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Pipelining, multiple issue, dynamic scheduling and 
speculation have limits. 

Since late 90’s focus turned to clock speedup, without 
increasing issue rates. 15 years later clock speedup 
ended too.   

ILP limitations are subsequently studied. We compare a 
set of processors in performance and in efficiency 
measures per transistor and per watt. 

Thread-level parallelism is proposed, as an alternative 
or addition to ILP. 



Hardware Model 
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Assume first an ideal processor. The only limits on ILP 
are imposed by the actual data flows (RAW hazards) 
through either registers or memory. 

1. Register renaming. There are an infinite number of 
virtual registers available. Hence all WAW and WAR 
hazards are avoided and an unbounded number of 
instructions can begin execution simultaneously. 

2. Branch prediction is perfect.  

3. Jump prediction are perfect (computed jumps, 
return addresses). With perfect BP, it is equivalent to 
unbounded instruction buffer available for execution. 
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4. All memory addresses are known exactly, and a 
load can be moved before a store provided that the 
addresses are not identical. 

5. Perfect caches. All memory accesses take 1 clock 
cycle.  

Assumptions 1 and 4 eliminate all but the true data 
dependences, while assumptions 2 and 3 eliminate all 
control dependences. 

The above assumptions enable any instruction be 
scheduled on the cycle immediately following the 
execution of the predecessor on which it depends.  
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A processor that can issue an unlimited number of 
instructions at once and looking arbitrarily far ahead in 
the computation is first examined. 

There will be no restrictions on what types of 
instructions can be executed in a cycle. 

For the unlimited-issue case, it means there may be an 
unlimited number of loads or stores issued in parallel. 

All functional unit latencies are assumed to be 1 cycle, 
so that any sequence of dependent instructions can 
issue on successive cycles. 

Such processor is unrealizable. 
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The IBM Power5 was one of the most advanced 
superscalar processors announced on mid 2000. 

It issued up to four instructions per clock and initiates 
execution of up to six (with restrictions on the 
instruction type, e.g., at most two load-stores). 

It supported 88 renaming integer registers and 88 
renaming FP registers. 

It allowed over 200 instructions in flight (instructions in 
execution at any point), of which up to 32 could be 
loads and 32 could be stores). 

It used aggressive BP.   
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After looking at the perfect processor, the impact of 
restricting various features is examined. 

To measure the available parallelism, a set of programs 
is executed to produce a trace of the instruction and 
data references. 

Every instruction in the trace is then scheduled as early 
as possible, limited only by the data dependences.  
Since a trace is used, perfect BP is easy to do. 

With these mechanisms, instructions may be scheduled 
much earlier than they would otherwise. 
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The window size directly limits the number of 
instructions that begin execution in a given cycle. 

Real processors have a limited number of functional 
units, limited numbers of buses and register ports, 
limiting the number of instructions initiated per clock. 

Thus, the maximum number of instructions that may 
issue, begin execution, or commit in the same clock 
cycle is usually much smaller than the window size. 
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integer FP 
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Assume for the rest of this analysis: 

1) window of 2K entries, X10 than largest 
implementation in 2005, and 

2) max issue capability of 64 instructions per clock, X10 
times the widest issue processor in 2005. 

The amount of parallelism uncovered falls sharply with 
decreasing window size. 

In 2005, the most advanced processors had window 
sizes in the range of 64–200. 
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loop extensive 



June 2015 ILP Limits and Multithreading 12 

The branch behavior of the two FP programs is much 
simpler than the others because they have many fewer 
and more predictable branches, allowing exploitation 
of significant amounts of parallelism.  



June 2015 ILP Limits and Multithreading 13 



June 2015 ILP Limits and Multithreading 14 

1. A 4.0 GHz simple MIPS of two-issue static pipe, 
achieving 0.8 CPI. Its cache yields 0.5% misses per 
instruction. 

2. A deeply pipelined 5.0 GHz MIPS of two-issue static 
pipe, achieving 1.0 CPI. It has smaller cache yielding 
0.55% misses per instruction. 

Example. Consider three processors running on 
benchmark achieving ideal issue rate as shown. 
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3. A 2.5 GHz speculative superscalar MIPS with a 64-
entry window. It achieves one-half of the ideal issue 
rate shown above. 

It has the smallest caches, yielding 1% misses per 
instruction, but it hides 25% of the miss penalty on 
every miss by dynamic scheduling. 

Answer. Miss rate is first used to compute the 
contribution to CPI from cache misses. 

Cache miss penalty is 50 nSec in all processors. 
Determine the relative MIPS (106 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑐 ) 
performance of these three processors. 
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Cache Miss CPI=Misses per instruction × Miss penaly 

Miss penalty=
Memory access time

Clock cycle
 

The miss penalties are combined with the miss rates to 
yield miss penalties in CPI. 

Miss penalty𝟐=50 nSec 200 pSec = 𝟐𝟓𝟎 cycles 

Miss penalty𝟑=
𝟎. 𝟕𝟓 × 50 nSec

400 pSec
= 𝟗𝟒 cycles 

Miss penalty𝟏=50 nSec 250 pSec = 𝟐𝟎𝟎 cycles 
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Cache Miss CPI𝟏=𝟎. 𝟎𝟎𝟓 × 𝟐𝟎𝟎 =1.0 

Cache Miss CPI𝟐=𝟎. 𝟎𝟎𝟓𝟓 × 𝟐𝟓𝟎 =1.4 

Cache Miss CPI𝟑=𝟎. 𝟎𝟏 × 𝟗𝟒 =0.94 

The pipeline CPI is known for the first two processors. 
To obtain the pipeline CPI of the 3rd, there is 

Pipeline CPI𝟑=
𝟏

Issue rate
=

𝟏

9 × 𝟎. 𝟓
= 𝟎. 𝟐𝟐 

The CPI is the sum of the pipeline and cache CPIs 

CPI𝟏=𝟎. 𝟖 + 𝟏. 𝟎=1.8 

CPI𝟐=𝟏. 𝟎 + 𝟏. 𝟒=2.4 
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CPI𝟑=𝟎. 𝟐𝟐 + 𝟎. 𝟗𝟒=1.16 

All the three MIPS processors can be compared in 
terms of their MIPS. 

Instruction execution rate=
Clock rate

CPI
 

Instruction execution rate𝟏=
4000MHz

1.8
= 𝟐𝟐𝟐𝟐 MIPS 

Instruction execution rate𝟐=
5000MHz

2.4
= 𝟐𝟎𝟖𝟑 MIPS 

Instruction execution rate𝟑=
2500MHz

1.16
= 𝟐𝟏𝟓𝟓 MIPS 
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Multithreading 

Data access latency occurs by cache misses (L1, L2), 
memory latency, often unpredictable, data hazards. 

ILP is advantageous since it is transparent to the 
programmer, but it can be limited. 

Multithreading (MT) tolerates or masks long and often 
unpredictable latency operations by switching to 
another context, which is able to do useful work.  

There may be significant parallelism occurring naturally 
at a higher level in the application that cannot be 
exploited with the ILP techniques. 
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The higher-level parallelism is called Thread-Level 
Parallelism (TLP) because it is logically structured as 
separate threads of execution. 

A thread is a separate process with its own instructions 
and data. 

It may represent a process that is part of a parallel 
program consisting of multiple processes, or it may 
represent an independent program on its own. 

Each thread has all the state (instructions, data, PC, 
register state, etc.) necessary to allow it to execute. 



June 2015 ILP Limits and Multithreading 21 

TLP is an important alternative to ILP because it could 
be more cost-effective to exploit. TLP and ILP exploit 
two different kinds of parallel structure in a program. 

It happens that the functional units of a data-path 
designed to exploit ILP are often idle because of either 
stalls or dependences. 

A natural question is therefore whether it is possible for 
an ILP oriented processor to exploit TLP. 

Question: Could the parallelism among threads be used 
as a source of independent instructions that might 
keep the processor busy during stalls? 
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Question: Could TLP be used to employ the functional 
units that would otherwise be idle when insufficient ILP 
exists? 

Multithreading (MT) allows multiple threads to share 
the functional units of a single processor. 

To permit this sharing, the processor must duplicate 
the independent state of each thread, including RF, PC 
and page table. 

The memory itself can be shared through the VM 
mechanisms, already supporting multiprogramming. 
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The HW must support quick thread switching. 

A thread switch should be much more efficient than a 
process switch, which typically requires hundreds to 
thousands of processor cycles. 
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LW r1, 0(r2) 

LW r5, 12(r1) 

ADDI r5, r5, #12 

SW r5, 12(r1)  

F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

F D X M W D D D 

F D X M W D D D F F F 

F D D D D F F F 

t9 t10 t11 t12 t13 t14 

Each instruction may depend on the prevoius. 

T1: LW r1, 0(r2) 

T2: ADD r7, r1, r4 

T3: XORI r5, r4, #12 

T4: SW r5, 0(r7) 

T1: LW r5, 12(r1) 

t9 

F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

F D X M W 

F D X M W 

F D X M W 

F D X M W 

Interleave 4 threads on non-bypassed 5-stage pipe 

Resolve RAW 
hazards 

??? 
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Have to carry thread select down pipeline to ensure 
correct state bits read/written at each pipe stage. 

Appears to SW (OS) as multiple, albeit slower, CPUs. 

Also, needs its own system state VM page table base 
register, exception handling registers, and more. 



June 2015 ILP Limits and Multithreading 26 

Sun Niagara MT Pipeline 
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I-Cache: Instruction bandwidth, instruction locality is 
degraded and the I-cache miss rate rises.  

Register file access time: Increases due to the fact that 
RF had to significantly increase in size to accommodate 
many separate contexts.   

May use SRAM to implement the RF, which means 
longer access times.  

Single thread performance: Significantly degraded 
since the context is forced to switch to a new thread 
even if none are available.  

Very high bandwidth network, which is fast and wide. 

MT Challenges 
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Thread Scheduling Policies 

HW-controlled thread scheduling: HW keeps track of 
which threads are ready to go. Picks next thread to 
execute based on HW priority scheme. 

Fixed interleave: Each of 𝑁  threads executes one 
instruction every 𝑁 cycles. If thread not ready to go in 
its slot, insert pipeline bubble. 

𝑁 𝑁 

SW-controlled interleave: OS allocates 𝑆 pipeline slots 
amongst 𝑁 threads. HW performs fixed interleave over 
𝑆 slots, executing whichever thread is in that slot. 

𝑆 𝑆 𝑆 



June 2015 ILP Limits and Multithreading 29 

Thread B Thread A Thread D Thread C 

4-issue machine 
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There are two main approaches to MT, Fine-grained 
MT and Coarse-grained MT.  

Coarse-grained MT switches threads only on costly 
stalls, such as L2 misses. 

The processor is not slowed down (by thread 
switching), since instructions from other threads will 
only be issued when a thread encounters a costly stall. 

It is however limited in overcoming throughput losses 
caused by short stalls (employment of FUs). 
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Since a CPU with coarse-grained MT issues instructions 
from a single thread, when a stall occurs the pipeline 
must be emptied. 

The new thread must fill the pipeline before 
instructions will be able to complete. 

Because of this start-up overhead, coarse-grained MT is 
much more useful for reducing the penalty of high-cost 
stalls, where pipeline refill is negligible compared to the 
stall time. 
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Coarse-grained MT  
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Fine-grained MT switches between threads on each 
instruction, causing multiple threads to be interleaved. 

It is often done in a round-robin fashion, skipping any 
threads that are stalled at that time. The CPU must 
switch threads on every clock cycle. 

An advantage is that it hides the throughput losses 
arising from short stalls, since instructions from other 
threads are executed when one thread stalls. 

A disadvantage is the slowdown in executing individual 
threads, since a thread that is ready to execute without 
stalls is delayed by other threads. 
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Simultaneous Multithreading 
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Simultaneous multithreading (SMT) is a variation on 
MT to exploit TLP simultaneously with ILP. 

SMT is motivated by multiple-issue processors which 
have more functional unit parallelism than a single 
thread can effectively use. 

Register renaming and dynamic scheduling enables 
issuing multiple instructions from independent threads 
ASAP regardless of the dependences among them. 

Dependences resolution can be handled by the 
dynamic scheduling capability (Tomasulo, ROB). 
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Approaches to use the issue slots. 
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In superscalar without MT, the use of issue slots is 
limited by a lack of ILP. A major stall, such as cache 
miss, can leave the entire processor idle. 

Although reducing the number of completely idle clock 
cycles, the ILP limitations still lead to idle cycles. 

Since thread switching only occurs when there is a stall 
and the new thread has a start-up period, some fully 
idle cycles will still remain. 

In coarse-grained MT superscalar, the long stalls are 
partially hidden by switching to another thread that 
uses the resources of the processor. 
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In fine-grained MT, the interleaving of threads 
eliminates fully empty slots. 

Because only one thread issues instructions in a given 
clock cycle, ILP limitations still lead to idle slots within 
individual clock cycles. 

The issue slot usage is still limited by imbalances in the 
resource needs and resource availability over multiple 
threads. 

In SMT, TLP and ILP are exploited simultaneously, with 
multiple threads using the issue slots in a single clock 
cycle. 
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Other factors, such as how many active threads are 
considered, buffers limits, instruction fetch limits, can 
also restrict how many slots are used. 

SMT uses the fact that many of the HW mechanisms 
needed to support TLP already exist in a dynamically 
scheduled processor. 

Dynamically scheduled processor have a large set of 
virtual registers. 

These can be used to hold the register sets of 
independent threads (assuming separate renaming 
tables are maintained for each thread).  
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Because register renaming provides unique register 
identifiers, instructions from multiple threads can be 
mixed in the data path without confusing sources and 
destinations across the threads. 

This allows to build MT on top of an OOO processor by 
adding a per-thread renaming table, keeping separate 
PCs, and providing the capability for instructions from 
multiple threads to commit. 

The independent commitment of instructions from 
separate threads can be supported by keeping a 
separate reorder buffer for each thread. 


