
Parallel and Reconfigurable VLSI Computing (2)

Hardware Preliminary

Hiroki Nakahara
Tokyo Institute of Technology

Outline

• Boolean Logic
• Boolean Arithmetic
• Sequential Circuit
• Computer Architecture

Boolean Logic

Boolean Logic

• Represent number by "bool" variable
• true/false, 1/0, yes/no, on/off

• (Boolean) Logic function
• Both In/Out are bool variables

Truth Table

• A kind of representation for logic function
• 22^n functions exist for n	input

x y z f(x,y,z)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Boolean Expression

• Boolean operator: OR(+), AND(#) and not($)

x y z f(x,y,z)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

f(x,y,z)=(x+y)# ̅𝑧

For all combinations of input,
evaluate a given expression (Verification)

Canonical Representation

• Any Boolean function can be represented by at least
a canonical representation
• Conversion a truth table to a canonical

representation
• For each "1" output line, concatenate input literals by

AND operation
• Concatenate these terms by OR operation

→ AND-OR standard representation
• c.f. OR-AND standard representation

• Arbitrary Boolean function can be represented by
operator set {AND,OR,NOT} (Completeness)

2-input
Boolean
Function
• 16 functions

x,y 0,0 0,1 1,0 1,1

Constant 0 0 0 0 0

AND 0 0 0 1

x AND Not y 0 0 1 0

x 0 0 1 1

Not x AND y 0 1 0 0

y 0 1 0 1

EXOR 0 1 1 0

OR 0 1 1 1

NOR 1 0 0 0

EXNOR 1 0 0 1

Not y 1 0 1 0

If y then x 1 0 1 1

Not x 1 1 0 0

If x then y 1 1 0 1

NAND 1 1 1 0

Constant 1 1 1 1 1

Boolean (Logic) Gate
• A physical device which realizes a Boolean function
• Transistor: Made by connecting a switch by

specified wires
• Almost all digital computer operates use electricity

to represent and operate binary data
• Other elements can be used:

• Silicon device (Major)
• Magnet, light, bio, hydraulic, and pneumatic

• Boolean algebra: A concept abstraction
• Composite gate: Consists of primitive logic gates

Primitive Gate
• NOT

• AND

• OR

• EXOR

0

1
a
b f

s

0

1

y1
y2

x

s

multiplexer

demultiplexer

Example of Completeness

• NAND (NOR):

Not

AND

OR

EXOR

Composite Gate

• a,b,c,f ∈ 0,1
• AND(x,y,z) for Boolean expression: a#b#c=(a#b)#c

c
b
a

c

b
a

f

f

Logic Design
• Design method for connecting the gate

• Composite gate for complicated function is designed using primitive gate

• Different point of view
• Left: Interface outside the gate → Designers treat it as a black box
• Right: Implementation method inside gate (architecture)

c
b
a

c

b
a

f
f

Architecture
Interface
(Specification)

Example: Logic design for EXOR

• Gate interface (Specification) is an unique
• Several realizations exist

• Area, speed, power, simplicity, cost, and/or reliability
→ Design method based on a cost function

b
a

b

a

f f

Hardware Description Language (HDL)
• Gate level design wastes time
• Circuit assembly mistakes in wiring process
• Design and verification of the architecture on a

virtual circuit (computer) with software
• Logic Synthesis
• Logic Simulation

• Architecture can be represented by HDL program
• Design and verification can be done with no money
• After HDL design, it prints on real silicon

Example of Verilog-HDL

• HDL specification
• HDL simulation

b

a

f

module exor (a, b, f)
input a, b;
output f;

assign w1 = a & ~b;
assign w2 = b & ~a;
assign f = w1 | w2;

endmodule

~b

~a

w1

w2

module
reg a_t, b_t;
wire f_t;

#0
a_t = 1'b0; b_t = 1'b1;

#1
a_t = 1'b1; b_t = 1'b1;

$display(a_t,b_t);
endmodule

Boolean Arithmetic

Binary Number

• Representation of numbers based on two
• (10011)b=1x24+0x23+0x22+1x21+1x20=19d

• Binary addition
1 0 1 1

+ 0 1 1 1
1 0 0 1 0

LSB: Least Significant BitMSB: Most Significant Bit

Overflow

1 1 1 1 Carry bits

Specifications for Adders

• Half adder: Addition for x and y, then output carry(c) and
sum (s)
• Full adder: Addition for x, y and c, then output c and s
• (Multibit) Adder: Addition for n-bit of x and y
• Incrementor: Add +1 for a given x

2's Complement (Radix Complement)

• MSB represents sign (plus (0) or minus (1))
• 2's complement �̅� for a given 𝑥 (n bit):

• Example:
• Five bit for -2d is represented by 25

d-(00010)b=32d-
2d=30d=(11110)b, since (00010)b +(11110)b =(00000)b

• Known technique: �̅� is obtained by ~𝑥+1

�̅� = 42
! − 𝑥 (𝑥 ≠ 0)
0 (𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

2's Complement for Four bit

Plus
number

Minus
number

0 0000

1 0001 -1 1111

2 0010 -2 1110

3 0011 -3 1101

4 0100 -4 1100

5 0101 -5 1011

6 0110 -6 1010

7 0111 -7 1001

-8 1000

• Range: from 2n-1-1 to -2n-1

Trade-off

• Sum of signed 2's complement number can be calculated in
the same procedure as the sum of positive numbers

• Increment operation can be done in the same procedure as
the sum of constant 1 and positive number

• The num of n-bit positive numbers can be realized by
repeating the full adder n-times

• Fast addition → Carry look ahead
• We should think cost-performance issues

• Area, performance, power, and cost

Extension to Arithmetic Logic Unit
(ALU)
• Primitive arithmetic and logic operations
• Operations to be provided are considered in cost-

performance
• Hardware and software functions are provided as a

pair of ALU and operating system (OS)
• Multiplication, division, floating point operation, e.t.c.

Example of ALU

M
U

X

Full Adder

n-bit Adder

Carry
lookahead

Adder

Logic Op.

M
U

X

Full Adder

Logic Op.

i_op

i_op

a b

a b

Sequential Circuit

Combinational and Sequential

Combinational
Circuit

Combinational
Circuit

Memory
Element

In Out OutIn

Synchronous Sequential Circuit

Combinational
Circuit

Memory
Element

OutIn

Clock

Reset

Time from tick
to the next tick
(Cycle)

D-Flip Flop

• Keep the past internal value
• Input, output, clock, (with reset)

D-FFD

Clk
Q

Rising Edge

Clk D Q(t)

↑ 0 0

↑ 1 1

Otherwise --- Q(t-1)

D-Flip Flop (Cont'd)
• In practice, data load signal is used with a

multiplexer
• In other words, 1-bit register

D-FFD

Clk
Q

Clk load Q(t)

↑ 0 Q(t-1)

↑ 1 In

Otherwise --- Q(t-1)

1
0

load

In

Clk

Register

• Consists of n-copies of D-FFs
• # of D-FFs: 16, 32, 64 → 1 [word]

1bit
reg

1bit
reg

1bit
reg

...

Load

Clock Reset

Data in Data out
n n

Random Access Memory (RAM)
• RAM→Accessible for arbitrary word

c.f. Sequential access
memory

Register 0

Load

Clock Reset

Data in Data
outn

(word)
Register 1

Register n-1

...

SelectorAddress
(0 to n-1)

n
(word)

Composite RAM

RAM8

3

RAM8

3

RAM8

3

0

13

RAM8

3

RAM8

3

3

3-input single output RAM
4-input
single output RAM

3-input
2-output RAM

Computer Architecture

Stored Program Computer
• Operate according to "program" stored in memory

• Run various applications on the same hardware

• Its idea can be traced back to the 1936 theoretical
concept of a universal Turing machine
• Von Neumann was aware of the paper, and he

impressed it on his collaborators as well

von Neumann Architecture
• It also known as the von Neumann model and

Princeton architecture
• Based on the 1945 description by the mathematician

and physicist John von Neumann and others in the First
Draft of a Report on the EDVAC

Harvard Architecture
• physically separate storage and signal pathways for

instructions and data
• From the Harvard Mark I relay-based computer,

which stored instructions on punched tape (24 bits
wide)

Modern Computer Architecture

• Cache, and it prediction
• Out-of-order
• Hyper pipeline
• SIMD
• Super Scaler
• RISC vs. CISC
• Hyper threading
• Multi core/many core

General-purpose v.s. Specified
• Power-consumption wall
• Specified computer, however, dedicated application
• Special hardware on the same device? → FPGA

Summary

• Boolean Logic
• Boolean Arithmetic
• Sequential Circuit
• Computer Architecture

• Power wall
• General-purpose

→ Special HW on the same device (FPGA)
Reconfigurability? Architecture? Design? Application?

39

Exercise 2

1. (Mandatory) Show the truth table of full adder f=(x,y,z), then convert
an AND-OR canonical representation by using Karnaugh map

2. (Mandatory) Design a AND-OR canonical representation for above
circuit

3. (Mandatory) Perform formal verification between f and above circuit,
and these are the functionally same circuit? or not?

Send to OCW-I by a PDF file
Deadline is 30th, June, 2020 JST PM 13:20 (At the beginning of the next
lecture)

