
Virtual Memory
prepared and instructed by

 Shmuel Wimer
Eng. Faculty, Bar-Ilan University

March 2019 Virtual Memory 1

Motivation

March 2019 Virtual Memory 2

Virtual memory (VM): A technique using the main
memory as a “cache” for secondary storage (disk).

A collection of programs running simultaneously on a
computer requires memory that is much larger than
the main memory.

VM allows a single user’s program to exceed the size of
main memory.

Main memory needs contain only the active portions
of the programs, possible by the principle of locality.

March 2019 Virtual Memory 3

Compiler allocates each program its own address space
without awareness of where, when and how they will
run.

VM protects the programs from each other using the
portions of main memory that have been assigned to it.

VM translates the program’s address space to physical
addresses, enforcing protection of a program’s address
space from other programs.

A VM block is called a page, and a virtual memory miss
is called a page fault.

March 2019 Virtual Memory 4

virtu
al p

ages

p
h

ysical p
ages

VM produces virtual address, translated by a SW and
HW combination to physical address.

Virtual to Physical Address Mapping

March 2019 Virtual Memory 5

4KB page size 220 virtual
pages

4GB

4KB page size (frame) 218 physical
pages (frames)

1GB

Illusion of unbounded amount of VM.

Design Choices in VM

March 2019 Virtual Memory 6

Disk access takes millions of clock cycles! Pages
should be large to amortize disk access time.

1 KB (embedded), 16 KB (PC) to 64 KB (severs).

Minimize page faults by fully associative placement of
pages in memory.

Handle page faults and placement by SW algorithms
since overhead is small compared to disk access time.

Write-through does not work for VM, since writes
take too long. Uses write-back.

Page Table: Placing and Finding Pages

March 2019 Virtual Memory 7

Reducing page fault frequency is critical.

Operating system (OS) maps VM page to physical
frame (associative placement) with smart algorithms
and complex data structures tracking page usage.

The page table is stored in memory.

Contains the virtual to physical address translations.

Indexed by the virtual page address.

Table’s entry is the frame address if the page is
presently in memory.

March 2019 Virtual Memory 8

Program’s page table location in memory is stored in
page table register (HW) pointing its start address.

Page table + PC + ISA Regs specify the state of a
program (process).

When OS executes another program on CPU (active
process) the state of former program (inactive
process) is saved.

Enables the suspended program to resume execution
by loading its state in CPU, including PC.

OS is handling the program swap.

OS algorithm
determines
the physical
page number.

March 2019 Virtual Memory 9

Each process
has such
register.

March 2019 Virtual Memory 10

The process’s main memory address space is defined
by its page table, also residing in main memory.

OS loads only the page table register, pointing the
process’s associated page table.

OS allocates the physical memory and updates the
page tables.

It avoids collision of the virtual address spaces of
different processes.

Separate page tables provide protection of one
process from another.

March 2019 Virtual Memory 11

OS creates the space on disk for all the pages of a
process when it creates the process.

This disk space is called the swap space.

OS also creates a data structure to record where each
virtual page is stored on disk.

It may be part of the page table or an auxiliary data
structure indexed in the same way as the page table.

March 2019 Virtual Memory 12

The page table maps each VM page to either a page in
main memory or a page stored on disk.

frame
frame
frame
frame

Virtual page
number is used
to index the
page table.

Valid bit 0: the page
currently resides only
on disk, at a specified
disk address.

March 2019 Virtual Memory 13

OS handles data structure to track which processes
and which virtual addresses use each physical page.

OS is another process, and these tables also reside
in main memory.

When all the pages in main memory are in use, the
OS chooses a page to replace. Replaced pages are
written to swap space on the disk.

LRU minimizes page faults but too expensive,
requiring update of data structure on every memory
reference.

Approximation is used instead.

March 2019 Virtual Memory 14

Set a Use bit (reference bit) (in HW) whenever a
page is accessed.

OS periodically clears use bits, determining which
pages were touched during a certain time period.

OS then evicts a page whose reference bit is off.

With 32-bit virtual address, 4 KB page size, and 4
bytes per page table entry, the total page table size

is: # page table entries = 232 / 212 = 220.

Size of page table = 220 x 4bytes = 4MB (for every
process! There may be 100’s!)

Writes in Virtual Memory

March 2019 Virtual Memory 15

Access time between cache and main memory is 10s
– 100s cycles. Write-through with write buffer hided
this latency.

In a VM writes to disk take millions CPU cycles, so
write-through is impractical.

Write-back, called copy back, is copying the page
back to disk when it is replaced in the memory.

Disk transfer time is small compared to access time,
so copy back is far more efficient than write-through.

March 2019 Virtual Memory 16

A write-back is still costly.

We would like to know whether at a replacement
the page needs to be copied back.

A dirty bit is added to the page table, being set
when any word in a page is written.

Dirty bit indicates whether the page should be
written to disk before its location in memory is given
to another page.

17 March 2019 Virtual Memory

Hierarchical Paging
Modern computer support logical address space of 232
to 264, making page table excessively large.

Example: In 32-bit address with 4KB (212) page size,
page table may have 232 212 = 1M entries, 4byte each,
yielding 4MB physical space for a single page table. ∎

We do not want to allocate the page table contiguously
in main memory.

A solution is to use a two-level paging algorithm, in
which the page table itself is also paged.

18 March 2019 Virtual Memory

Example: 32-bit logical address and 4KB page size.
Logical address is divided into 20-bit page # and 12-bit
page offset.

The page number is further divided into 10-bit outer
part and 10-bit inner part. ∎

index into the
outer page table

displacement within
the page of the
inner page table

March 2019 Virtual Memory 19

Address translation for a two-level 32-bit paging.

𝟐𝟏𝟎entries

32-bit base
address

32-bit base
address

𝟐𝟏𝟎entries
𝟐𝟏𝟐 frame size

displacement

Instruction
or data

CPU generated

per-process
base register

March 2019 Virtual Memory 20

Two-level page-table (forward-mapped page table).

𝟐𝒑𝟏 𝟑𝟐-bit
entries

𝟐𝒑𝟏 pages in main memory

𝟐𝒑𝟐 entries per page

𝟐𝒅 words
in main
memory

TLB: Fast Address Translation

March 2019 Virtual Memory 21

Since page tables are stored in main memory, every
memory access by a program is twice long:
• access to get physical address (from page table),
• access to get the data (elsewhere in memory).

Locality of reference to page table can help:
• Since words of that page have temporal and spatial

locality, same virtual-physical translation will be
needed soon.

A special cache, called Translation Look-aside Buffer
(TLB), keeps track of recently used translations.

Fully
associative
cache

March 2019 Virtual Memory 22

Access TLB on every reference instead of page table. TLB must
therefore include the valid, dirty and the reference bits.

TLB frame
frame
frame
frame

March 2019 Virtual Memory 23

Every reference looks up the virtual page # in TLB.

TLB hit uses the physical page # to form the address
and turns on the reference bit. Write turns on the
dirty bit too.

frame
frame

frame
frame

March 2019 Virtual Memory 24

TLB miss can be either a true page fault or just a TLB
miss.

If the page exists in memory, the processor loads the
translation from the page table into the TLB and tries
the reference again.

True page fault is handled by the OS (exception).

TLB has far fewer entries than pages are in main
memory. Hence TLB misses are much more frequent
than page faults.

March 2019 Virtual Memory 25

TLB miss need to select a TLB entry to replace and
copy the reference and dirty bits back to the page
table entry.

These are the only TLB entry portion that can be
changed.

Typical TLB parameters

• TLB size: 16–512 entries

• Block size: 1–2 page table entries (4–8 bytes)

• Hit time: 0.5–1 clock cycle

• Miss penalty: 10s–100s clock cycles

• Miss rate: 0.01%–1%

March 2019 Virtual Memory 26

Real TLB Read

TLB

cache

Physical address

Virtual address

March 2019 Virtual Memory 27

4 KB page 20 bit virtual page #

32 bit address Space

TLB entry is 64 bits:

20-bit tag (virtual page
for that TLB entry),
corresponding physical
page # (also 20 bits),
valid bit, dirty bit, and
other bookkeeping bits.

physical address generation

Fully associative 16-entries TLB,
shared between instruction and
data references.

March 2019 Virtual Memory 28

16KB cache

Detected cache hit

read from cache

Read and Cache Write-Through

March 2019 Virtual Memory 29

Cache
write-through

Best case

HW: study this chart.

VM, TLBs and Caches Integration

March 2019 Virtual Memory 30

VM and cache work together as a hierarchy. Data
must be in main memory if it is in the cache.

OS maintains this hierarchy by flushing the contents
of any page from the cache migrating it to disk.

OS modifies the page tables and TLB accordingly.

In best case, a virtual address is translated by the TLB
and sent to the cache where the appropriate data is
found, retrieved, and sent back to the processor.

HW: all the cases below.

March 2019 Virtual Memory 31

In the worst case, a reference can miss all: the TLB,
the page table, and the cache.

Consider all the seven combinations of the three
events. State for each whether it can actually occur
and under what circumstances.

