
Instruction-Level Parallelism 
dynamic scheduling 

prepared and instructed by 
 Shmuel Wimer 

Eng. Faculty, Bar-Ilan University 

Jan 2021 Instruction-Level Parallelism 2 1 



Dynamic Scheduling 

Jan 2021 Instruction-Level Parallelism 2 2 

Reorder instruction execution to reduce stalls while 
maintaining data flow and exception behavior. 

• Enables handling some cases when dependences are 
unknown at compile time (e.g. memory reference). 

• Simplifies the compiler. 

• Allows the processor to tolerate cache misses delays by 
executing other code while waiting for miss resolution. 

• Allows code compiled for one pipeline to run efficiently on a 
different pipeline. 

• Increases significantly the hardware complexity. 



Jan 2021 Instruction-Level Parallelism 2 3 

Ordinary pipeline issues and executes instructions in-
line. 

• If instruction 𝒋  depends on instruction 𝒊 , all 
instructions after 𝒋 must be stalled until 𝒊 is finished 
and 𝒋 can execute.  

SUB.D is independent, but is not executed because 
ADD.D dependence on DIV.D stalls the  pipeline. 



Out-Of-Order Execution 

Jan 2021 Instruction-Level Parallelism 2 4 

Instructions still issued in-order, but start execution as 
soon as their operands are available out-of-order 
(OOO), implying out-of-order completion. 

OOO introduces possibilities of WAR and WAW 
hazards, not existing in in-order pipeline. 

Executing SUB.D before ADD.D (waits for F0) causes a 
WAR hazard.  

??? 



Jan 2021 Instruction-Level Parallelism 2 5 

WAW also occurs if F6 is written by MUL.D before 
ADD.D. 

Register renaming avoids these hazards. 

OOO completion must preserve exception behavior to 
happen exactly as by in-order. 

• No instruction should raise an exception until the 
CPU knows that it will be surely executed. 

OOO splits the ID into two stages: 

1. Issue—Decodes instructions, checks for structural 
hazards. 

2. Read operands—Waits until no data hazards, then 
reads operands. 



Jan 2021 Instruction-Level Parallelism 2 6 

IF precedes issue, fetching into an instructions queue, 
from where Instructions are issued. 

EX follows read operands and may take multiple cycles, 
depending on the operation. 

Pipeline should support simultaneous execution of 
multiple instructions.  

• Without it a major advantage of OOO is lost. 

Instructions are issued in-order, but can enter 
execution OOO. 

OOO HW implements Tomasulo’s Algorithm. 



Tomasulo’s Dynamic Scheduling  

Jan 2021 Instruction-Level Parallelism 2 7 

Invented for IBM 360/91 FPU by Robert Tomasulo. 
• Eliminates RAW hazards by tracking operands 

readiness. 
• Eliminates WAR and WAW hazards by register 

renaming. 

Assume FPU and load-store unit, use MIPS ISA. 

• Rename all destination registers, including those 
with pending read and write for earlier instructions. 

• OOO writes do not affect instructions depending on 
earlier value of an operand. 



WAR and WAW are eliminated by register renaming. 

Subsequent usage of F8 must be replaced by T. 

Very difficult for compiler (branches may intervene). 
Tomasulo’s can.  
Jan 2021 Instruction-Level Parallelism 2 8 

WAR hazard,  and WAW hazard if MUL.D finishes before 
ADD.D (called name dependence). 

True data dependencies (RAW hazards). 



This serves as 
IF/ID register 

Jan 2021 Instruction-Level Parallelism 2 9 

H
ard

w
are

 Im
p

le
m

e
n

tatio
n

  



Jan 2021 Instruction-Level Parallelism 2 10 

Instructions are sent from the instruction unit into a 
queue from where they issue in FIFO order. 

RSs include the operations and the actual operands, 
together with information for hazard detection and 
resolution. 

Load buffers: 
1. hold the components of the effective address until 

it is computed, 
2. track outstanding loads waiting on memory, and 
3. hold the results of completed loads, waiting for the 

CDB. 



Jan 2021 Instruction-Level Parallelism 2 11 

Store buffers: 
1. hold the components of the effective address until 

it is computed, 
2. hold the destination addresses of outstanding 

stores waiting for the data value to store, and 
3. hold the address and data to store until the 

memory unit is available. 

All results of the FPU and load unit are put on the CDB, 
which goes to the FP registers, to the RSs and to the 
store buffers. 

The adder implements also subtraction and the 
multiplier implements also division. 



Jan 2021 Instruction-Level Parallelism 2 12 

Reservation Station (RS) implements the renaming, 
buffering the operands of instructions waiting to issue. 

RS fetches and buffers an operand as soon as it is ready, 
eliminating the need to get it from the Reg. File (RF).  

Pending instruction designate the RS that will provide 
their operands. 

pending operands are renamed at issue from RF 
specifier to RS. 

When successive writes to RF (WAW) overlap in 
execution, only the latest issued updates the RF. 



Jan 2021 Instruction-Level Parallelism 2 13 

There are more RSs than real registers, so it can 
eliminate hazards that compiler could not. 

In ordinary CPU hazard detection and execution control 
was centralized. Here it is distributed. 

The info at each RS of a functional unit (FU) determines 
when an instruction can start execution at that unit. 

RS passes results directly to the FUs where the results 
are required through Common Data Bus (CDB) rather 
than going through RF.  

Pipeline issuing multiple instructions and supporting 
multiple execution units requires more than one CDB. 



The Steps of an Instruction 

Jan 2021 Instruction-Level Parallelism 2 14 

1. Issue 

Get next instruction from the head of the queue(FIFO) 
and hence issued in-order. 

If an empty matched RS is available, issue the 
instruction to that RS together with the operands if 
they are currently exist in RF. 

If a matched RS is not available, there is a structural 
hazard. Instruction in queue stalls until RS is freed. 

If not in RF, keep track of FU producing them. This steps 
renames registers, eliminating WAR and WAW hazards. 



Jan 2021 Instruction-Level Parallelism 2 15 

2. Execute 

FP, Int: If an operand is not yet available, monitor CDB 
for its readiness. 

When available, it is placed at any RS awaiting it. When 
all operation’s operands are available it is executed. 

By delaying operations until all their operands are 
available RAW hazards are avoided. 

Several instructions could become ready on the same 
CLK cycle.  

Independent units can start execution in same cycle. 



Jan 2021 Instruction-Level Parallelism 2 16 

If few instructions are ready for the same FPU, choice 
can be arbitrary.  

Load and stores: Require two-step execution process. 

The 1st step computes the effective address when the 
register is available. The address is placed in the load or 
store buffer. 

Load is executed as soon as memory unit is available. 

Store waits for the value before sent to memory unit. 

Load and stores are maintained in the program order 
to prevent hazards through memory.   



Jan 2021 Instruction-Level Parallelism 2 17 

To preserve exception behavior, instructions do not 
initiate execution until all preceding branches in 
program order have completed.  

The CPU must know that the BP is correct before 
allowing execution of instruction after BP (in program). 

This guarantees that only instructions that would really 
be executed raise an exception.  

Speculation will provide more complete solution 



Jan 2021 Instruction-Level Parallelism 2 18 

3. Write Results 

When the result is available, put it on the CDB and from 
there into the RF and any RS waiting for the result.  

Stores are buffered into the store buffer until both the 
value to be stored and the store address are available.  

The result is written from store buffer as soon as 
memory unit is free.  



The Reservation Station Data Structure  

Jan 2021 Instruction-Level Parallelism 2 19 

Each RS has seven fields: 

• Op  – The operation to perform on the source 
operands S1 and S2. 

• Qj , Qk – The RS that will produce S1 and S2. Qj = 0 
or Qk = 0 indicates that the source operands are 
available in Vj  or Vk , or operand is unnecessary. 

• Vj , Vk  – The values of S1 and S2. 

• A – Holds information for the memory address 
calculation for load or store. 

• Busy – This RS and its functional unit are occupied. 



Jan 2021 Instruction-Level Parallelism 2 20 

Load and store buffers have field A , holding the 
effective address once the first execution step (of two) 
is completed.  

Each RF register has the field: 

• Qi – # of RS containing the operation whose result 
should be stored into the register. 

Qi=0 if no active instruction is computing a result 
destined for this register. Register contents is valid. 



Jan 2021 Instruction-Level Parallelism 2 21 

Example: What is 
Tomasulo’s DS when the 
first load has completed  
and written its result? 

Instruction status is 
not a part of the 
hardware 

Instruction status 



Jan 2021 Instruction-Level Parallelism 2 22 

Register status 



Jan 2021 Instruction-Level Parallelism 2 23 

WAR hazard involving R6 
is eliminated in one of 
two ways. 

If L.D completed, Vk of DIV.D stores the result and is 
independent of ADD.D (as shown in instruction status). 

If L.D not completed, Qk of DIV.D points to Load1 RS 
and DIV.D would be independent of ADD.D. 

In either case ADD.D can issue and execute without 
affecting DIV.D.  



Jan 2021 Instruction-Level Parallelism 2 24 

Example: Assume the following latencies: load 1 cycle, 
add 2 cycles, multiply 6 cycles and divide 12 cycles. 

What the status tables look like when the MUL.D is 
ready to write result? 

1 

1 

6 

2 

12 

2 

Instruction status 
Latency 

Homework: study the example below. 



Jan 2021 Instruction-Level Parallelism 2 25 

Add has been completed since the operands of DIV.D 
were copied, thereby avoiding the WAR hazard in F6. 

Register 
status 

Load1 

Load1 

Even if the load of F6 was delayed, the add into F6 
could be executed without triggering a WAW hazard. 



Station 
r empty 

Wait 
until 

Action or bookkeeping Instruction 
state 

Issue FP 
operation 

i 

Jan 2021 Instruction-Level Parallelism 2 26 

rs and rt are the source registers. rd is the destination 
register. r is the reservation station (RS) or buffer that 
the instruction is assigned to. Regs ∙  is the register file, 
RegisterStat ∙  is the register status. 

Tomasulo Algorithm Details 
Homework: study the details below. 



Jan 2021 Instruction-Level Parallelism 2 27 

If the operands are available in the registers, they are 
stored in the V fields. Otherwise, the Q fields are set to 
indicate the RS that will produce the values needed as 
source operands. 

The instruction waits at the RS until both its operands 
are available, indicated by zero in the Q fields. 

The Q fields are set to zero either when this instruction 
is issued, or when an instruction on which this 
instruction depends completes and does its write back. 

When an instruction has finished execution and the 
CDB is available, it can do its write back.  



Jan 2021 Instruction-Level Parallelism 2 28 

imm is the sign-extended immediate field. 



Jan 2021 Instruction-Level Parallelism 2 29 

Compute results. Operands 
are in Vj and Vk ; 

RS r . Qj=0 and 
RS r . Qk=0  

Execute FP 
operation 

RS r . A
← RS r . Vj+RS r . A ; 
 

RS r . Qj=0  
and r is head of 
load-store queue 

Execute 
Load-store 
step 1 

Read from Mem RS r . A  ; Load step 1 
complete 

Execute Load 
step 2 

Wait until Action or bookkeeping Instruction state 

All the buffers, registers, and RSs whose value of Qj or 
Qk is the same as the completing RS, update their 
values from the CDB and mark their Q fields with zero 
to indicate that values have been received. 



Jan 2021 Instruction-Level Parallelism 2 30 

  ∀x (if RegisterStat x .Qi=r  {Regs x ←result ; 
             RegisterStat x .Qi←0 } ) ; 
∀x (if RS x .Qj=r  {RS x .Vj←result ; 
             RS x .Qj←0 } ) ; 
∀x (if RS x .Qk=r  {RS x .Vk←result ; 
             RS x .Qk←0 } ) ; 
RS r .Busy←No ; 

Execution 
complete at r and 
CDB available 

Write result 
of FP 
operation or 
load 

Mem RS r .A ←RS r .Vk ; 
RS r .Busy←No ; 

Execution 
complete at r and 
RS r .Qk=0 

Write result 
of store 

Wait 
until 

Action or bookkeeping Instruction 
state 

The CDB broadcasts its result to many destinations in a 
single clock cycle. 

If the waiting instructions have their operands, they can 
all begin execution on the next clock cycle. 



A Loop Example 

Jan 2021 Instruction-Level Parallelism 2 31 

The power of Tomasulo’s algorithm in handling WAR 
and WAW hazards is demonstrated in loops. 

If branched are predicted taken, RS usage allows 
multiple executions of the loop to proceed at once.  

The loop is unrolled dynamically by HW, using the RSs 
obtained by renaming to act as additional registers. 

No need for compiler unrolling. 



Jan 2021 Instruction-Level Parallelism 2 32 

Let all the instructions in two successive iterations be 
issued, but assume that none of the operations within 
the loop has completed. 

The integer ALU operation is ignored, and it is assumed 
the branch was predicted as taken. 

Instruction status 



0 

0 

0 

Jan 2021 Instruction-Level Parallelism 2 33 

Reservation station 



Jan 2021 Instruction-Level Parallelism 2 34 

Register status 

Was Load1 before Was Mult1 before 

Two copies of the loop could be sustained with a CPI 
close to 1.0, provided MULT completes in 4 clock cycles.  

For 6 cycles MULT, more iteration needs be processed 
before steady state is reached, requiring more FP RSs. 



Jan 2021 Instruction-Level Parallelism 2 35 

OOO is safe for access of different addresses. 

In same address, if load precedes store, interchange 
results in a WAR hazard. 

If store precedes load, interchange results in a RAW 
hazard. 

Interchange of two stores results in a WAW hazard.  

To determine if load can be executed, CPU checks 
(through A fields) whether any preceding store (in code 
order) shares the same memory address. 

Hazards Through Memory 



Jan 2021 Instruction-Level Parallelism 2 36 

If conflict is found, load is not sent to the load buffer 
until the conflicting store completes.  

CPU must have computed the A field associated with 
any earlier memory operation. 

Simple solution is to perform the effective address 
calculations (A field) in code order. 

Stores operate similarly, except that CPU checks 
conflicts in both load and store buffers. 

Store must wait until no earlier unexecuted loads or 
stores sharing the same memory address.  

Note that loads can be reordered freely. (why?) 



Jan 2021 Instruction-Level Parallelism 2 37 

Dynamic scheduling yields very high performance, 
provided branches are predicted accurately.  The major 
drawback is the HW complexity. 

Each RS must contain a high speed associative buffer, 
and complex control logic. 

Single CDB is a bottleneck. More CDBs can be added. 

Since each CDB must interact with each RS, the 
associative tag-matching HW must be duplicated at 
each RS for each CDB. 

Summary: Tomasulo’s alg. combines two techniques: 
renaming of the ISA registers to a larger set, and 
buffering of source operands from the RF. 



Jan 2021 Instruction-Level Parallelism 2 38 

Tomasulo’s is widely adopted in multiple-issue 
processors since 1990s. 

It achieves high performance without requiring the 
compiler to target code to a specific pipeline structure. 

Cache misses is a major motivations for dynamic 
scheduling. 

OOO execution allows CPU continue executing 
instructions while awaiting the cache miss completion, 
hiding some of the miss penalty. 

Dynamic scheduling is a key component of speculation. 


