
Instruction-Level Parallelism 
compiler techniques and branch prediction  

prepared and instructed by 
 Shmuel Wimer 

Eng. Faculty, Bar-Ilan University 

April 2019 Instruction-Level Parallelism 1 1 



Concepts and Challenges 
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The potential overlap among instructions is called 
instruction-level parallelism (ILP). 

Two approaches exploiting ILP: 
• Hardware discovers and exploit the parallelism dynamically. 
• Software finds parallelism, statically at compile time.  

CPI for a pipelined processor: 
Ideal pipeline CPI + Structural stalls + Data hazard stalls + 
Control stalls 

Basic block: a straight-line code with no branches. 
• Typical size between three to six instructions. 
• Too small to exploit significant  amount of parallelism. 
• We must exploit ILP across multiple basic blocks. 
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Loop-level parallelism exploits parallelism among 
iterations of a loop. A completely parallel loop adding 
two 1000-element arrays: 

Within an iteration there is no opportunity for overlap,  
but every iteration can overlap with any other iteration. 

The loop can be unrolled either statically by compiler or 
dynamically by hardware. 

Vector processing is also possible. Supported in DSP, 
graphics, and multimedia applications. 



Data Dependences and Hazards 
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If two instructions are parallel, they can be executed 
simultaneously in a pipeline without causing any 
stalls, assuming the pipeline has sufficient resources.  

Two dependent instructions must be executed in 
order, but can often be partially overlapped. 

Three types of dependences: data dependences, 
name dependences, and control dependences. 

Instruction 𝒋 is data dependent on instruction 𝒊 if: 
• 𝒊 produces a result that may be used by 𝒋, or 
• 𝒋 is data dependent on an instruction 𝒌, and 𝒌 is data 

dependent on 𝒊 (transitivity). 
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The following loop increments a vector of values in 
memory by a scalar in register F2, starting at 0(R1), 
with the last element at 8(R2)).  

Since between two data dependent instructions there 
is a chain of one or more data hazards, they  cannot 
be executed simultaneously or completely overlap.  

The data dependences in this code sequence involve 
both floating-point and integer data. 
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Data dependence conveys: 

• the possibility of a hazard, 
• the order in which results must be calculated, and 
• an upper bound on how much parallelism can be exploited. 

Detecting dependence of registers is straightforward. 
• Register names are fixed in the instructions. 

Dependences that flow through memory locations are 
more difficult to detect. 

• Two addresses may refer to the same location but look 
different: For example, 100(R4) and 20(R6). 

• The effective address of a load or store may change from one 
execution of the instruction to another (so that 100(R4) and 
20(R6) may be different). 



Name Dependences 
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A name dependence occurs when two instructions 
use the same register or memory location, called 
name, but there is no flow of data between the 
instructions. If 𝒊 precedes 𝒋 in program order: 

Anti dependence between 𝒊 and 𝒋 occurs when 𝒋 
writes a register or memory location that 𝒊 reads. 

 

 

The original ordering must be preserved to ensure 
that 𝒊 reads the correct value.  
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Output dependence occurs when 𝒊 and 𝒋 write the 
same register or memory location. Their ordering must 
be preserved to ensure proper value written by 𝒋. 

Name dependence is not a true dependence. 
• The instructions involved can execute simultaneously or be 

reordered. 
• The name (register # or memory location) is changed so the 

instructions do not conflict. 

Register renaming can be more easily done. 
• Done either statically by a compiler or dynamically by the 

hardware.  



Data Hazards 

April 2019 Instruction-Level Parallelism 1 9 

A hazard is created whenever a dependence between 
instructions is close enough. 
• Program order must be preserved. 

The goal of both SW and HW techniques is to exploit 
parallelism by preserving program order only where it 
affects the outcome of the program. 
• Detecting and avoiding hazards ensures that necessary 

program order is preserved. 

Data hazards are classified depending on the order of 
read and write accesses in the instructions. Consider 
two instructions 𝒊 and 𝒋, with 𝒊 preceding 𝒋 
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The possible data hazards are: 

WAW (write after write). 𝒋 tries to write an operand 
before it is written by 𝒊. 

• Writes are performed in the wrong order, leaving the value 
written by 𝒊 rather than by 𝒋. 

• Corresponds to an output dependence.  

• Present only in pipelines that write in more than one pipe 
stage or allow an instruction to proceed even when a 
previous instruction is stalled. 

RAW (read after write). 𝒋 tries to read a source before 𝒊 
writes it.  

• The most common, corresponding to a true data dependence. 

• Program order must be preserved. 
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WAR (write after read). 𝒋 tries to write a destination 
before it is read by 𝒊, so 𝒊 incorrectly gets the new 
value.  

• Arises from anti dependence. 

• Cannot occur in most static issue pipelines 
because all reads are early (in ID) and all writes are 
late (in WB).  

• Occurs when there are some instructions that 
write results early in the pipeline and other 
instructions that read a source late in the pipeline. 

• Occurs also when instructions are reordered. 



Control Dependences 
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A control dependence determines the ordering of 𝒊 
with respect to a branch so that 𝒊 is executed in correct 
order and only when it should be. 

There are two constraints imposed by control 
dependences: 

• An instruction that is control dependent on a branch cannot 
be moved before the branch so that its execution is no longer 
controlled by the branch. 

• An instruction that is not control dependent on a branch 
cannot be moved after the branch so that its execution is 
controlled by the branch. 
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Consider this code: 

If we do not maintain the data dependence involving 
R2, the result of the program can be changed. 

It is not data dependence preventing interchanging 
the BEQZ and the LW; it is only the control 
dependence.  

If we ignore the control dependence and move the 
load before the branch, the load may cause a memory 
protection exception. (why?) 



Compiler Techniques for Exposing ILP 
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Pipeline is kept full by finding sequences of unrelated 
instructions that can be overlapped in the pipeline. 

To avoid stall, a dependent instruction must be 
separated from the source by a distance in clock 
cycles equal to the pipeline latency of that source.  

Example: Latencies of FP operations 
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Code adding 
scalar to vector: 

Straightforward MIPS assembly code: 

R1 is initially the top element address in the array. 
F2 contains the scalar value 𝑠.  
R2 is pre computed, so that 8(R2) is the array bottom.  
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Without any scheduling 
the loop takes 9 cycles: 

Scheduling the loop 
obtains only two stalls, 
taking 7 cycles: 
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The actual work on the array is just 3 7  cycles (load, 
add, and store). The other 4 are loop overhead. Their 
elimination requires more operations relative to the 
overhead. 

Loop unrolling replicating the loop body multiple 
times. 

• Adjustment of the loop termination code is required. 

• Used also to improve scheduling. 

Instruction replication is insufficient. Different registers 
for each replication are required. 

Required number of registers increases. 



Unrolled code (not rescheduled) 
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2 stalls 

2 stalls 

2 stalls 

2 stalls 

1 stall 

1 stall 

1 stall 

1 stall 

1 stall 

Stalls are still there.  
Run in 27 clock cycles, 6.75 per block. 
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Unrolled and rescheduled code 

No stalls are required! 

Execution dropped to 14 
clock cycles, 3.5 per 
block. 

Compared with 9 per 
block before unrolling or 
scheduling and 7 when 
scheduled but not 
unrolled. 

Is it a hazard? 
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Problem: The number of loop iterations 𝑛 is usually 
unknown. We would like to unroll the loop to make 𝑘 
copies of its body. 

Two consecutive loops are generated Instead. 

The first executes 𝑛 mod 𝑘 times and has a body that 
is the original loop. 

The second is the unrolled body surrounded by an 
outer loop that iterates 𝑛 𝑘  times.  

For large 𝑛, most of the execution time will be spent 
in the unrolled loop body. 



Branch Prediction 
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performance losses can be reduced by predicting how 
branches will behave.  

Branch prediction (BP) can be done statically at 
compilation (SW) and dynamically at execution time 
(HW). 

The simplest static scheme is to predict a branch as 
taken. Misprediction equal to the untaken frequency 
(34% for the SPEC benchmark). 

BP based on profiling is more accurate.  
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Misprediction on SPEC92 for a profile-based predictor 



Dynamic Branch Prediction 
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The simplest is a BP buffer, a small 1-bit memory 
indexed by the LSBs of the address of the branch 
instruction (no tags).  

Useful only to reduce the branch delay (stalls) when it 
is longer than the time to compute the possible target 
PC address (e.g. 𝑖𝑓 sin (𝑥)  <  0). 

BP may have been put there by another branch that 
has the same LSBs address bits! 

Fetching begins in the predicted direction. If it was  
wrong, the BP bit is inverted and stored back. 
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Problem: Even if almost always taken, we will likely 
predict incorrectly twice. (why?) 

Example: Consider a certain loop. Upon exiting the 
loop a miss prediction occurs. Re-entry of that loop will 
cause another miss prediction. 

Solution: 
saturation counter. 
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It is a 2-bit saturation counter. It must miss twice 
before it is changed. Such counter is stored at every 
entry of the BP buffer. 

It can be implemented as a special cache, read at IF 
(why?), or by adding two special bits to the I-cache. 

An 𝑛-bit counter is also possible. When the counter is 
less than half, counter ≤ 2𝑛−1 − 1 , not taken is 
predicted; otherwise, taken is predicted. 

The counter is then updated according to the real 
branch decision. 

2-bit do almost as well, thus used by most systems. 



Correlating Branch Predictors 
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2-bit BP uses only the recent behavior of a single 
branch for a decision. 

Accuracy can be improved if the recent behavior of 
other branches are considered.  

Consider the code: 

Let aa and bb be assigned to registers R1 and R2, and 
label the three branches b1, b2, and b3. The compiler 
generates the typical MIPS code: 
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The behavior of b3 is correlated with that of b1 and b2. 

A predictor using only the behavior of a single branch 
to predict its outcome is blind of this behavior. 

Correlating or two-level predictors add information 
about the most recent branches to decide on a branch. 
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An 𝑚, 𝑛  BP uses the last 𝑚 branches to choose from 
2𝑚  branch predictors, each of which is an 𝑛 -bit 
predictor (counter) for a single branch. 

More accurate than 2-bit and requires simple HW. 

The global history of the most recent 𝑚 branches is 
recorded in an 𝑚-bit shift register. 

A (2𝑚+𝑟)-size BP buffer is indexed by 𝑚 + 𝑟 -bit using 
the 𝑟 LSBs branch address and 𝑚-bit recent history. 

For example, a 1,2  BP uses the behavior of the last 
branch to choose from among a pair of 2-bit BPs in 
predicting the a particular branch. 
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For example, in a 2,2  BP buffer with 64 total entries, 
the 6-bit index of a 64 entries is formed by the 4 LSBs 
of the branch address plus 2 global bits obtained from 
the two most recent branches behavior. 

For a fair comparison of the performance of BPs, the 
same number of state bits are used. 

The number of bits in an 𝑚,𝑛  predictor is: 
2𝑚 × 𝑛 × # BP entries selected by the branch address 
= 2𝑚+𝑟× 𝑛. 

A 2-bit predictor w/o global history is a 0,2  predictor. 
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Example: How many bits are in the 0,2  BP with 4K 
entries? How many entries are in a 2,2  predictor 
with the same number of bits? 

A 4K-entries 0,2  BP has 20 × 2 × 4K=8K bits. 

A 2,2  BP having a total of 8K bits satisfies: 

2𝑚 × 𝑛 × # BP entries selected by the branch address. 

22 × 2 × # BP entries selected by the branch address 
= 8K bits. 

The # of prediction entries is therefore 1K. 
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not much 
improvement  

significant 
improvement  



Tournament Predictors 
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Tournament predictors combine predictors based on 
global and local information. 

They achieve better accuracy and effectively use very 
large numbers of prediction bits. 

Tournament BPs use a 2-bit saturating counter per 
branch to select between two different BP (local, 
global), based on which was most effective in recent 
predictions. 

As in a simple 2-bit predictor, the saturating counter 
requires two mispredictions before changing the 
identity of the preferred BP. 
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1 𝑥1 𝑥𝑖  𝑥𝑛 

𝑦 

𝑤0 𝑤1 𝑤𝑖  𝑤𝑛 

Perceptron-Based Branch Predictor 

𝑦 = 𝑤0+ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1  

𝑥𝑖 are ±1 bits of global recent 𝑛-bit branch history. 

𝑡 = ±1 is the real  branch outcome (taken, not taken). 
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Since 𝑡 = ±1 and 𝑥𝑖 = ±1, 𝑤𝑖  increases when the 
branch outcome agrees with 𝑥𝑖 (positive correlation) 
and decreases on disagreement (negative correlation). 

Long lasting positive or negative correlation yield large 
weights, hence large influence on the prediction. 

Weak correlation maintains the weight close to 0, 
contributing a little to the output of the perceptron. 

If sign 𝑦 ≠ 𝑡 || 𝑦 < 𝜽  { 

       𝑤𝑖 = 𝑤𝑖 + 𝑡𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛; 
} 

Weights update: 
𝜽 training threshold 
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History length 𝑛 =  10 −  100. 
The longer the more accurate predictions, but more 
memory for weights (per table entry). 
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