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• We assumed that the entire memory space (232 
bytes) is accessed in IF stage (instruction MEM) and 
MEM stage (data MEM) in 1 CLK cycle. 

• In reality it takes 100s cycles! 

• Needless to mention today’s 64-bit  architectures, 
where address space is 264 bytes 

• Question: How to bridge the gap? 

• Answer:  Use Memory Hierarchy, where small is fast 
and big is slow. 

Memory Hierarchies 2 

Motivation 
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Principle of Locality 

• Temporal locality (time): If an item is referenced, it 
will tend to be referenced again soon. 

• Spatial locality (space): If an item is referenced, 
items whose addresses are close will tend to be 
referenced soon. 

• locality in programs 

– loops - temporal 

– instructions are usually accessed sequentially - spatial 

– Data access of array - spatial 
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Memory Hierarchy 
• The memory system is organized as a hierarchy 

– Level closer to the CPU is a subset of any further away.  

– All the data is stored at the lowest level. 

Memory Hierarchies 4 

• Hierarchical implementation makes the illusion of a memory 
size as the largest, but can be accessed as the fastest. 

Dec 2020 



Memory Hierarchies 5 

HW: study this chart. 
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Hit and Miss 

The unit within each level 
is called a block. 

 

We transfer an entire 
block when we copy 
something between 
levels. 

Hit rate (hit ratio): Fraction of memory accesses 
found in the upper level. Miss rate = 1 – hit rate. 
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Hit time: the time required to access a level of the 
memory hierarchy. 
• Includes the time needed to determine whether hit or miss. 

Miss penalty: the time required to fetch a block into 
the memory hierarchy from the lower level. 
• Includes the time to access the block, transmit it from the 

lower level, and insert it in the upper level. 

The memory system affects many other aspects of a 
computer:  
• How the operating system manages memory and I/O  
• How compilers generate code 
• How applications use the computer 
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Hierarchy enables CPU access time determined by 
level 1 and yet have memory as large as level n.  

Memory Hierarchies 8 Dec 2020 



Requesting data from the cache 

Before reference to 𝑋𝑛  After reference to 𝑋𝑛  

CPU requests word 𝑋𝑛 that is not in the cache 

Two questions : 
• How to know whether a data item is in the cache? 
• If it does, how to find it? 
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Direct-Mapped Cache 

Each memory location is mapped to one cache location 

Mapping between addresses and cache locations: 

(Block address in Mem) % (# of blocks in cache) 

Modulo is log2(cache size in blocks) LSBs of address. 

Cache is accessed directly with the LSBs of requested 
memory address. 

Solution: Use the MSBs of address as a tag attached 
to the cache entry. 

Problem: this is a many-to-one mapping! 
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Mem address mod 8 = 101 

Mem address mod 8 = 001 

tag 
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Mapping 4MB  main 
memory words to 8 

words direct mapped 
cache. 
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HW: ensure you understand the mapping and tags. 
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Some of the cache entries may still be empty (never 
accessed, garbage data and tag). 

Need to know that the tag should be ignored for such 
entries.  

Add a valid bit to indicate whether an entry contains a 
valid address (data) of the main memory. 
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Cache Access Sequence 
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HW: complete. 
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Referenced address 
is divided into 
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cache index select 
the block 

tag field compared 
with the value of 
the tag field of the 
cache 
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Example: Find the total size of 16 KB direct-mapped 
cache with 4-word blocks, assuming a 32-bit address. 

Cache size = 16KB = 4K words = 212 words.  
Block size = 4 words = 22 words. 
Total of 210 blocks.  

Block’s data size = 4 x 32 = 128 bits 
Block’s tag size = 32 - 10 - 2 - 2 bits + valid bit.  
Total cache size: 

210   x (128 + (32 - 10 - 2 - 2) + 1 ) = 147 Kbits = 18.4 KB  
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It is 1.15 times than data storage alone. 
Convention is to count only the size of the data. 

Cache Size 
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Example: Given 64-blocks cache of 16-byte block size. 
Find block location that byte 1200 of Mem maps to. 

Cache block location
 = Mem block address % #blocks in cache  

Maps to block # 75 % 64  = 11 (bytes 1200 ÷ 1215) 
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Block contains all the bytes 
From: Mem byte address bytes per block × bytes

 per block = 75 × 16 = 1200 
To: Mem byte address bytes per block + 1

× bytes per block − 1 = 76 × 16 − 1 = 1215 

Mem block address
= Mem byte address bytes per block 
= 1200 16 = 75 

HW: go over the example. 
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Block Size Implications 

• Larger blocks exploit spatial locality to lower miss 
rates. 

• Block increase will eventually increase miss rate 

• Spatial locality among the words in a block 
decreases with a very large block. 

– The number of blocks held in the cache will 
become small. 

– There will be a big competition for those blocks. 

– A block will be thrown out of the cache before 
most of its words are accessed. 
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Miss rate versus block size 
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Miss cost (penalty) increases with block size. 

• Time required to fetch the block and load into cache.  

Fetch time has two parts: 

• Latency to access first word, and 

• Transfer time for the rest block. 

Transfer time (miss penalty) increases with block 
size. 

Miss penalty increase overwhelms miss rate 
decrease for large blocks, thus decreasing cache 
performance. 
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Handling Cache Misses 
Misses require extra work of CPU’s control unit and a 
separate cache controller. 

Miss stalls the pipeline while waiting for memory. 
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Steps taken on an cache miss (I-Cache & D-Cache): 

1. Send to the memory the address of miss (I$ or D$). 

2. Instruct main memory to perform a read and wait for the 
memory to complete access. 

3. Write the cache entry: data + tag (address’s MSBs) + turn 
valid bit on. 

4. Restart by re-fetching the instruction causing the miss, this 
time finding (instruction or data) in the cache. 
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Handling Writes 

Write hit writes into cache (data), making main 
memory inconsistent.  

Can always write into both main memory and cache, 
called write-through. 

Write miss first fetches block from memory into 
cache. Then overwrite the word in cache’s block and 
also write to main memory. 

Write-through is simple but perform badly. Writing to 
main memory takes 100s clock cycles. 

If 10% stores and CPI without misses was 1.0,  new CPI 
is 1.0 + 100 x 10% = 11, 10x slowdown! 

Memory Hierarchies 22 Dec 2020 



Speeding Up 

1. Write buffer (queue) holding data to write in 
memory. The CPU can continue. When memory write 
completes, queue’s entry is freed. 

Full queue at CPU write stalls the CPU until queue has 
empty entry. 

2. Write-back writes the new only in cache. Modified 
block is written to main memory when it is replaced 
(due to miss).  

Write-back improves performance for extensive 
writes. Implementation is more complex than write-
through. 
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18 

I-cache: from PC 
D-cache: from ALU  

Miss sends address to 
memory. Returned data is 
written into cache and 
then accessed again. 

Cache Example (Data and Instruction)  
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Select by word 
offset in block  
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Main Memory Design Considerations 

Main memory (DRAM) is designed for density rather 
than access time. 

Miss penalty is reduced by increasing bandwidth from 
memory to cache. 

Bus clock 10x slower than CPU clock. Assume 
• 1 memory bus cycle to send address 
• 15 memory bus cycles for each DRAM access initiated 
• 1 memory bus cycle to send data word 

For 4-word block and 1-word DRAM bank width 
miss penalty = 1 + 4 × 15 + 4 × 1 = 65 bus cycles. 

Byte transfer per bus cycle = 4 × 4 65 = 0.25 . 
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Miss penalty = 1 + 1 × 15 + 1 = 17 cycles. Byte 
transfer = 4 × 4 17 = 0.94/cycle . Wide bus 
(area) and MUX (latency) are expensive. 

Miss penalty = 1 + 1 × 15 + 4 × 1 = 20 cycles. 
Byte transfer = 0.8/cycle. 
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Cache Performance Improvements 

Two techniques to reduce miss rate: 

• Associativity: Reducing probability that different 
memory blocks will contend for same cache 
location.  

• Multilevel caching: Adding levels to hierarchy (L1, 
L2, L3…). 
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CPU Time Definitions 

CPU time = (CPU execution cycles + Memory-stall 
cycles) x  Cycle time 

Memory-stall cycles = Read-stall cycles + Write-stall 
cycles 

Read-stall cycles = Reads/Program x Read miss rate x 
Read miss penalty 

Write-stall cycles = Writes/Program x Write miss rate 
x Write miss penalty + Write buffer stall cycles (write-
through) 

Write buffer term is complex, usually ignored. 
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Write-through has same read and write miss penalties 
(write buffer ignored).  

Miss penalty: 

Write-back has additional stalls arising from writing 
cache block back to memory upon replacement.  

Memory-stall clock cycles (simplified) = 

Memory accesses/Program x Miss rate x Miss penalty = 

Instructions/Program x Misses/Instruction x Miss 
penalty 

Memory Hierarchies 29 Dec 2020 



Example: impact of an ideal cache 

A program is running 𝐼 instructions. 2% instruction 
cache miss, 4% data cache miss, 2 CPI without any 
memory stalls, and 100 cycles penalty for all misses. 

How faster is a processor with a never missed cache? 

Instruction miss cycles = 𝐼 × 2% × 100 = 2.0 × 𝐼 

With 36% loads and stores, 
Data miss cycles = 𝐼 × 36% × 4% × 100 = 1.44 × 𝐼 

CPI with memory stalls = 2.0 + 2.0 + 1.44 = 5.44 

Speedup=CPIstall CPIperfect = 5.44 2.0 = 2.77 

Memory Hierarchies 30 Dec 2020 



Example: Accelerating processor but not memory. 
Memory stalls time fraction is increased. 

CPI reduced from 2.0 to 1.0 (deeper pipeline). 
System with cache misses CPI = 1.0 + 3.44 = 4.44. 
System with perfect cache 4.44 1.0 = 4.44 faster. 

Execution time spent on memory stalls increases from 
3.44 5.44 = 63% to 3.44 4.44 = 77%. 

CPU 2X faster but memory bus not. 
CPIstall = 2 + 2% × 200 + 36% × 4% × 20 = 8.88 

Perfslow Perffast = 5.44 8.88 × 1/2 = 1.22 , 

rather than 2X expectation.  
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Cache Associativity 

Direct map places a block in a unique location.  

Fully associative places a block in any location. 

• All cache’s entries are searched. Expensive, done in 
parallel with comparator for each entry. 

• Practical only for small caches.  

Mid solution is n-way set-associative map.  

• n locations where a block can be placed. 

• Cache comprised of n-blocks sets. 

• A memory block maps to a unique set by index field.  

• A block is placed in any element of that set.  
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Cache size (blocks) = number of sets x associativity.  

For fixed cache size, increasing associativity decreases 
number of sets. 
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Example: Misses and associativity in caches. 

Three caches comprising 4 1-word blocks. 

Fully associative, two-way set associative, and direct mapped. 

For the sequence of block addresses: 0, 8, 0, 6, 8, what is the 
number of misses for each cache? 

direct mapped 

5 misses 

Memory Hierarchies 35 

HW: solve the example by yourself. 
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two-way set associative 

4 misses fully associative 
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MUX with 
decoded 
selection 

Four-way set-associative cache 

set 

parallel 
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1-word block 
4-block set 
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Which Block to Replace? 
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Direct-mapped maps to unique block address. 

Set-associative chooses among the set’s blocks. 

Least Recently Used (LRU) is most commonly used.  

Replace the block replaced that has been unused for 
longest time among the set’s blocks.  

Simple implementation for 2-way set-associative. 

Implementation gets complex with associativity 
increase. 
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Random 

• Spreads allocation uniformly. 

• Blocks are randomly chosen.  

• HW generates pseudorandom numbers to get 
reproducible behavior (useful for HW debug). 

• Surprisingly, this is the best policy! 

First in, first out (FIFO)  
• Simple implementation. 
• Use the oldest block entered to set. 
• Fair approximates to LRU. 

Dec 2020 



Multilevel Caches 
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Reduces miss penalty considerably. 

Many CPUs support a 2nd-level (L2) cache, which can 
be on the same die or in separate SRAMs (old days). 

L2 is accessed whenever L1 misses.  

If L2 hits, L1 miss penalty is the access time to L2, far 
shorter than access time to main memory.  

If L2 misses, main memory is accessed and higher 
miss penalty incurs, but with far lower probability. 
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Example: performance of multilevel caches 

Given 5GHz CPU with base CPI 1.0 if all references hit 
L1. 

Main memory access time is 100ns, including all the 
miss handling. 

L1 miss rate per instruction is 2%. 

How faster the CPU is if we add L2 having 5ns access 
time for either hit or miss, which reduces miss rate to 
main memory to 0.5% ? 
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The effective CPI with L1: 

        Base CPI + Memory-stall cycles per instruction = 

        1 + 500 x 2% = 11 

The effective CPI with L2: 

        1 + 25 x (2% - 0.5%) + (500 + 25) x 0.5% = 4 

The processor with L2 is faster by: 

        11 / 4 = 2.8 

Miss penalty to main memory (memory-stall): 

            5GHz x 100ns = 500 cycles. 
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Concluding example: Given CPU of 500MHz frequency 
with L1 and L2 incorporated on CPU die. 

Data L1 is 8KB size with 8B block size and 15% miss rate. 
It is direct-map, write-through with perfect buffer (no 
overflow). 

Instruction L1 is 4KB size with 8B block size and 2% miss 
rate. It is direct-map. 

L2 is 2GB size with 32B block size, backing both L1 
caches. It is 2-way associative with miss rate 10%. 

On average 50% of L2 blocks are “dirty”, namely, 
containing data not in main memory. 

HW: solve the example. A good certificate you are on board.    
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40% of instructions are memory access, 60% of which 
load and 40% store. L1 hits never cause stalls. 

L2 access time is 20ns. 128-bit bus connects L2 to main 
memory, which access time is 0.2µs. The entire bus is 
used for transfer. 

What % of memory data accesses (lw, sw) reaches main 
memory?  
(L1 miss rate) x (L2 miss rate) = 0.15 X 0.1 = 1.5% 

How many bits are used for index ?  

L1 Data:  8Kbyte/8Byte = 1024 blocks => 10 bits 
L1 Instruction:  4Kbyte/8Byte = 512 blocks => 9 bits 
L2: 2MByte/32Bytes = 64K blocks = 32K sets => 15 bits 
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Maximum cycles occur when L1 missed first, then L2 
missed, then write-back takes place. 

L2 access cycles:  20ns / 2ns = 10 cycles 

Main memory access cycles: 0.2µs / 2µs = 100 cycles 

L2 block has 32 Bytes and memory bus is 128 bits (16 
Bytes), 2 bus transactions per block are required. 

The first 16 bytes take 100 cycles, the next 16 bytes 
takes one cycle.  

What is the maximal number of cycles required for main 
memory access? What is the sequence of events then? 
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Getting a new block from the memory may evict a dirty 
block from L2, which requires write-back.  

In such case the evicted block must be written into the 
memory, requiring a total of L2-memory transactions, 
yielding 2 x (100 + 1) = 202 cycles. 

 Summing all: 
L1 miss + L2 miss + write-back = 1 + 10 + 202 = 213 
cycles 

What is the Average Memory Access Time (AMAT) (in 
cycles), including instructions and data accesses? 
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The weight of instruction accesses to memory is 1/(1 + 
0.4), while the weight of data accesses is 0.4/(1 + 0.4). 
Hence AMATtotal = 1/1.4 AMATinst + 0.4/1.4 AMATdata 

For any 2-level cache system there is 

AMAT = (L1 hit time) + (L1 miss rate) x (L2 hit time) + (L1 
miss rate) x (L2 miss rate) x (main memory transfer 
time).  

AMAT must account for the average % of L2 dirty  blocks, 
namely, 50% of the blocks must be updated in main 
memory upon L2 miss, yielding a factor of 1.5 
multiplying (100 +1) main memory access time  
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AMATinst =  
1 + 0.02 x 10 + 0.02 x 0.1 x 1.5 x (100 + 1) = 1.503 
 
AMATdata = 
1 + 0.15 x 10 + 0.15 x 0.1 x 1.5 x (100 + 1) = 4.7725 
 
AMATtotal = 1/1.4 x 1.503 + 0.4/1.4 x 4.7725 = 2.44 


