2020 Basic Nuclear Engineering I Lecture note (2)

- Nuclear Fission –

Toru Obara

Tokyo Institute of Technology

2. Nuclear Fission

2.1 Nuclear fission by neutron

•Heavy nucleus causes fission reaction by the collision with a neutron with

very high speed

 \rightarrow =with large <u>mass number</u>

 \rightarrow Number of protons + neutrons

·Heavy nucleus with odd number of neutrons causes fission reaction by

very slow neutrons

•Nucleus which satisfies the condition in nature is uranium 235 only

(²³⁵U)

Mass number 235 -92 Atomic number

 $\begin{bmatrix} \text{Number of protons: } 92 \\ \text{Number of neutrons: } 235 - 92 = 143 \end{bmatrix}$

•Example of nuclear fission of ²³⁵U ²³⁵₉₂ U + ${}^{1}_{0}$ n $\rightarrow {}^{236}_{92}$ U $\rightarrow {}^{141}_{56}$ Ba + ${}^{92}_{36}$ Kr + 3 ${}^{1}_{0}$ n

Uranium235 neutron

Uranium236 (unstable) Barium141 + Kripton92 + three neutrons

Various combinations

two or three neutrons emission

Mass defect in the reaction

 $\simeq 3.6 \times 10^{-28} \text{ kg}$

Corresponding energy (by $E = mc^2$)

 $\simeq 3.2 \times 10^{-11} \text{ J}$ ($\cong 200 \text{ MeV}$)

Ref. In the chemical reaction

 $C+O_2 \ \rightarrow \ CO_2$

Release energy $\simeq 7 \times 10^{-19} \text{ J}$

 $(3.2 \times 10^{-11}) / (7 \times 10^{-19}) \simeq 4.6 \times 10^{7}$

 \cdot Number of neutrons emitted in fission reaction v

 $v \simeq 2.5$ (in case of ²³⁵U)

• Energy of neutrons emitted in fission reaction (fission neutron)

average 2MeV ($1eV = 1.602 \times 10^{-19}J$) peak 1MeV

© 2020 Toru Obara

2.2 Actinoid

 \circ Actinoid : element whose atomic number is from <u>89</u> to <u>103</u>

Ac Lr

oImportant actinoid in nuclear reactor

•Uranium (Atomic number 92)

Abundance in the earth's crust : 2×10^{-6}

Natural uranium 235 235 U 0.71% fissile \leftarrow easy to cause fissile by neutron uranium 238 238 U 99.29%

•Thorium (Atomic number 90)

Abundance in the earth's crust : 7×10^{-6}

Natural thorium ···· thorium 232 ²³²Th 100% non-fissile

²³²Th : by neutron capture

transmuted to 233U (fissile)

does not exist in nature

•Plutonium (Atomic number 94)

does not exist in nature

²³⁸U : by neutron capture

transmuted to ²³⁹Pu (fissile)

3. Nuclear fission chain reaction

3.1 Concept of nuclear fission chain reaction

By using neutrons emitted by fission reaction, causing the next fission

reaction

neutron + ²³⁵U $\xrightarrow{\text{fission}}$ neutrons + energy + light nuclei $(2 \sim 3)$ But !!

Even if neutrons are injected to natural uranium, fission chain reaction does not occur.

(3.1. to be continued)