Dec 2020

MIPS Overview

prepared and instructed by

Shmuel Wimer
Eng. Faculty, Bar-llan University

COMPUTER
ORGANIZATION
AND DESIGN

DAVID A. PATTERSON
JOHN L. HENNESSY

MIPS Overview

Architecture

We consider the simplest MIPS Instruction Set
Architecture (ISA) introduced by standard undergrad
courses.

32-bit byte addressing, namely, memory space is 234
bytes, or 23° words (4 bytes).

Access is always aligned to address (mod 4) = 0.
Register File (RF) comprises 32 registers of 32 bits.

32 bit ISA, independent of microarchitecture (single
cycle, multi cycle, pipelined).

Arithmetic Instructions (R-type, ALU)

Ccode:a=b+c

compiler

Assembly form: add S$tO, Ss1, Ss2

General form:add rd, rs,rt : rd=rs +rt
assembler

Machine instruction:
000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

6 bhits 5 bits 5 bits 5 bits 5 bits 6 bhits

o/

Memory-Register Instructions (I-type)

Load from Mem to Reg \ Store from Reg to Mem

Assembly form: lw rt, offset(rs)

General form: rt = mem|[rs + offset]

Example: lw $t0, 32(Ss3)

assembler
Machine instruction:

100011 10011 01000 0O0O00O00O0000100000
op rs rt immediate value / address offset
6 bits 5 bits 5 bits 16 bits

Also for ALU operations with immediate values

Branch Instructions

Controls program flow, conditions, loops, etc.
Jumps to memory offset from program counter (PC)

C++ code: if (x1 == x2) cout << “...”; else cout << “...”;

compiler

Assembly form: bne $s1, $s2, Label 1
assembler

Machine instruction:
offset from PC

op sl S2 offset
6 bits 5 bits 5 bits 16 bits

Dec 2020 MIPS Overview 5

Unconditional Jumps

Controls program flow, jumps to other code of
functions, subroutine etc.
Jumps to target address.

FORTRAN code: GO TO n

compiler
Assembly form: J Target
assembler
Machine instruction:
op jump target address
6 bits 26 bits

Target address: PC[31:28] | | instruction[25:0] | | ‘00’

il

Memory Map of Code

Assembly code —=> Assembler —=> Memory map

starts from 80000 6 5 5 5 5 6

Loop: add $t1, $s3, $s3 80000 0 |19/19|9| 0| O R-type
add $t1, $11, $11 80004 0 9(9|9|0]o0 R-type
add $t1, $11, $s6 ' 80008 0|9 |22/9 00 R-type
w $t0, 0($11) 80012 359 |8 0 I-type
bne $t0, $s5, Exit 80016 5 |8 |21 2 I-type
add $s3, $s3 $s4 80020 0 |19|20/19|0 | O R-type
i Loop 80024 2 20000 J-type

Exit: 80028

Dec 2020 MIPS Overview 7

Pipelined MIPS

Time (in clock cycles)

Program
execution
order

(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)
v

Dec 2020 MIPS Overview 8

Data-path +

Hardware

EX/MEM

Dec 2020

LT

I_NlEMNVB

M

PCSrc
—(0 IDIEX
M
u *>|\WB
X e |
s
Control M
IF/ID EX
Add
4 Q
%
[=2]
[}
. ALUSrc
g Read
PC| Address 5 register 1 Read
> prm—> |
§ Read , data 1
i = register
In::g;;:g? " e = Registers Read
y Write data 2
register
Write
" data
Instruction
16 32
[15-0] A\ Sign
N | extend
Instruction
[20-16]
Instruction
[15-11]

RegDst

WB
Branch
1 -t
2
5 =
Q o)
= o
ie]
3
=
Read |
Address data [T 1
Data M
memo u
Y X
Write 0
data
MemRead

MIPS Overview

Iw Instruction Fetch (IF)

lw $10, 20($1) ! | |

Instruction fetch

—“wcxD

i
- IF.I:'ID IDJEX EI.I"I':.I'IEM MENFWEB
>.l'u:||:| » »
» Add .
4 / >"”jd result T
Shift
left 2
5 o Read
o Address H reqister 1 Read . L\
E o Read 2 el)] Tero -
Instrigt E register 2
nmernu =0 - . Registers Raad o D >A.LIJ AL Read
& Write data 2 result - # Address il B 2 1
*| register M data M
Writ u // Data o
o WritE X oy
data f 1 oy E;[
~ o Write
m - ™ data
16 az
L] Sign s ~ -
T @ -
Clock 1 T T T —|_|
i i i i
i + +

sub IF - Iw Instruction Decode (ID)

sub $11, $2, $3 lw $10, 20($1)

Instruction fetch Instruction decode

|
|
|
. \ IF/ID D MENL/WE
> Add » » »
adg A .

- B

“xcxz D

ﬁ_—_
=2
g___
=

= o REEd
PC # Address H register 1 Read R _\
E | Read 2 deta |)] Iero -
InStructi = register 2 1
nmernu im = ~ Repisters Regd (0 >ALIJ ALl Read
ry y rite data 2 result > | Address ol S 1
register M data M
Writ x / Data u
o Vrite x
data -1 Oz nl=jy) D:
N | Write
v data
18 . 32
L Sign -
%l gxtend 7]

Clock 2 | L iy]

sub ID - Ilw Execution (EX)

sub $11, $2, $3 w $10, 20(%$1)
Instruction decode Execution

-
“me=0

%—_
.
H
=

.g___.
T
z
3

|
}.
|
|

g

v Add hod >

result
Shift
laft 2

o]

\;\/’

S 5| Reed
Address g register 1 Read N .
E Read data 1 1]
T i Zer -
Instructi E register 2
I-Imnarnl:lrl'_rl:rI ™ Write Registers Read " w0 >ALIJ ALLI Add Read
Bl e deta £ M result » =] Hata :u‘
. . / Data u
- :I'{LE) 1’[memory n,[
N | Write
v | data
16 32
| Sign .
* Tl gxtend
Clock 3 [| L L * A

sub EX = lw Memory (MEM)

sub $11, $2, $3 w $10, 20($1)

U | | |
',;‘ | Execution | Memory |
* | | |
1 ! ' |
| | I
| | I
| | | |
IF/D ID/EX EX/MEM MEM/WE
Add
>Md result
Shift
left 2
c 5 Read :
Address H reqister Read .
= data 1 "
Jud Lz 3 Zero -
i = " | register ¥
Instruction = ~ Registers pagg R . >hLIJ ALLI
memary Write data 2 o result ——n Address Read|
r regim T / Data =
Write x
= L memaory
. | Write
v " | data
B8 | a2
L] Sign L .
* | axtend
Clock 4 - o — -]
|
|
i

N

sub MEM - Iw Writeback (WB)

: | | sub $11, %2, $3 lw $10, 20($1) |
| |
M .
U | | Memory Write back !
X 1
1 I I
i i
I I !
! ! I !
IF/10 ID/EX EXMEM MERWE
>Add result i
Shift
|eft 2
c 5 Read
¥ Address o e Read \
E Read data 1
. E "| register 2 Iero L
Inn!':lt:;_ll:;ﬂr?" . — Wit Registers Read . ; >ALIJ AL Rend
. rB;i:tE' data 2 " result | Address data ™ :.,.1
. u / Data u
— daI:LH ‘II memary ¥
~ | Write: -
i " | data
16 oAz
v | Sign L
* | mxtand
Clock 5 || g _‘l

“w=0

R-type takes 5 cycles!

sub WB

Address

Instruction
memaory

Clock 6

N

\or?

| sub $11, $2, $3 |

| | |
| | | |
: : : :
| | | |
I I | |
T 1 1 |
| | | |
[FAI0 IDSEX EX/MEM MEME
1 1 1 1
h n :\
Add ~
>Add result i
Shift
|eft 2
c Read
H register 1 Read \
= Read data 1 i
| i Ierm e
E register 2 4
. — ~ Registers pggg N 0 >F|LIJ AL Read
Wite data 2 rasuit o (g Addess B
register [T data
- u / Data
dataﬂ 1‘ Mmemory
l | Write:
i *| data
16) a2
1| Sign L
| prtend

Write back

Owmc= —

Data Hazards

Using data produced by earlier R-type instruction.

Time (in clock cycles)

Value of CC1 CC2 CCs3 CC4 CC5
register $2: 10 10 10 10 10/~ 20
Program
execution

order

(in instructions)
sub $2,$1,$3 | IM Reg DM Reg

Dec 2020 MIPS Overview 16

Bypass \ Forwarding

Time (in clock cycles) >

cc1 cc2 cc3 cc4 ccs cCe cc7 ccs cco

Value of register $2 : 10 10 10 10 ~20 ~20 ~20 ~20
Value of EXIMEM : X X X 3 X X X X
Value of MEM/WB : X X X X X X X X

Program
execution order
(in instructions)

sub $2, $1, $3 IM Reg
< and $12, $2, $5 IM
3 — [
< or $13, $6, $2 M — HdReg } DM (—Reg
3 i i ==l

< add $14, $2, $2 IM |— —ER'eg:

Assuming RegFile
P forwards on same

— — cycle.

OM I —Reg

—[DM— - Reg

sw $15, 100($2) IM H HHReg| | DM Reg

<

4

Dec 2020 MIPS Overview 17

|

Load Hazards

Using data produced by earlier LW instruction.

_ 2 4 6 8 10 12 14
Time T T T T T T T

v

Program
execution
order

(in instructions)

lw $s0, 20($t1) IF O ID %‘MEM WB
5 > 6| >
Bubble is a must. Can use NOP (SW) or CLK idle by

hazard detection unit (HW).
Use same forwarding unit.

Dec 2020 MIPS Overview

O

v sub $t2, $s0, $t3

18

Control Hazards

Takes 3 cycles to resolve branch condition.

Program(] Time (in clock cycles)
Efjg:’mﬂonm cc1 cc2 ccs cC 4 ccs cce cc7 ccs cco

(in instructions)

eq $1, $3 M ~H—EReg %— —|: DM+ Reg
44 and $12, $2, $5 M | F9Reg[] %’ —Reg

—[DM—
48 or $13, $6, $2 M H F{Reg[] % —[DM— L {Reg —corruption

52 add $14, $2, $2 IM H HHReg| | %— —|: DM{— HReg
@W $4, 50($7) - Reg[| %— ‘IﬂT_H‘ Reg
v

40+4+28=72
Solved by SW bubbles (simple, inefficient), instruction
reorder (compiler, limited), by HW (efficient, complex)
or combinations.

|

Exceptions and Interrupts

* Exception: any unexpected change in the internal
control flow

— Invoking an Operating System (OS) service from user
program

— Integer arithmetic overflow
— Using an undefined or unimplemented instruction
— Hardware malfunctions

* Interrupt: event is externally caused
— 1/0 device request
— Tracing instruction execution
— Breakpoint (programmer-requested interrupt)

Exceptions in MIPS

stage Problem exceptions
occurring

What Happens During an Exception?

An exception occurs

Operating system trap

Saving the PC where the exception happens
Save the operating system state

Run exception code

Resume the last instruction before it traps, or
terminate the program

user program

7\

/

Exception

\.

System
Exception
Handler

return from
exception

normal control flow:
sequential, jumps, branches, calls, returns

January 2014

23

Multicycle Operations
Supporting floating point (FP) operations, EX takes few

clock cycles.

 Single cycle FP implies slow clock or enormous hardware,
both undesired.

Support multiple FP units working simultaneously.

A stall occurs if an issued instruction causes structural
hazard or data hazard.

Four separate functional units operated in parallel.

Integ:};unit Up to 7 FP/int
:I outstanding

multiplications

FP/integer multiply

11114111 1
115 1

FP/integer divider Up to 4 FP/int
'I D - U alinad outstanding
‘ additions

Pipeline Regs (A1/A2,..., A3/A4), (M1/M2,..., M6/M7)
ID/EX Reg placed by ID/EX, ID/DIV, ID/M1, and ID/A1.

Dec 2020 MIPS Overview 25

I (I, A—

Functional unit Latency | Initiation interval
Integer ALU 0]
Data memory (integer and FP loads)]]
FP add 3]
FP multiply (also integer multiply) 6]
FP divide (also integer divide) 24 25

XN)

Latency : # intervening cycles between an instruction
that produces a result and an instruction that uses it.

Initiation: # cycles that must elapse between issuing
two operations of a given type.

Dec 2020 MIPS Overview 26

|

Integer ALU latency is O, since its result can be used on
next clock cycle.

Loads latency is 1, since its results can be used after one
intervening cycle.

“D” extension of instruction stands for double-
precision (64-bit) FP operations.

data needed result available

MUL.D IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
ADD.D [F ID Al A2 A3 A4 MEM WB

L.D IF ID EX MEM WB

S.D IF ID EX MEM WB

Dec 2020 MIPS Overview 27

N
H Data Hazards

Created when a dependence between instructions is
close enough.

* Program order must be preserved.

SW and HW techniques exploit parallelism by
preserving program order only where it affects the
outcome of the program.

Hazards are classified by the order of reads and writes.

Consider two instructions i and j, with i preceding j.
Three possible data hazards.

|

RAW (read after write). j reads a source before written
by i (true dependence).

 Most common, program order must be preserved.

WAW (write after write). j writes an operand before
written by i (output dependence).

* Wrong write order, leaving value written by i rather
than j.

* Writing in more than one pipe stage or allow
instruction to proceed when previous one is stalled.

|

WAR (write after read). j writes a destination before
read by i, i gets wrong value (anti dependence).

 Occurs when instructions reordered. Not in static
issue pipelines since all reads are early (ID) and all
writes are late (WB).

Structural hazards occurs by HW conflicts.

* Divide unit is not pipelined, causing structural
hazards. Must detect and stall instructions issue.

* Varying running times of instruction may result in
few register writes in a cycle.

Instructions can complete in a different order than they
were issued, causing problems with exceptions.

|

Because of longer latency of operations, stalls for RAW
hazards will be more frequent.

Instructions below depends on their previous and
proceeds as soon as data are available, assuming that
the pipeline has full bypassing and forwarding.

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

L.D F4,0(R2) IF ID EX MEM WB
MUL.D FQ,F4,F6 IF ID stall MI M2 M3 M4 M5 M6 M7 MEM WB
ADD.D F2,FO0,F8 IF stall [ID stall stall stall stall stall stall Al A2 A3 A4 \MEMW

S.D F2,0(R2) IF stall stall stall stall stall stall ID EX stall stall st MEE)

S.D is stalled extra cycle so that it does not conflict with
ADD.D in MEM. Needs extra HW to handle this.

Dec 2020 MIPS Overview 31

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11

MUL.D FO,F4,F6 IF 1D M1 M2 M3 M4 M5 M6 M7 MEM WB
IF ID EX MEM WB

“es IF ID EX MEM WB

ADD.D F2,F4,F6 IF ID Al A2 A3 A4 MEM WB

IF ID EX MEM WB
“ee IF ID EX MEM WB
L.D F2,0(R2) IF 1D EX MEM WB

Three instructions in MEM. Is it a structural hazard?
No. The first two MEM do not write to MEM.

Instructions are in WB, resulting in a structural hazard.
The processor must serialize the WB. Write ports could
be increased, but it may not pay (only rarely used 2"9).

Dec 2020 MIPS Overview 32

single port RF

ID: MULT—R?2 shift
v
1
ID: MULT—R6 shift
v
111

ID: ADD —R8 palll
v

Dec 2020 MIPS Overview 33

dual port RF

ID: MULT—R?2 shift
v
R2
ID: MULT—R6 shift
v
R2 | R6

ID: ADD —R6 palll
v

R2| R6

Dec 2020 MIPS Overview 34

|

Alternative solution detects conflicts at MEM or WB
stage, a case where either instruction can be stalled.

Simple heuristic gives priority to unit with longer
latency, since it is the most likely to cause other stalls
due to RAW hazards.

Advantage is the simple implementation.

Disadvantage is that it complicates pipeline control, as
stalls can now arise from two places.

