2020 Basic Nuclear Engineering I Lecture note (6)

- Nuclear Reactor Design -

Toru Obara

Tokyo Institute of Technology

- 6. Nuclear Reactor Design
- 6.1 Elements of nuclear reactor
 - (1) Fuel element ...

 Fuel: Uranium oxide

 Plutonium oxide

 (nitride)

 (metal)

 Cladding: Zirconium alloy

 Stainless steel

Silicon carbide (SiC)

(2) Moderator (in thermal reactor only)

... $\begin{cases} \text{Light water (H}_2\text{O}) \\ \text{Heavy water (D}_2\text{O}) \end{cases}$ $\begin{cases} \text{Graphite (C)} \end{cases}$

(3) Coolant (to remote heat from the fuel)

... $\left\{ \begin{array}{l} \text{Light water (H}_2\text{O}) \\ \text{Heavy water (D}_2\text{O}) \\ \\ \text{Sodium (Na)} \\ \text{Helium (He)} \end{array} \right.$

(4) Reactor vessel ... Stainless steal

6.2 Fuel element

- ·Light water reactor (LWR) (Thermal reactor with light water moderator)
 - Pressurized Water Reactor (PWR)
 - Boiling Water Reactor (BWR)

Fuel: Uranium oxide (UO₂) stable in higher temperature Enrichment: $3 \sim 5 \%$ (2000°C)

Cladding: zirconium alloy

- Low thermal neutron capture cross section Tolerance for high temperature water $< 400^{\circ}\text{C}$

Weak point: production of hydrogen by chemical reaction with very high temperature water

·Fast Breeder Reactor (FBR) (Monju)

Fuel: Uranium-plutonium mixed oxide

(UO₂-PuO₂: ratio of PuO₂ is about 20%)

Cladding: Stainless steel

Small neutron capture cross section because of high neutron energy

6.3 Moderator

Moderation ratio ... An index of the performance of moderator Definition

$$Moderation \ ratio = \xi \qquad \frac{\sigma_s}{\sigma_a}$$

 ξ : Index to decrease of the neutron energy by a scattering

 σ_s : Scattering cross section

 σ_a : Absorption cross section

A material with large moderation ratio

→ Good moderator

Moderation ratio	Moderator	Nuclear reactor	
Large	Heavy water (D ₂ O)	Heavy water reactor	
	Graphite (C)	Graphite moderated reactor	
	Beryllium (Be)	(not used)	
\bigvee		Expensive, toxicity	
Small	Light water (H ₂ O)	Light water reactor	

6.4 Coolant

Requirements for coolant

- (1) Chemical compatibility with the material of core and pipe in the operating temperature
- (2) Less expensive and easy to get enough amount
- (3) The pumping power for the coolant can be small
- (4) The coolant pressure can be technically acceptable
- (5) Stable in γ -ray and neutron irradiation
- (6) Small neutron capture cross section

Coolants used in power reactor

Reactor type	Coolant	Max temp. (°C) Pressure (MPa)
Pressurized Water Reactor (PWR)	Light water	320	15.0
Boiling Water Reactor (BWR)	Light water	280	7.0
Fast Breeder Reactor (Monju)	Sodium	530	0.1 (atmospheric pressure)
High Temperature Gas-cooled Reactor (HTTR)	Helium gas	950	4.0

6.5 Reactor vessel

· Reactor Pressure Vessel (RPV): Contain reactor core

Made of stainless steel

High pressure tolerance

Used in light water reactor and high temperature gas-cooled reactor

(in fast reactors ... simply Reactor Vessel

no need of high pressure tolerance)

•Primary Containment Vessel: Contain reactor vessel

made of thick steel plate or concrete with steel plate

6.6 Reactor types

- (1) Pressurized Water Reactor (PWR)
 - · Thermal reactor
 - Fuel: low enriched uranium oxide
 - ·Cladding: zirconium alloy
 - · Moderator : light water
 - ·Coolant: light water
 - •Coolant water is highly pressurized so as not to boil in the core.
 - ·Generate steam for turbine by steam generator
- (2) Boiling Water Reactor (BWR)
 - Thermal reactor
 - Fuel: low enriched uranium oxide
 - ·Cladding: zirconium alloy
 - · Moderator : light water
 - ·Coolant: light water
 - ·Boiling in the core to generate steam for turbine

- (3) High Temperature Gas-cooled Reactor (HTGR)
 - · Thermal reactor
 - Fuel: low enriched uranium oxide
 - •Fuel element : coated fuel particles with SiC coating
 - · Moderator : Graphite
 - ·Coolant: Helium gas
 - ·High temperature available
- (4) CANDU (CANadian Deuterium Uranium heavy water reactor)
 - · Thermal reactor
 - ·Fuel: uranium oxide
 - ·Cladding: zirconium alloy
 - Moderator : heavy water
 - ·Coolant: heavy water
 - · Natural uranium used as the fuel
- (5) Sodium-cooled Fast Reactor (Monju)
 - · Fast reactor
 - •Fuel: uranium, plutonium mixed oxide
 - ·Cladding: stainless steel

·No moderator

·Coolant : Sodium

The feature: the amount of produced plutonium can be larger

than that of consumed. (Breeder)