
Memory Hierarchies
prepared and Instructed by

 Shmuel Wimer
Eng. Faculty, Bar-Ilan University

Memory Hierarchies 1 Dec 2020

• We assumed that the entire memory space (232
bytes) is accessed in IF stage (instruction MEM) and
MEM stage (data MEM) in 1 CLK cycle.

• In reality it takes 100s cycles!

• Needless to mention today’s 64-bit architectures,
where address space is 264 bytes

• Question: How to bridge the gap?

• Answer: Use Memory Hierarchy, where small is fast
and big is slow.

Memory Hierarchies 2

Motivation

Dec 2020

Principle of Locality

• Temporal locality (time): If an item is referenced, it
will tend to be referenced again soon.

• Spatial locality (space): If an item is referenced,
items whose addresses are close will tend to be
referenced soon.

• locality in programs

– loops - temporal

– instructions are usually accessed sequentially - spatial

– Data access of array - spatial

Memory Hierarchies 3 Dec 2020

Memory Hierarchy
• The memory system is organized as a hierarchy

– Level closer to the CPU is a subset of any further away.

– All the data is stored at the lowest level.

Memory Hierarchies 4

• Hierarchical implementation makes the illusion of a memory
size as the largest, but can be accessed as the fastest.

Dec 2020

Memory Hierarchies 5

HW: study this chart.

Dec 2020

Hit and Miss

The unit within each level
is called a block.

We transfer an entire
block when we copy
something between
levels.

Hit rate (hit ratio): Fraction of memory accesses
found in the upper level. Miss rate = 1 – hit rate.

Memory Hierarchies 6

upper

lower

upper

lower

Dec 2020

Hit time: the time required to access a level of the
memory hierarchy.
• Includes the time needed to determine whether hit or miss.

Miss penalty: the time required to fetch a block into
the memory hierarchy from the lower level.
• Includes the time to access the block, transmit it from the

lower level, and insert it in the upper level.

The memory system affects many other aspects of a
computer:
• How the operating system manages memory and I/O
• How compilers generate code
• How applications use the computer

Memory Hierarchies 7 Dec 2020

Hierarchy enables CPU access time determined by
level 1 and yet have memory as large as level n.

Memory Hierarchies 8 Dec 2020

Requesting data from the cache

Before reference to 𝑋𝑛 After reference to 𝑋𝑛

CPU requests word 𝑋𝑛 that is not in the cache

Two questions :
• How to know whether a data item is in the cache?
• If it does, how to find it?

Memory Hierarchies 9 Dec 2020

Direct-Mapped Cache

Each memory location is mapped to one cache location

Mapping between addresses and cache locations:

(Block address in Mem) % (# of blocks in cache)

Modulo is log2(cache size in blocks) LSBs of address.

Cache is accessed directly with the LSBs of requested
memory address.

Solution: Use the MSBs of address as a tag attached
to the cache entry.

Problem: this is a many-to-one mapping!

Memory Hierarchies 10 Dec 2020

Mem address mod 8 = 101

Mem address mod 8 = 001

tag

Memory Hierarchies 11 Dec 2020

Mapping 4MB main
memory words to 8

words direct mapped
cache.

Memory Hierarchies 12

HW: ensure you understand the mapping and tags.
Dec 2020

Some of the cache entries may still be empty (never
accessed, garbage data and tag).

Need to know that the tag should be ignored for such
entries.

Add a valid bit to indicate whether an entry contains a
valid address (data) of the main memory.

Memory Hierarchies 13 Dec 2020

Cache Access Sequence

Memory Hierarchies 14
HW: complete.

Dec 2020

Referenced address
is divided into

Memory Hierarchies 15

cache index select
the block

tag field compared
with the value of
the tag field of the
cache

Dec 2020

Example: Find the total size of 16 KB direct-mapped
cache with 4-word blocks, assuming a 32-bit address.

Cache size = 16KB = 4K words = 212 words.
Block size = 4 words = 22 words.
Total of 210 blocks.

Block’s data size = 4 x 32 = 128 bits
Block’s tag size = 32 - 10 - 2 - 2 bits + valid bit.
Total cache size:

210 x (128 + (32 - 10 - 2 - 2) + 1) = 147 Kbits = 18.4 KB

Memory Hierarchies 16

It is 1.15 times than data storage alone.
Convention is to count only the size of the data.

Cache Size

Dec 2020

Example: Given 64-blocks cache of 16-byte block size.
Find block location that byte 1200 of Mem maps to.

Cache block location
 = Mem block address % #blocks in cache

Maps to block # 75 % 64 = 11 (bytes 1200 ÷ 1215)
Memory Hierarchies 17

Block contains all the bytes
From: Mem byte address bytes per block × bytes

 per block = 75 × 16 = 1200
To: Mem byte address bytes per block + 1

× bytes per block − 1 = 76 × 16 − 1 = 1215

Mem block address
= Mem byte address bytes per block
= 1200 16 = 75

HW: go over the example.

Dec 2020

Block Size Implications

• Larger blocks exploit spatial locality to lower miss
rates.

• Block increase will eventually increase miss rate

• Spatial locality among the words in a block
decreases with a very large block.

– The number of blocks held in the cache will
become small.

– There will be a big competition for those blocks.

– A block will be thrown out of the cache before
most of its words are accessed.

Memory Hierarchies 18 Dec 2020

Miss rate versus block size

Memory Hierarchies 19 Dec 2020

Miss cost (penalty) increases with block size.

• Time required to fetch the block and load into cache.

Fetch time has two parts:

• Latency to access first word, and

• Transfer time for the rest block.

Transfer time (miss penalty) increases with block
size.

Miss penalty increase overwhelms miss rate
decrease for large blocks, thus decreasing cache
performance.

Memory Hierarchies 20 Dec 2020

Handling Cache Misses
Misses require extra work of CPU’s control unit and a
separate cache controller.

Miss stalls the pipeline while waiting for memory.

Memory Hierarchies 21

Steps taken on an cache miss (I-Cache & D-Cache):

1. Send to the memory the address of miss (I$ or D$).

2. Instruct main memory to perform a read and wait for the
memory to complete access.

3. Write the cache entry: data + tag (address’s MSBs) + turn
valid bit on.

4. Restart by re-fetching the instruction causing the miss, this
time finding (instruction or data) in the cache.

Dec 2020

Handling Writes

Write hit writes into cache (data), making main
memory inconsistent.

Can always write into both main memory and cache,
called write-through.

Write miss first fetches block from memory into
cache. Then overwrite the word in cache’s block and
also write to main memory.

Write-through is simple but perform badly. Writing to
main memory takes 100s clock cycles.

If 10% stores and CPI without misses was 1.0, new CPI
is 1.0 + 100 x 10% = 11, 10x slowdown!

Memory Hierarchies 22 Dec 2020

Speeding Up

1. Write buffer (queue) holding data to write in
memory. The CPU can continue. When memory write
completes, queue’s entry is freed.

Full queue at CPU write stalls the CPU until queue has
empty entry.

2. Write-back writes the new only in cache. Modified
block is written to main memory when it is replaced
(due to miss).

Write-back improves performance for extensive
writes. Implementation is more complex than write-
through.

Memory Hierarchies 23 Dec 2020

18

I-cache: from PC
D-cache: from ALU

Miss sends address to
memory. Returned data is
written into cache and
then accessed again.

Cache Example (Data and Instruction)

Memory Hierarchies 24

Select by word
offset in block

Dec 2020

Main Memory Design Considerations

Main memory (DRAM) is designed for density rather
than access time.

Miss penalty is reduced by increasing bandwidth from
memory to cache.

Bus clock 10x slower than CPU clock. Assume
• 1 memory bus cycle to send address
• 15 memory bus cycles for each DRAM access initiated
• 1 memory bus cycle to send data word

For 4-word block and 1-word DRAM bank width
miss penalty = 1 + 4 × 15 + 4 × 1 = 65 bus cycles.

Byte transfer per bus cycle = 4 × 4 65 = 0.25 .

Memory Hierarchies 25 Dec 2020

Miss penalty = 1 + 1 × 15 + 1 = 17 cycles. Byte
transfer = 4 × 4 17 = 0.94/cycle . Wide bus
(area) and MUX (latency) are expensive.

Miss penalty = 1 + 1 × 15 + 4 × 1 = 20 cycles.
Byte transfer = 0.8/cycle.

Memory Hierarchies 26 Dec 2020

Cache Performance Improvements

Two techniques to reduce miss rate:

• Associativity: Reducing probability that different
memory blocks will contend for same cache
location.

• Multilevel caching: Adding levels to hierarchy (L1,
L2, L3…).

Memory Hierarchies 27 Dec 2020

CPU Time Definitions

CPU time = (CPU execution cycles + Memory-stall
cycles) x Cycle time

Memory-stall cycles = Read-stall cycles + Write-stall
cycles

Read-stall cycles = Reads/Program x Read miss rate x
Read miss penalty

Write-stall cycles = Writes/Program x Write miss rate
x Write miss penalty + Write buffer stall cycles (write-
through)

Write buffer term is complex, usually ignored.

Memory Hierarchies 28 Dec 2020

Write-through has same read and write miss penalties
(write buffer ignored).

Miss penalty:

Write-back has additional stalls arising from writing
cache block back to memory upon replacement.

Memory-stall clock cycles (simplified) =

Memory accesses/Program x Miss rate x Miss penalty =

Instructions/Program x Misses/Instruction x Miss
penalty

Memory Hierarchies 29 Dec 2020

Example: impact of an ideal cache

A program is running 𝐼 instructions. 2% instruction
cache miss, 4% data cache miss, 2 CPI without any
memory stalls, and 100 cycles penalty for all misses.

How faster is a processor with a never missed cache?

Instruction miss cycles = 𝐼 × 2% × 100 = 2.0 × 𝐼

With 36% loads and stores,
Data miss cycles = 𝐼 × 36% × 4% × 100 = 1.44 × 𝐼

CPI with memory stalls = 2.0 + 2.0 + 1.44 = 5.44

Speedup=CPIstall CPIperfect = 5.44 2.0 = 2.77

Memory Hierarchies 30 Dec 2020

Example: Accelerating processor but not memory.
Memory stalls time fraction is increased.

CPI reduced from 2.0 to 1.0 (deeper pipeline).
System with cache misses CPI = 1.0 + 3.44 = 4.44.
System with perfect cache 4.44 1.0 = 4.44 faster.

Execution time spent on memory stalls increases from
3.44 5.44 = 63% to 3.44 4.44 = 77%.

CPU 2X faster but memory bus not.
CPIstall = 2 + 2% × 200 + 36% × 4% × 20 = 8.88

Perfslow Perffast = 5.44 8.88 × 1/2 = 1.22 ,

rather than 2X expectation.
Memory Hierarchies 31 Dec 2020

Cache Associativity

Direct map places a block in a unique location.

Fully associative places a block in any location.

• All cache’s entries are searched. Expensive, done in
parallel with comparator for each entry.

• Practical only for small caches.

Mid solution is n-way set-associative map.

• n locations where a block can be placed.

• Cache comprised of n-blocks sets.

• A memory block maps to a unique set by index field.

• A block is placed in any element of that set.

Memory Hierarchies 32 Dec 2020

Memory Hierarchies 33 Dec 2020

Cache size (blocks) = number of sets x associativity.

For fixed cache size, increasing associativity decreases
number of sets.

Memory Hierarchies 34 Dec 2020

Example: Misses and associativity in caches.

Three caches comprising 4 1-word blocks.

Fully associative, two-way set associative, and direct mapped.

For the sequence of block addresses: 0, 8, 0, 6, 8, what is the
number of misses for each cache?

direct mapped

5 misses

Memory Hierarchies 35

HW: solve the example by yourself.

Dec 2020

two-way set associative

4 misses fully associative

Memory Hierarchies 36 3 misses Dec 2020

MUX with
decoded
selection

Four-way set-associative cache

set

parallel

Memory Hierarchies 37

1-word block
4-block set

Dec 2020

Which Block to Replace?

Memory Hierarchies 38

Direct-mapped maps to unique block address.

Set-associative chooses among the set’s blocks.

Least Recently Used (LRU) is most commonly used.

Replace the block replaced that has been unused for
longest time among the set’s blocks.

Simple implementation for 2-way set-associative.

Implementation gets complex with associativity
increase.

Dec 2020

Memory Hierarchies 39

Random

• Spreads allocation uniformly.

• Blocks are randomly chosen.

• HW generates pseudorandom numbers to get
reproducible behavior (useful for HW debug).

• Surprisingly, this is the best policy!

First in, first out (FIFO)
• Simple implementation.
• Use the oldest block entered to set.
• Fair approximates to LRU.

Dec 2020

Multilevel Caches

Memory Hierarchies 40

Reduces miss penalty considerably.

Many CPUs support a 2nd-level (L2) cache, which can
be on the same die or in separate SRAMs (old days).

L2 is accessed whenever L1 misses.

If L2 hits, L1 miss penalty is the access time to L2, far
shorter than access time to main memory.

If L2 misses, main memory is accessed and higher
miss penalty incurs, but with far lower probability.

Dec 2020

Memory Hierarchies 41

Example: performance of multilevel caches

Given 5GHz CPU with base CPI 1.0 if all references hit
L1.

Main memory access time is 100ns, including all the
miss handling.

L1 miss rate per instruction is 2%.

How faster the CPU is if we add L2 having 5ns access
time for either hit or miss, which reduces miss rate to
main memory to 0.5% ?

Dec 2020

Memory Hierarchies 42

The effective CPI with L1:

 Base CPI + Memory-stall cycles per instruction =

 1 + 500 x 2% = 11

The effective CPI with L2:

 1 + 25 x (2% - 0.5%) + (500 + 25) x 0.5% = 4

The processor with L2 is faster by:

 11 / 4 = 2.8

Miss penalty to main memory (memory-stall):

 5GHz x 100ns = 500 cycles.

Dec 2020

Dec 2020 Memory Hierarchies 43

Concluding example: Given CPU of 500MHz frequency
with L1 and L2 incorporated on CPU die.

Data L1 is 8KB size with 8B block size and 15% miss rate.
It is direct-map, write-through with perfect buffer (no
overflow).

Instruction L1 is 4KB size with 8B block size and 2% miss
rate. It is direct-map.

L2 is 2GB size with 32B block size, backing both L1
caches. It is 2-way associative with miss rate 10%.

On average 50% of L2 blocks are “dirty”, namely,
containing data not in main memory.

HW: solve the example. A good certificate you are on board.

Dec 2020 Memory Hierarchies 44

40% of instructions are memory access, 60% of which
load and 40% store. L1 hits never cause stalls.

L2 access time is 20ns. 128-bit bus connects L2 to main
memory, which access time is 0.2µs. The entire bus is
used for transfer.

What % of memory data accesses (lw, sw) reaches main
memory?
(L1 miss rate) x (L2 miss rate) = 0.15 X 0.1 = 1.5%

How many bits are used for index ?

L1 Data: 8Kbyte/8Byte = 1024 blocks => 10 bits
L1 Instruction: 4Kbyte/8Byte = 512 blocks => 9 bits
L2: 2MByte/32Bytes = 64K blocks = 32K sets => 15 bits

Dec 2020 Memory Hierarchies 45

Maximum cycles occur when L1 missed first, then L2
missed, then write-back takes place.

L2 access cycles: 20ns / 2ns = 10 cycles

Main memory access cycles: 0.2µs / 2µs = 100 cycles

L2 block has 32 Bytes and memory bus is 128 bits (16
Bytes), 2 bus transactions per block are required.

The first 16 bytes take 100 cycles, the next 16 bytes
takes one cycle.

What is the maximal number of cycles required for main
memory access? What is the sequence of events then?

Dec 2020 Memory Hierarchies 46

Getting a new block from the memory may evict a dirty
block from L2, which requires write-back.

In such case the evicted block must be written into the
memory, requiring a total of L2-memory transactions,
yielding 2 x (100 + 1) = 202 cycles.

 Summing all:
L1 miss + L2 miss + write-back = 1 + 10 + 202 = 213
cycles

What is the Average Memory Access Time (AMAT) (in
cycles), including instructions and data accesses?

Dec 2020 Memory Hierarchies 47

The weight of instruction accesses to memory is 1/(1 +
0.4), while the weight of data accesses is 0.4/(1 + 0.4).
Hence AMATtotal = 1/1.4 AMATinst + 0.4/1.4 AMATdata

For any 2-level cache system there is

AMAT = (L1 hit time) + (L1 miss rate) x (L2 hit time) + (L1
miss rate) x (L2 miss rate) x (main memory transfer
time).

AMAT must account for the average % of L2 dirty blocks,
namely, 50% of the blocks must be updated in main
memory upon L2 miss, yielding a factor of 1.5
multiplying (100 +1) main memory access time

Dec 2020 Memory Hierarchies 48

AMATinst =
1 + 0.02 x 10 + 0.02 x 0.1 x 1.5 x (100 + 1) = 1.503

AMATdata =
1 + 0.15 x 10 + 0.15 x 0.1 x 1.5 x (100 + 1) = 4.7725

AMATtotal = 1/1.4 x 1.503 + 0.4/1.4 x 4.7725 = 2.44

