.

This disk space is called the swap space.

OS also creates a data structure to record where each
virtual page is stored on disk.

It may be part of the page table or an auxiliary data
structure indexed in the same way as the page table.

The physical page bit-width is extended to 32 for ease
of indexing. The extra bits are used to store additional
information.

March 2019 Virtual Memory 13

The page table maps each VM page to either a page in
main memory or a page stored on disk.

frame
frame
frame
frame

Virtual page
number is used
to index the
page table.

Valid bit 0: the page
currently resides only
on disk, at a specified
disk address.

March 2019 Virtual Memory 14

OS handles data structure to track which processes
and which virtual addresses use each physical page.

The OS is another process, and these tables
controlling memory reside in memory.

When all the pages in main memory are in use, the
OS chooses a page to replace. Replaced pages are
written to swap space on the disk.

To minimize the number of page faults LRU is used.
But it is too expensive, requiring updating a data
structure on every memory reference. Instead, an
approximation is used.

March 2019 Virtual Memory 15

Some computers provide a use bit or reference bit,
(in HW) which is set whenever a page is accessed.

OS periodically clears the use bits and records them.
It can determine which pages were touched during a
certain time period.

OS then evicts a page whose reference bit is off.

With 32-bit virtual address, 4 KB page size, and 4
bytes per page table entry, the total page table size

is: # page table entries = 232 / 212 = 220.

Size of page table = 220 x 4bytes = 4MB (for every
process! There may be 100’s!)

Writes in Virtual Memory

March 2019 Virtual Memory 16

Access time difference between cache and main
memory is 10’s – 100’s cycles. Write-through with a
write buffer to hide the latency of the write from the
processor worked.

In a VM system, writes to disk take millions processor
cycles, so write-through is impractical.

Write-back, called copy back, is copying the page
back to disk when it is replaced in the memory.

Disk transfer time is small compared to access time,
so copy back is far more efficient than write-through.

March 2019 Virtual Memory 17

A write-back is still costly.

We would like to know whether at a replacement
the page needs to be copied back.

A dirty bit is added to the page table, being set
when any word in a page is written.

The dirty bit indicates whether the page needs to be
written out before its location in memory can be
given to another page.

18 March 2019 Virtual Memory

Hierarchical Paging

Modern computer support logical address space of 232
to 264, making page table excessively large.

Example: In 32-bit address with 4KB (212) page size,
page table may have 232 212 = 1M entries, 4byte each,
yielding 4MB physical space for a page table. ∎

We do not want to allocate the page table contiguously
in main memory.

A solution is to use a two-level paging algorithm, in
which the page table itself is also paged.

19 March 2019 Virtual Memory

Example: 32-bit logical address and 4KB page size.
Logical address is divided into 20-bit page # and 12-bit
page offset.

The page number is further divided into 10-bit page
number and 10-bit page offset. ∎

index into the
outer page table

displacement within
the page of the
inner page table

March 2019 Virtual Memory 20

Address translation for a two-level 32-bit paging.

𝟐𝟏𝟎entries

32-bit base
address

32-bit base
address

𝟐𝟏𝟎entries
𝟐𝟏𝟐 frame size

displacement

Instruction
or data

CPU generated

per-process
base register

March 2019 Virtual Memory 21

Two-level page-table (forward-mapped page table).

𝟐𝒑𝟏 𝟑𝟐-bit
entries

𝟐𝒑𝟏 pages in main memory

𝟐𝒑𝟐 entries per page

𝟐𝒅 words
in main
memory

Fast Address Translation: The TLB

March 2019 Virtual Memory 22

The page tables are stored in main memory. Every
memory access by a program is thus twice long:
• One access to obtain the physical address (from page table),
• a second access to get the data (elsewhere in memory).

Locality of reference to the page table can help:
• A translation for a virtual page number will probably be

needed again soon, because references to the words on
that page have both temporal and spatial locality.

A special cache, called Translation Look-aside Buffer
(TLB), keeps track of recently used translations.

March 2019 Virtual Memory 23

We access the TLB on every reference instead of the page table.
TLB must therefore include the valid, dirty and the reference bits.

TLB frame
frame
frame
frame

March 2019 Virtual Memory 24

A TLB miss can be either a true page fault or just a TLB miss. If
the page exists in memory, the processor loads the translation
from the page table into the TLB and tries the reference again.

Every reference looks up
the virtual page # in TLB.

TLB hit uses the physical
page # to form the address
and turns on the reference
bit. Write turns on the dirty
bit too.

In a true page fault the processor invokes the OS (exception).

TLB has much fewer entries than pages in main memory. TLB
misses are therefore much more frequent than page faults.

frame
frame
frame
frame

March 2019 Virtual Memory 25

At TLB miss we need to select a TLB entry to replace and copy
the reference and dirty bits back to the page table entry.
Those are the only TLB entry portion that can be changed.

Typical values for a TLB

• TLB size: 16–512 entries

• Block size: 1–2 page table entries (typically 4–8 bytes each)

• Hit time: 0.5–1 clock cycle

• Miss penalty: 10s–100s clock cycles

• Miss rate: 0.01%–1%

Write-back copies entries back from TLB at miss time rather
than when they are written (dirty, reference). It is very
efficient since TLB miss rate is small.

March 2019 Virtual Memory 26

Real TLB Read

TLB

cache

Physical address

Virtual address

March 2019 Virtual Memory 27

4 KB page 20 bit virtual page #

32 bit address Space

TLB entry is 64 bits:

20-bit tag (virtual page
for that TLB entry),
corresponding physical
page # (also 20 bits),
valid bit, dirty bit, and
other bookkeeping bits.

physical address generation

Fully associative 16-entries TLB,
shared between instruction and
data references.

March 2019 Virtual Memory 28

16KB cache

Detected cache hit

read from cache

Read and Cache Write-Through

March 2019 Virtual Memory 29

Cache
write-through

Best case

March 2019 Virtual Memory 30

What happens at MIPS TLB miss? First, the virtual page # of
the reference is saved in a special register (for the OS).

The OS handles the miss in SW (exception). The routine
indexes the page table using the virtual page # and the page
table register (stores the starting address of the active process
page table).

Using a special set of system instructions that can update the
TLB, the OS places the physical address from the page table
into the TLB.

TLB miss takes 13 clock cycles, assuming the OS code and the
page table entry are in the instruction and data caches.

A true page fault occurs if the page table entry does not have
a valid physical address.

VM, TLBs and Caches Integration

March 2019 Virtual Memory 31

VM and cache work together as a hierarchy. Data
must be in main memory if it is in the cache.

OS maintains this hierarchy by flushing the contents
of any page from the cache upon deciding to migrate
that page to disk.

The OS modifies the page tables and TLB accordingly.
An attempt to access any data on the page generates
a page fault.

In best case, a virtual address is translated by the TLB
and sent to the cache where the appropriate data is
found, retrieved, and sent back to the processor.

March 2019 Virtual Memory 32

In the worst case, a reference can miss all: the TLB,
the page table, and the cache.

Consider all the seven combinations of the three
events. State for each whether it can actually occur
and under what circumstances.

Virtual Caches

March 2020 Virtual Memory 33

All memory addresses were translated to physical
addresses before the cache was accessed.

The cache is thus physically indexed and physically
tagged, called also transparent cache.

Pro: Since the cache and the physical memory use the
same namespace, it can be entirely controlled by HW,
and the OS needs no intervene.

Con: Address translation is on critical path. Problem
for high clock speed, large application data (memory
size), larger TLB needed.

=

March 2020 Virtual Memory 34

Can the TLB be
eliminated from
the critical path?

At hit, time to
access memory
includes TLB and
cache accesses.
The two can be
pipelined.

March 2020 Virtual Memory 35

Note that the cache index involves both page offset and
frame number bits, but page bits are not translated.

If cache index
uses only page
offset bits, TLB is
eliminated from
the critical path.

=

March 2020 Virtual Memory 36

Con: Cache index cannot grow, same cache and frame
size. Cache capacity can grow only by increasing block
size and/or associativity.

Physically indexed virtually tagged eliminate TLB.

=

Index still cannot grow.

March 2020 Virtual Memory 37

Solved by translating a TLB slice (MIPS R6000).

=

partial frame
number bits

TLB less expensive
but on critical path.

March 2020 Virtual Memory 38

In virtually indexed virtually tagged translation (TLB)
is not needed anywhere.

=

March 2020 Virtual Memory 39

A TLB is needed on a cache miss. OS must translate
the virtual address and load the datum from the main
(physical) memory.

On a cache miss the TLB is not on the critical path and
hence it could be large.

Virtual tagging may cause a page to be shared between
programs. Aliasing may occur by two virtual addresses
for the same frame.

A word may be cached by two different programs,
allowing one to write data without the other being
aware of it.

March 2020 Virtual Memory 40

A compromise is by virtually indexed physically
tagged cache.

Tag extraction by
cache indexing and
tag translation of
virtual address are
done in parallel.

=

March 2020 Virtual Memory 41

It attempts to achieve the performance of virtually
indexed caches with the architecturally simpler
physically tagged cache.

Tag extraction by cache indexing and tag translation
of the virtual address are done in parallel.

Unlike physically indexed caches, management is still
necessary, because the cache is virtually indexed.

