
Instruction-Level Parallelism
compiler techniques and branch prediction

prepared and instructed by
 Shmuel Wimer

Eng. Faculty, Bar-Ilan University

April 2019 Instruction-Level Parallelism 1 1

Concepts and Challenges

April 2019 Instruction-Level Parallelism 1 2

The potential overlap among instructions is called
instruction-level parallelism (ILP).

Two approaches exploiting ILP:
• Hardware discovers and exploit the parallelism dynamically.
• Software finds parallelism, statically at compile time.

CPI for a pipelined processor:
Ideal pipeline CPI + Structural stalls + Data hazard stalls +
Control stalls

Basic block: a straight-line code with no branches.
• Typical size between three to six instructions.
• Too small to exploit significant amount of parallelism.
• We must exploit ILP across multiple basic blocks.

April 2019 Instruction-Level Parallelism 1 3

Loop-level parallelism exploits parallelism among
iterations of a loop. A completely parallel loop adding
two 1000-element arrays:

Within an iteration there is no opportunity for overlap,
but every iteration can overlap with any other iteration.

The loop can be unrolled either statically by compiler or
dynamically by hardware.

Vector processing is also possible. Supported in DSP,
graphics, and multimedia applications.

Data Dependences and Hazards

April 2019 Instruction-Level Parallelism 1 4

If two instructions are parallel, they can be executed
simultaneously in a pipeline without causing any
stalls, assuming the pipeline has sufficient resources.

Two dependent instructions must be executed in
order, but can often be partially overlapped.

Three types of dependences: data dependences,
name dependences, and control dependences.

Instruction 𝒋 is data dependent on instruction 𝒊 if:
• 𝒊 produces a result that may be used by 𝒋, or
• 𝒋 is data dependent on an instruction 𝒌, and 𝒌 is data

dependent on 𝒊 (transitivity).

April 2019 Instruction-Level Parallelism 1 5

The following loop increments a vector of values in
memory by a scalar in register F2, starting at 0(R1),
with the last element at 8(R2)).

Since between two data dependent instructions there
is a chain of one or more data hazards, they cannot
be executed simultaneously or completely overlap.

The data dependences in this code sequence involve
both floating-point and integer data.

April 2019 Instruction-Level Parallelism 1 6

Data dependence conveys:

• the possibility of a hazard,
• the order in which results must be calculated, and
• an upper bound on how much parallelism can be exploited.

Detecting dependence of registers is straightforward.
• Register names are fixed in the instructions.

Dependences that flow through memory locations are
more difficult to detect.

• Two addresses may refer to the same location but look
different: For example, 100(R4) and 20(R6).

• The effective address of a load or store may change from one
execution of the instruction to another (so that 100(R4) and
20(R6) may be different).

Name Dependences

April 2019 Instruction-Level Parallelism 1 7

A name dependence occurs when two instructions
use the same register or memory location, called
name, but there is no flow of data between the
instructions. If 𝒊 precedes 𝒋 in program order:

Anti dependence between 𝒊 and 𝒋 occurs when 𝒋
writes a register or memory location that 𝒊 reads.

The original ordering must be preserved to ensure
that 𝒊 reads the correct value.

April 2019 Instruction-Level Parallelism 1 8

Output dependence occurs when 𝒊 and 𝒋 write the
same register or memory location. Their ordering must
be preserved to ensure proper value written by 𝒋.

Name dependence is not a true dependence.
• The instructions involved can execute simultaneously or be

reordered.
• The name (register # or memory location) is changed so the

instructions do not conflict.

Register renaming can be more easily done.
• Done either statically by a compiler or dynamically by the

hardware.

Data Hazards

April 2019 Instruction-Level Parallelism 1 9

A hazard is created whenever a dependence between
instructions is close enough.
• Program order must be preserved.

The goal of both SW and HW techniques is to exploit
parallelism by preserving program order only where it
affects the outcome of the program.
• Detecting and avoiding hazards ensures that necessary

program order is preserved.

Data hazards are classified depending on the order of
read and write accesses in the instructions. Consider
two instructions 𝒊 and 𝒋, with 𝒊 preceding 𝒋

April 2019 Instruction-Level Parallelism 1 10

The possible data hazards are:

WAW (write after write). 𝒋 tries to write an operand
before it is written by 𝒊.

• Writes are performed in the wrong order, leaving the value
written by 𝒊 rather than by 𝒋.

• Corresponds to an output dependence.

• Present only in pipelines that write in more than one pipe
stage or allow an instruction to proceed even when a
previous instruction is stalled.

RAW (read after write). 𝒋 tries to read a source before 𝒊
writes it.

• The most common, corresponding to a true data dependence.

• Program order must be preserved.

April 2019 Instruction-Level Parallelism 1 11

WAR (write after read). 𝒋 tries to write a destination
before it is read by 𝒊, so 𝒊 incorrectly gets the new
value.

• Arises from anti dependence.

• Cannot occur in most static issue pipelines
because all reads are early (in ID) and all writes are
late (in WB).

• Occurs when there are some instructions that
write results early in the pipeline and other
instructions that read a source late in the pipeline.

• Occurs also when instructions are reordered.

Control Dependences

April 2019 Instruction-Level Parallelism 1 12

A control dependence determines the ordering of 𝒊
with respect to a branch so that 𝒊 is executed in correct
order and only when it should be.

There are two constraints imposed by control
dependences:

• An instruction that is control dependent on a branch cannot
be moved before the branch so that its execution is no longer
controlled by the branch.

• An instruction that is not control dependent on a branch
cannot be moved after the branch so that its execution is
controlled by the branch.

April 2019 Instruction-Level Parallelism 1 13

Consider this code:

If we do not maintain the data dependence involving
R2, the result of the program can be changed.

It is not data dependence preventing interchanging
the BEQZ and the LW; it is only the control
dependence.

If we ignore the control dependence and move the
load before the branch, the load may cause a memory
protection exception. (why?)

Compiler Techniques for Exposing ILP

April 2019 Instruction-Level Parallelism 1 14

Pipeline is kept full by finding sequences of unrelated
instructions that can be overlapped in the pipeline.

To avoid stall, a dependent instruction must be
separated from the source by a distance in clock
cycles equal to the pipeline latency of that source.

Example: Latencies of FP operations

April 2019 Instruction-Level Parallelism 1 15

Code adding
scalar to vector:

Straightforward MIPS assembly code:

R1 is initially the top element address in the array.
F2 contains the scalar value 𝑠.
R2 is pre computed, so that 8(R2) is the array bottom.

April 2019 Instruction-Level Parallelism 1 16

Without any scheduling
the loop takes 9 cycles:

Scheduling the loop
obtains only two stalls,
taking 7 cycles:

April 2019 Instruction-Level Parallelism 1 17

The actual work on the array is just 3 7 cycles (load,
add, and store). The other 4 are loop overhead. Their
elimination requires more operations relative to the
overhead.

Loop unrolling replicating the loop body multiple
times.

• Adjustment of the loop termination code is required.

• Used also to improve scheduling.

Instruction replication is insufficient. Different registers
for each replication are required.

Required number of registers increases.

Unrolled code (not rescheduled)

April 2019 Instruction-Level Parallelism 1 18

2 stalls

2 stalls

2 stalls

2 stalls

1 stall

1 stall

1 stall

1 stall

1 stall

Stalls are still there.
Run in 27 clock cycles, 6.75 per block.

April 2019 Instruction-Level Parallelism 1 19

Unrolled and rescheduled code

No stalls are required!

Execution dropped to 14
clock cycles, 3.5 per
block.

Compared with 9 per
block before unrolling or
scheduling and 7 when
scheduled but not
unrolled.

Is it a hazard?

April 2019 Instruction-Level Parallelism 1 20

Problem: The number of loop iterations 𝑛 is usually
unknown. We would like to unroll the loop to make 𝑘
copies of its body.

Two consecutive loops are generated Instead.

The first executes 𝑛 mod 𝑘 times and has a body that
is the original loop.

The second is the unrolled body surrounded by an
outer loop that iterates 𝑛 𝑘 times.

For large 𝑛, most of the execution time will be spent
in the unrolled loop body.

Branch Prediction

April 2019 Instruction-Level Parallelism 1 21

performance losses can be reduced by predicting how
branches will behave.

Branch prediction (BP) can be done statically at
compilation (SW) and dynamically at execution time
(HW).

The simplest static scheme is to predict a branch as
taken. Misprediction equal to the untaken frequency
(34% for the SPEC benchmark).

BP based on profiling is more accurate.

April 2019 Instruction-Level Parallelism 1 22

Misprediction on SPEC92 for a profile-based predictor

Dynamic Branch Prediction

April 2019 Instruction-Level Parallelism 1 23

The simplest is a BP buffer, a small 1-bit memory
indexed by the LSBs of the address of the branch
instruction (no tags).

Useful only to reduce the branch delay (stalls) when it
is longer than the time to compute the possible target
PC address (e.g. 𝑖𝑓 sin (𝑥) < 0).

BP may have been put there by another branch that
has the same LSBs address bits!

Fetching begins in the predicted direction. If it was
wrong, the BP bit is inverted and stored back.

April 2019 Instruction-Level Parallelism 1 24

Problem: Even if almost always taken, we will likely
predict incorrectly twice. (why?)

Example: Consider a certain loop. Upon exiting the
loop a miss prediction occurs. Re-entry of that loop will
cause another miss prediction.

Solution:
saturation counter.

April 2019 Instruction-Level Parallelism 1 25

It is a 2-bit saturation counter. It must miss twice
before it is changed. Such counter is stored at every
entry of the BP buffer.

It can be implemented as a special cache, read at IF
(why?), or by adding two special bits to the I-cache.

An 𝑛-bit counter is also possible. When the counter is
less than half, counter ≤ 2𝑛−1 − 1 , not taken is
predicted; otherwise, taken is predicted.

The counter is then updated according to the real
branch decision.

2-bit do almost as well, thus used by most systems.

Correlating Branch Predictors

April 2019 Instruction-Level Parallelism 1 26

2-bit BP uses only the recent behavior of a single
branch for a decision.

Accuracy can be improved if the recent behavior of
other branches are considered.

Consider the code:

Let aa and bb be assigned to registers R1 and R2, and
label the three branches b1, b2, and b3. The compiler
generates the typical MIPS code:

April 2019 Instruction-Level Parallelism 1 27

The behavior of b3 is correlated with that of b1 and b2.

A predictor using only the behavior of a single branch
to predict its outcome is blind of this behavior.

Correlating or two-level predictors add information
about the most recent branches to decide on a branch.

April 2019 Instruction-Level Parallelism 1 28

An 𝑚, 𝑛 BP uses the last 𝑚 branches to choose from
2𝑚 branch predictors, each of which is an 𝑛 -bit
predictor (counter) for a single branch.

More accurate than 2-bit and requires simple HW.

The global history of the most recent 𝑚 branches is
recorded in an 𝑚-bit shift register.

A (2𝑚+𝑟)-size BP buffer is indexed by 𝑚 + 𝑟 -bit using
the 𝑟 LSBs branch address and 𝑚-bit recent history.

For example, a 1,2 BP uses the behavior of the last
branch to choose from among a pair of 2-bit BPs in
predicting the a particular branch.

April 2019 Instruction-Level Parallelism 1 29

For example, in a 2,2 BP buffer with 64 total entries,
the 6-bit index of a 64 entries is formed by the 4 LSBs
of the branch address plus 2 global bits obtained from
the two most recent branches behavior.

For a fair comparison of the performance of BPs, the
same number of state bits are used.

The number of bits in an 𝑚,𝑛 predictor is:
2𝑚 × 𝑛 × # BP entries selected by the branch address
= 2𝑚+𝑟× 𝑛.

A 2-bit predictor w/o global history is a 0,2 predictor.

April 2019 Instruction-Level Parallelism 1 30

Example: How many bits are in the 0,2 BP with 4K
entries? How many entries are in a 2,2 predictor
with the same number of bits?

A 4K-entries 0,2 BP has 20 × 2 × 4K=8K bits.

A 2,2 BP having a total of 8K bits satisfies:

2𝑚 × 𝑛 × # BP entries selected by the branch address.

22 × 2 × # BP entries selected by the branch address
= 8K bits.

The # of prediction entries is therefore 1K.

April 2019 Instruction-Level Parallelism 1 31

not much
improvement

significant
improvement

Tournament Predictors

April 2019 Instruction-Level Parallelism 1 32

Tournament predictors combine predictors based on
global and local information.

They achieve better accuracy and effectively use very
large numbers of prediction bits.

Tournament BPs use a 2-bit saturating counter per
branch to select between two different BP (local,
global), based on which was most effective in recent
predictions.

As in a simple 2-bit predictor, the saturating counter
requires two mispredictions before changing the
identity of the preferred BP.

April 2019 Instruction-Level Parallelism 1 33

April 2019 Instruction-Level Parallelism 1 34

1 𝑥1 𝑥𝑖 𝑥𝑛

𝑦

𝑤0 𝑤1 𝑤𝑖 𝑤𝑛

Perceptron-Based Branch Predictor

𝑦 = 𝑤0+ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1

𝑥𝑖 are ±1 bits of global recent 𝑛-bit branch history.

𝑡 = ±1 is the real branch outcome (taken, not taken).

April 2019 Instruction-Level Parallelism 1 35

Since 𝑡 = ±1 and 𝑥𝑖 = ±1, 𝑤𝑖 increases when the
branch outcome agrees with 𝑥𝑖 (positive correlation)
and decreases on disagreement (negative correlation).

Long lasting positive or negative correlation yield large
weights, hence large influence on the prediction.

Weak correlation maintains the weight close to 0,
contributing a little to the output of the perceptron.

If sign 𝑦 ≠ 𝑡 || 𝑦 < 𝜽 {

 𝑤𝑖 = 𝑤𝑖 + 𝑡𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛;
}

Weights update:
𝜽 training threshold

April 2019 Instruction-Level Parallelism 1 36

April 2019 Instruction-Level Parallelism 1 37

History length 𝑛 = 10 − 100.
The longer the more accurate predictions, but more
memory for weights (per table entry).

10%
m

is
p

re
d

ic
ti

o
n

5%

history length 𝑛

60 10

