
ILP Limits and Multithreading

prepared and instructed by
 Shmuel Wimer

Eng. Faculty, Bar-Ilan University

June 2015 ILP Limits and Multithreading 1

ILP Limitations

June 2015 ILP Limits and Multithreading 2

Pipelining, multiple issue, dynamic scheduling and
speculation have limits.

Since late 90’s focus turned to clock speedup, without
increasing issue rates. 15 years later clock speedup
ended too.

ILP limitations are subsequently studied. We compare a
set of processors in performance and in efficiency
measures per transistor and per watt.

Thread-level parallelism is proposed, as an alternative
or addition to ILP.

Hardware Model

June 2015 ILP Limits and Multithreading 3

Assume first an ideal processor. The only limits on ILP
are imposed by the actual data flows (RAW hazards)
through either registers or memory.

1. Register renaming. There are an infinite number of
virtual registers available. Hence all WAW and WAR
hazards are avoided and an unbounded number of
instructions can begin execution simultaneously.

2. Branch prediction is perfect.

3. Jump prediction are perfect (computed jumps,
return addresses). With perfect BP, it is equivalent to
unbounded instruction buffer available for execution.

June 2015 ILP Limits and Multithreading 4

4. All memory addresses are known exactly, and a
load can be moved before a store provided that the
addresses are not identical.

5. Perfect caches. All memory accesses take 1 clock
cycle.

Assumptions 1 and 4 eliminate all but the true data
dependences, while assumptions 2 and 3 eliminate all
control dependences.

The above assumptions enable any instruction be
scheduled on the cycle immediately following the
execution of the predecessor on which it depends.

June 2015 ILP Limits and Multithreading 5

A processor that can issue an unlimited number of
instructions at once and looking arbitrarily far ahead in
the computation is first examined.

There will be no restrictions on what types of
instructions can be executed in a cycle.

For the unlimited-issue case, it means there may be an
unlimited number of loads or stores issued in parallel.

All functional unit latencies are assumed to be 1 cycle,
so that any sequence of dependent instructions can
issue on successive cycles.

Such processor is unrealizable.

June 2015 ILP Limits and Multithreading 6

The IBM Power5 was one of the most advanced
superscalar processors announced on mid 2000.

It issued up to four instructions per clock and initiates
execution of up to six (with restrictions on the
instruction type, e.g., at most two load-stores).

It supported 88 renaming integer registers and 88
renaming FP registers.

It allowed over 200 instructions in flight (instructions in
execution at any point), of which up to 32 could be
loads and 32 could be stores).

It used aggressive BP.

June 2015 ILP Limits and Multithreading 7

After looking at the perfect processor, the impact of
restricting various features is examined.

To measure the available parallelism, a set of programs
is executed to produce a trace of the instruction and
data references.

Every instruction in the trace is then scheduled as early
as possible, limited only by the data dependences.
Since a trace is used, perfect BP is easy to do.

With these mechanisms, instructions may be scheduled
much earlier than they would otherwise.

June 2015 ILP Limits and Multithreading 8

The window size directly limits the number of
instructions that begin execution in a given cycle.

Real processors have a limited number of functional
units, limited numbers of buses and register ports,
limiting the number of instructions initiated per clock.

Thus, the maximum number of instructions that may
issue, begin execution, or commit in the same clock
cycle is usually much smaller than the window size.

June 2015 ILP Limits and Multithreading 9

integer FP

June 2015 ILP Limits and Multithreading 10

Assume for the rest of this analysis:

1) window of 2K entries, X10 than largest
implementation in 2005, and

2) max issue capability of 64 instructions per clock, X10
times the widest issue processor in 2005.

The amount of parallelism uncovered falls sharply with
decreasing window size.

In 2005, the most advanced processors had window
sizes in the range of 64–200.

June 2015 ILP Limits and Multithreading 11

loop extensive

June 2015 ILP Limits and Multithreading 12

The branch behavior of the two FP programs is much
simpler than the others because they have many fewer
and more predictable branches, allowing exploitation
of significant amounts of parallelism.

June 2015 ILP Limits and Multithreading 13

June 2015 ILP Limits and Multithreading 14

1. A 4.0 GHz simple MIPS of two-issue static pipe,
achieving 0.8 CPI. Its cache yields 0.5% misses per
instruction.

2. A deeply pipelined 5.0 GHz MIPS of two-issue static
pipe, achieving 1.0 CPI. It has smaller cache yielding
0.55% misses per instruction.

Example. Consider three processors running on
benchmark achieving ideal issue rate as shown.

June 2015 ILP Limits and Multithreading 15

3. A 2.5 GHz speculative superscalar MIPS with a 64-
entry window. It achieves one-half of the ideal issue
rate shown above.

It has the smallest caches, yielding 1% misses per
instruction, but it hides 25% of the miss penalty on
every miss by dynamic scheduling.

Answer. Miss rate is first used to compute the
contribution to CPI from cache misses.

Cache miss penalty is 50 nSec in all processors.
Determine the relative MIPS (106 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑐)
performance of these three processors.

June 2015 ILP Limits and Multithreading 16

Cache Miss CPI=Misses per instruction × Miss penaly

Miss penalty=
Memory access time

Clock cycle

The miss penalties are combined with the miss rates to
yield miss penalties in CPI.

Miss penalty𝟐=50 nSec 200 pSec = 𝟐𝟓𝟎 cycles

Miss penalty𝟑=
𝟎. 𝟕𝟓 × 50 nSec

400 pSec
= 𝟗𝟒 cycles

Miss penalty𝟏=50 nSec 250 pSec = 𝟐𝟎𝟎 cycles

June 2015 ILP Limits and Multithreading 17

Cache Miss CPI𝟏=𝟎. 𝟎𝟎𝟓 × 𝟐𝟎𝟎 =1.0

Cache Miss CPI𝟐=𝟎. 𝟎𝟎𝟓𝟓 × 𝟐𝟓𝟎 =1.4

Cache Miss CPI𝟑=𝟎. 𝟎𝟏 × 𝟗𝟒 =0.94

The pipeline CPI is known for the first two processors.
To obtain the pipeline CPI of the 3rd, there is

Pipeline CPI𝟑=
𝟏

Issue rate
=

𝟏

9 × 𝟎. 𝟓
= 𝟎. 𝟐𝟐

The CPI is the sum of the pipeline and cache CPIs

CPI𝟏=𝟎. 𝟖 + 𝟏. 𝟎=1.8

CPI𝟐=𝟏. 𝟎 + 𝟏. 𝟒=2.4

June 2015 ILP Limits and Multithreading 18

CPI𝟑=𝟎. 𝟐𝟐 + 𝟎. 𝟗𝟒=1.16

All the three MIPS processors can be compared in
terms of their MIPS.

Instruction execution rate=
Clock rate

CPI

Instruction execution rate𝟏=
4000MHz

1.8
= 𝟐𝟐𝟐𝟐 MIPS

Instruction execution rate𝟐=
5000MHz

2.4
= 𝟐𝟎𝟖𝟑 MIPS

Instruction execution rate𝟑=
2500MHz

1.16
= 𝟐𝟏𝟓𝟓 MIPS

June 2015 ILP Limits and Multithreading 19

Multithreading

Data access latency occurs by cache misses (L1, L2),
memory latency, often unpredictable, data hazards.

ILP is advantageous since it is transparent to the
programmer, but it can be limited.

Multithreading (MT) tolerates or masks long and often
unpredictable latency operations by switching to
another context, which is able to do useful work.

There may be significant parallelism occurring naturally
at a higher level in the application that cannot be
exploited with the ILP techniques.

June 2015 ILP Limits and Multithreading 20

The higher-level parallelism is called Thread-Level
Parallelism (TLP) because it is logically structured as
separate threads of execution.

A thread is a separate process with its own instructions
and data.

It may represent a process that is part of a parallel
program consisting of multiple processes, or it may
represent an independent program on its own.

Each thread has all the state (instructions, data, PC,
register state, etc.) necessary to allow it to execute.

June 2015 ILP Limits and Multithreading 21

TLP is an important alternative to ILP because it could
be more cost-effective to exploit. TLP and ILP exploit
two different kinds of parallel structure in a program.

It happens that the functional units of a data-path
designed to exploit ILP are often idle because of either
stalls or dependences.

A natural question is therefore whether it is possible for
an ILP oriented processor to exploit TLP.

Question: Could the parallelism among threads be used
as a source of independent instructions that might
keep the processor busy during stalls?

June 2015 ILP Limits and Multithreading 22

Question: Could TLP be used to employ the functional
units that would otherwise be idle when insufficient ILP
exists?

Multithreading (MT) allows multiple threads to share
the functional units of a single processor.

To permit this sharing, the processor must duplicate
the independent state of each thread, including RF, PC
and page table.

The memory itself can be shared through the VM
mechanisms, already supporting multiprogramming.

June 2015 ILP Limits and Multithreading 23

The HW must support quick thread switching.

A thread switch should be much more efficient than a
process switch, which typically requires hundreds to
thousands of processor cycles.

June 2015 ILP Limits and Multithreading 24

LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW r5, 12(r1)

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W D D D

F D X M W D D D F F F

F D D D D F F F

t9 t10 t11 t12 t13 t14

Each instruction may depend on the prevoius.

T1: LW r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW r5, 0(r7)

T1: LW r5, 12(r1)

t9

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W

F D X M W

F D X M W

F D X M W

Interleave 4 threads on non-bypassed 5-stage pipe

Resolve RAW
hazards

???

June 2015 ILP Limits and Multithreading 25

Have to carry thread select down pipeline to ensure
correct state bits read/written at each pipe stage.

Appears to SW (OS) as multiple, albeit slower, CPUs.

Also, needs its own system state VM page table base
register, exception handling registers, and more.

June 2015 ILP Limits and Multithreading 26

Sun Niagara MT Pipeline

June 2015 ILP Limits and Multithreading 27

I-Cache: Instruction bandwidth, instruction locality is
degraded and the I-cache miss rate rises.

Register file access time: Increases due to the fact that
RF had to significantly increase in size to accommodate
many separate contexts.

May use SRAM to implement the RF, which means
longer access times.

Single thread performance: Significantly degraded
since the context is forced to switch to a new thread
even if none are available.

Very high bandwidth network, which is fast and wide.

MT Challenges

June 2015 ILP Limits and Multithreading 28

Thread Scheduling Policies

HW-controlled thread scheduling: HW keeps track of
which threads are ready to go. Picks next thread to
execute based on HW priority scheme.

Fixed interleave: Each of 𝑁 threads executes one
instruction every 𝑁 cycles. If thread not ready to go in
its slot, insert pipeline bubble.

𝑁 𝑁

SW-controlled interleave: OS allocates 𝑆 pipeline slots
amongst 𝑁 threads. HW performs fixed interleave over
𝑆 slots, executing whichever thread is in that slot.

𝑆 𝑆 𝑆

June 2015 ILP Limits and Multithreading 29

Thread B Thread A Thread D Thread C

4-issue machine

June 2015 ILP Limits and Multithreading 30

There are two main approaches to MT, Fine-grained
MT and Coarse-grained MT.

Coarse-grained MT switches threads only on costly
stalls, such as L2 misses.

The processor is not slowed down (by thread
switching), since instructions from other threads will
only be issued when a thread encounters a costly stall.

It is however limited in overcoming throughput losses
caused by short stalls (employment of FUs).

June 2015 ILP Limits and Multithreading 31

Since a CPU with coarse-grained MT issues instructions
from a single thread, when a stall occurs the pipeline
must be emptied.

The new thread must fill the pipeline before
instructions will be able to complete.

Because of this start-up overhead, coarse-grained MT is
much more useful for reducing the penalty of high-cost
stalls, where pipeline refill is negligible compared to the
stall time.

June 2015 ILP Limits and Multithreading 32

Coarse-grained MT

June 2015 ILP Limits and Multithreading 33

Fine-grained MT switches between threads on each
instruction, causing multiple threads to be interleaved.

It is often done in a round-robin fashion, skipping any
threads that are stalled at that time. The CPU must
switch threads on every clock cycle.

An advantage is that it hides the throughput losses
arising from short stalls, since instructions from other
threads are executed when one thread stalls.

A disadvantage is the slowdown in executing individual
threads, since a thread that is ready to execute without
stalls is delayed by other threads.

June 2015 ILP Limits and Multithreading 34

Skip A

Fine-grained MT

1

2

3

4

5

6

7

8

9

10

11

12

3 3 3

3

6

4 4

4 4

4

7

5 5

5 5 5 5

5

8 8 8

6 6 6 6

7 7 7 7

9 9

7 7

11

8 8

8 8

10 10 10

1 1

1 1 1

1 1 1

1

Time stamp of single
thread execution

2

2 2

5 5

3 3 3

Simultaneous Multithreading

June 2015 ILP Limits and Multithreading 35

Simultaneous multithreading (SMT) is a variation on
MT to exploit TLP simultaneously with ILP.

SMT is motivated by multiple-issue processors which
have more functional unit parallelism than a single
thread can effectively use.

Register renaming and dynamic scheduling enables
issuing multiple instructions from independent threads
ASAP regardless of the dependences among them.

Dependences resolution can be handled by the
dynamic scheduling capability (Tomasulo, ROB).

June 2015 ILP Limits and Multithreading 36

1

2

3

4

5

6

7

8

9

10

11

12

2 2 2

Skip C 3 3 3 3

3 3 3 4

4 4

4 4

5

5 5

5 5

5 5

5 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Skip A
6

6

6 6 6

7

7 7 7 7

7

7 11

9 9

9 9

10 10 10

8 8 8

8

8

8

8 12 12 12

1 1 1 1

1 1 1 1

1

Time stamp of single
thread execution

Why thread B
cannot issue?

June 2015 ILP Limits and Multithreading 37

Approaches to use the issue slots.

June 2015 ILP Limits and Multithreading 38

In superscalar without MT, the use of issue slots is
limited by a lack of ILP. A major stall, such as cache
miss, can leave the entire processor idle.

Although reducing the number of completely idle clock
cycles, the ILP limitations still lead to idle cycles.

Since thread switching only occurs when there is a stall
and the new thread has a start-up period, some fully
idle cycles will still remain.

In coarse-grained MT superscalar, the long stalls are
partially hidden by switching to another thread that
uses the resources of the processor.

June 2015 ILP Limits and Multithreading 39

In fine-grained MT, the interleaving of threads
eliminates fully empty slots.

Because only one thread issues instructions in a given
clock cycle, ILP limitations still lead to idle slots within
individual clock cycles.

The issue slot usage is still limited by imbalances in the
resource needs and resource availability over multiple
threads.

In SMT, TLP and ILP are exploited simultaneously, with
multiple threads using the issue slots in a single clock
cycle.

June 2015 ILP Limits and Multithreading 40

Other factors, such as how many active threads are
considered, buffers limits, instruction fetch limits, can
also restrict how many slots are used.

SMT uses the fact that many of the HW mechanisms
needed to support TLP already exist in a dynamically
scheduled processor.

Dynamically scheduled processor have a large set of
virtual registers.

These can be used to hold the register sets of
independent threads (assuming separate renaming
tables are maintained for each thread).

June 2015 ILP Limits and Multithreading 41

Because register renaming provides unique register
identifiers, instructions from multiple threads can be
mixed in the data path without confusing sources and
destinations across the threads.

This allows to build MT on top of an OOO processor by
adding a per-thread renaming table, keeping separate
PCs, and providing the capability for instructions from
multiple threads to commit.

The independent commitment of instructions from
separate threads can be supported by keeping a
separate reorder buffer for each thread.

