2020 Basic Nuclear Engineering 1 Lecture note (1)

- Nuclear Energy -

Toru Obara

Tokyo Institute of Technology

- 1. Nuclear Energy

 1.1 Origin of nuclear energy

 Structure of atom

 Atom

 Nucleus

 Proton (+)

 Electron (-)

 Neutron (no charge)
 - ·Relation between energy and mass

$$E = m c^2$$

E: energy

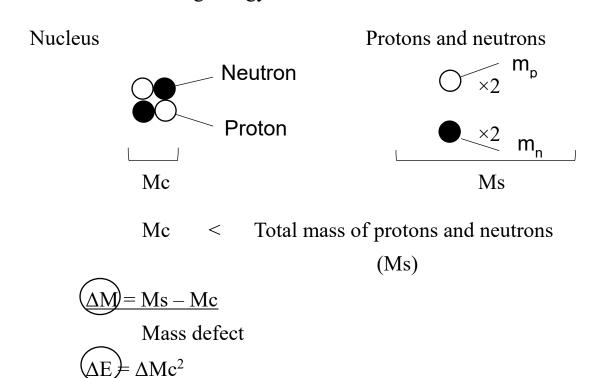
m: mass

c: the speed of light $(=3\times10^8 \text{ m/s})$

·Chemical energy and nuclear energy

Chemical energy (Combustion of coal, oil, etc.)

Change of chemical binding


→ small reduction of mass

→ energy release

Nuclear energy (Nuclear reactor, Sun)

Change of nuclear binding

- → change of mass
- → energy release
- ·Mass defect and binding energy

·Binding energy per nuclear

(Figure) Fig of Binding energy

Composition (or fusion) of light nuclei

Binding energy

→ Energy release (Fusion reactor, Sun)

Splitting (or fission) of heavy nuclei © 2020 Toru Obara

→ Energy release (Nuclear reactor)

1.2 Radioactivity

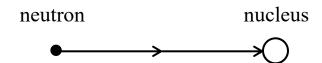
The process that nucleus changes the number of protons and neutrons spontaneously

- α -decay: An alpha-particle (two protons + two neutrons) is emitted Atomic number -2, Mass number -4
- β -decay: A neutron in the nucleus is transformed into a proton.

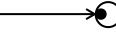
An electron is emitted. (β -ray)

Atomic number +1, Mass number unchanged

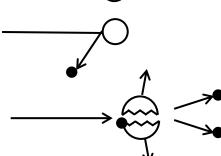
The decay process → Mass defect


→ Energy release

Kinetic energy of the α - particle or the electron


Energy of photon (γ -ray)

1.3 Nuclear reaction with neutrons


Nuclear reactions

·Scattering

Fission

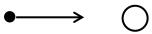
· Nuclear cross section

Index of probability of nuclear reaction

unit b (barn) =
$$10^{-24}$$
 cm²

- Capture cross section σ_c
- Scattering cross section σ_s
- Fission cross section σ_f

(unit of energy
$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$
)


•Nuclear cross sections of ²³⁵U and ²³⁸U (Fig of cross sections)

²³⁵U 0.7% in natural uranium

²³⁸U 99.3% in natural uranium

• Fission cross section σ_f

slow speed

about 1b if
$$E > 1 MeV$$

(high energy = high neutron speed)

²³⁸U····almost 0 in low energy

about 1b if E > 1 MeV

• Capture cross section $\sigma_{\rm c}$

 $^{238}\text{U}\cdot\cdot\cdot$ many large peaks between $5\text{eV}\sim500\text{eV}$ (Resonance peaks)