
MIPS Overview

prepared and instructed by
 Shmuel Wimer

Eng. Faculty, Bar-Ilan University

MIPS Overview 1 Dec 2020

Architecture

• We consider the simplest MIPS Instruction Set
Architecture (ISA) introduced by standard undergrad
courses.

• 32-bit byte addressing, namely, memory space is 232
bytes, or 230 words (4 bytes).

• Access is always aligned to address (mod 4) = 0.

• Register File (RF) comprises 32 registers of 32 bits.

• 32 bit ISA, independent of microarchitecture (single
cycle, multi cycle, pipelined).

MIPS Overview 2 Dec 2020

Arithmetic Instructions (R-type, ALU)

MIPS Overview 3 Dec 2020

C code: a = b + c

Assembly form: add $t0, $s1, $s2
General form: add rd, rs, rt : rd = rs + rt

compiler

op rs rt rd shamt funct

 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

+

assembler
Machine instruction:
000000 10001 10010 01000 00000 100000

Memory-Register Instructions (I-type)

MIPS Overview 4 Dec 2020

Assembly form: lw rt, offset(rs)

General form: rt = mem[rs + offset]

Load from Mem to Reg \ Store from Reg to Mem

assembler

Machine instruction:

Example: lw $t0, 32($s3)

op rs rt immediate value / address offset

 6 bits 5 bits 5 bits 16 bits

100011 10011 01000 0000000000100000

Also for ALU operations with immediate values

Branch Instructions

MIPS Overview 5 Dec 2020

compiler

Assembly form: bne $s1, $s2, Label_1

assembler

Machine instruction:

op s1 s2 offset

 6 bits 5 bits 5 bits 16 bits

offset from PC

Controls program flow, conditions, loops, etc.
Jumps to memory offset from program counter (PC)

C++ code: if (x1 == x2) cout << “…”; else cout << “…”;

Unconditional Jumps

MIPS Overview 6 Dec 2020

compiler

Assembly form: J Target

assembler
Machine instruction:

op jump target address

 6 bits 26 bits

Target address: PC[31:28] || instruction[25:0] || ’00’

Controls program flow, jumps to other code of
functions, subroutine etc.
Jumps to target address.

FORTRAN code: GO TO n

Memory Map of Code

MIPS Overview 7 Dec 2020

Assembly code Memory map Assembler

Pipelined MIPS

MIPS Overview 8 Dec 2020

I M R e g D M R e g A L U

I M R e g D M R e g A L U

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6 C C 7

T i m e (i n c l o c k c y c l e s)

l w $ 2 , 2 0 0 ($ 0)

l w $ 3 , 3 0 0 ($ 0)

P r o g r a m
e x e c u t i o n
o r d e r

(i n i n s t r u c t i o n s)

l w $ 1 , 1 0 0 ($ 0) I M R e g D M R e g A L U

Data-path + Control Hardware

MIPS Overview 9 Dec 2020

P C

I n s t r u c t i o n
m e m o r y

I n
 s
 t r

 u
 c
 t i
 o
 n

A d d

I n s t r u c t i o n
[2 0 – 1 6]

M
 e
 m

 t o
 R

 e
 g

A L U O p

B r a n c h

R e g D s t

A L U S r c

4

1 6 3 2 I n s t r u c t i o n
[1 5 – 0]

0

0

M
u
x

0

1

A d d
A d d

r e s u l t

R e g i s t e r s
W r i t e
r e g i s t e r

W r i t e
d a t a

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

S i g n
e x t e n d

M
u
x

1

A L U
r e s u l t

Z e r o

W r i t e
d a t a

R e a d
d a t a

M
u
x

1

A L U
c o n t r o l

S h i f t
l e f t 2

R
 e
 g
 W

 r i
 t e

M e m R e a d

C o n t r o l

A L U

I n s t r u c t i o n
[1 5 – 1 1]

6

E X

M

W B

M

W B

W B
I F / I D

P C S r c

I D / E X

E X / M E M

M E M / W B

M
u
x

0

1

M
 e
 m

 W
 r i
 t e

A d d r e s s

D a t a
m e m o r y

A d d r e s s

lw Instruction Fetch (IF)

MIPS Overview 10 Dec 2020

sub IF → lw Instruction Decode (ID)

MIPS Overview 11 Dec 2020

sub ID → lw Execution (EX)

MIPS Overview 12 Dec 2020

sub EX → lw Memory (MEM)

MIPS Overview 13 Dec 2020

sub MEM → lw Writeback (WB)

MIPS Overview 14 Dec 2020

sub WB

MIPS Overview 15 Dec 2020

R-type takes 5 cycles!

MIPS Overview 16 Dec 2020

Using data produced by earlier R-type instruction.

s u b $ 2 , $ 1 , $ 3

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

a n d $ 1 2 , $ 2 , $ 5

o r $ 1 3 , $ 6 , $ 2

a d d $ 1 4 , $ 2 , $ 2

s w $ 1 5 , 1 0 0 ($ 2)

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T i m e (i n c l o c k c y c l e s)

C C 7 C C 8 C C 9

1 0 1 0 1 0 1 0 1 0 / – 2 0 – 2 0 – 2 0 – 2 0 – 2 0

V a l u e o f
r e g i s t e r $ 2 :

R e g

R e g

I M R e g

I M R e g

I M R e g D M R e g

I M D M R e g

I M D M R e g

D M

R e g

R e g

D M

Data Hazards

Bypass \ Forwarding

MIPS Overview 17 Dec 2020

I M R e g

I M R e g

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T i m e (i n c l o c k c y c l e s)

s u b $ 2 , $ 1 , $ 3

P r o g r a m

e x e c u t i o n o r d e r

(i n i n s t r u c t i o n s)

a n d $ 1 2 , $ 2 , $ 5

I M R e g D M R e g

I M D M R e g

I M D M R e g

C C 7 C C 8 C C 9

1 0 1 0 1 0 1 0 1 0 / – 2 0 – 2 0 – 2 0 – 2 0 – 2 0

o r $ 1 3 , $ 6 , $ 2

a d d $ 1 4 , $ 2 , $ 2

s w $ 1 5 , 1 0 0 ($ 2)

V a l u e o f r e g i s t e r $ 2 :

D M R e g

R e g

R e g

R e g

X X X – 2 0 X X X X X V a l u e o f E X / M E M :

X X X X – 2 0 X X X X V a l u e o f M E M / W B :

D M

Assuming RegFile
forwards on same
cycle.

Load Hazards

MIPS Overview 18 Dec 2020

Using data produced by earlier LW instruction.

T i m e
2 4 6 8 1 0 1 2 1 4

l w $ s 0 , 2 0 ($ t 1)

s u b $ t 2 , $ s 0 , $ t 3

P r o g r a m
e x e c u t i o n

o r d e r
(i n i n s t r u c t i o n s)

I F I D W B M E M E X

I F I D W B M E M E X

b u b b l e b u b b l e b u b b l e b u b b l e b u b b l e

Bubble is a must. Can use NOP (SW) or CLK idle by
hazard detection unit (HW).
Use same forwarding unit.

Control Hazards

MIPS Overview 19 Dec 2020

Takes 3 cycles to resolve branch condition.

Solved by SW bubbles (simple, inefficient), instruction
reorder (compiler, limited), by HW (efficient, complex)
or combinations.

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program

execution

order

(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

28

40+4+28=72

corruption

Exceptions and Interrupts

MIPS Overview 20 Dec 2020

• Exception: any unexpected change in the internal
control flow
– Invoking an Operating System (OS) service from user

program

– Integer arithmetic overflow

– Using an undefined or unimplemented instruction

– Hardware malfunctions

• Interrupt: event is externally caused
– I/O device request

– Tracing instruction execution

– Breakpoint (programmer-requested interrupt)

Exceptions in MIPS

MIPS Overview 21 Dec 2020

stage Problem exceptions

occurring

IF Page fault on IF, misaligned memory

access, memory protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on data fetch, misaligned

memory access, memory protection

violation

WB None

What Happens During an Exception?

MIPS Overview 22 Dec 2020

• An exception occurs

• Operating system trap

• Saving the PC where the exception happens

• Save the operating system state

• Run exception code

• Resume the last instruction before it traps, or
terminate the program

January 2014 23

normal control flow:

sequential, jumps, branches, calls, returns

Exception

System

Exception

Handler

return from

exception

user program

Multicycle Operations

MIPS Extensions 24

Supporting floating point (FP) operations, EX takes few
clock cycles.
• Single cycle FP implies slow clock or enormous hardware,

both undesired.

May 2015

Support multiple FP units working simultaneously.

A stall occurs if an issued instruction causes structural
hazard or data hazard.

Four separate functional units operated in parallel.

MIPS Overview 25 Dec 2020

DIV not pipelined

Up to 7 FP/int
outstanding
multiplications

Up to 4 FP/int
outstanding
additions

Pipeline Regs (A1/A2,…, A3/A4), (M1/M2,…, M6/M7)

ID/EX Reg placed by ID/EX, ID/DIV, ID/M1, and ID/A1.

MIPS Overview 26 Dec 2020

Latency : # intervening cycles between an instruction
that produces a result and an instruction that uses it.

Initiation: # cycles that must elapse between issuing
two operations of a given type.

MIPS Overview 27 Dec 2020

“.D” extension of instruction stands for double-
precision (64-bit) FP operations.

result available data needed

Integer ALU latency is 0, since its result can be used on
next clock cycle.

Loads latency is 1, since its results can be used after one
intervening cycle.

MIPS Overview 28 Dec 2020

Data Hazards

Created when a dependence between instructions is
close enough.

• Program order must be preserved.

SW and HW techniques exploit parallelism by
preserving program order only where it affects the
outcome of the program.

Hazards are classified by the order of reads and writes.

Consider two instructions 𝒊 and 𝒋, with 𝒊 preceding 𝒋.
Three possible data hazards.

MIPS Overview 29 Dec 2020

WAW (write after write). 𝒋 writes an operand before
written by 𝒊 (output dependence).

• Wrong write order, leaving value written by 𝒊 rather
than 𝒋.

• Writing in more than one pipe stage or allow
instruction to proceed when previous one is stalled.

RAW (read after write). 𝒋 reads a source before written
by 𝒊 (true dependence).

• Most common, program order must be preserved.

MIPS Overview 30 Dec 2020

Structural hazards occurs by HW conflicts.
• Divide unit is not pipelined, causing structural

hazards. Must detect and stall instructions issue.
• Varying running times of instruction may result in

few register writes in a cycle.

Instructions can complete in a different order than they
were issued, causing problems with exceptions.

WAR (write after read). 𝒋 writes a destination before
read by 𝒊, 𝒊 gets wrong value (anti dependence).

• Occurs when instructions reordered. Not in static
issue pipelines since all reads are early (ID) and all
writes are late (WB).

MIPS Overview 31 Dec 2020

Because of longer latency of operations, stalls for RAW
hazards will be more frequent.

Instructions below depends on their previous and
proceeds as soon as data are available, assuming that
the pipeline has full bypassing and forwarding.

S.D is stalled extra cycle so that it does not conflict with
ADD.D in MEM. Needs extra HW to handle this.

MIPS Overview 32 Dec 2020

Three instructions in MEM. Is it a structural hazard?

No. The first two MEM do not write to MEM.

Instructions are in WB, resulting in a structural hazard.
The processor must serialize the WB. Write ports could
be increased, but it may not pay (only rarely used 2nd).

MIPS Overview 33 Dec 2020

ID: MULT→R2

1

shift

ID: MULT→R6

1

shift

1

EXE+MEM+WB

ID: ADD →R8

1

shift

1

 Stall
required

EXE+MEM+WB

single port RF

MIPS Overview 34 Dec 2020

ID: MULT→R2

R2

shift

ID: MULT→R6

R6

shift

R2

EXE+MEM+WB

ID: ADD →R6

R6

shift

R2

 Stall
required

EXE+MEM+WB

dual port RF

MIPS Overview 35 Dec 2020

Alternative solution detects conflicts at MEM or WB
stage, a case where either instruction can be stalled.

Simple heuristic gives priority to unit with longer
latency, since it is the most likely to cause other stalls
due to RAW hazards.

Advantage is the simple implementation.

Disadvantage is that it complicates pipeline control, as
stalls can now arise from two places.

