
2020/7/23

Advanced Data Engineering (©H. Yokota) 1

Parallelize Join Operations

• Remember Join Algorithms
– Nested Loop Join
– Sort Merge Join
– Hash Join

• Simple Hash Join
• GRACE Hash Join
• Hybrid Hash Join

• Here, we consider how to parallelize these
algorithms

2020/7/23 Advance Data Engineering (©H.Yokota) 232

Parallelize Nested Loop Join

2020/7/23 Advance Data Engineering (©H.Yokota) 233

PE0 PE1 PEn-1…

S0 S1 Sn-1
…

Interconnection Network or Bus

PE0 PE1 PEn-1…

R0 R1 Rn-1
…

PE2

S2

PE2

R2

Logically
Different

Physically
Same

Shared
Nothing

2020/7/23

Advanced Data Engineering (©H. Yokota) 2

Parallelize Nested Loop Join

• Both relations are horizontally fragmented
– R0, R1, …, Rn-1
– S0, S1, …, Sn-1
– independent of target attribute value

• Place both fragmented relations in each PE
– Si and Ri are placed in i-th PE

• Outer Loop: (0 j n-1)
– Send Ri to mod(i+j, n)

• Read |R|/n page n times in each PE: |R|

• Inner Loop:
– Do Join Operation between Si and received relation

• If each PE has enough memory
• Read |S|/n page n times in each PE: |S|

• Total I/O : (|R| + |S|) x n
2020/7/23 Advance Data Engineering (©H.Yokota) 234

Enlarge size increase total costs
Parallel processing has no effects

Parallelize Nested Loop Join

2020/7/23 Advance Data Engineering (©H.Yokota) 235

PE0 PE1 PEn-1…

S0 S1 Sn-1
…

Interconnection Network or Bus

PE0 PE1 PEn-1…

R0 R1 Rn-1
…

PE2

S2

PE2

R2

J=0J=1J=2

n

n

n

R ||

n

S ||

n

R ||

n

R ||

n

R ||

n

S ||

n

S ||

n

S ||

n

R ||

n

S ||

n

R ||

n

R ||

n

R ||

n

S ||

n

S ||

n

S ||

n

R ||

：

n

S ||

：

n

R ||

n

R ||

n

R ||

：：：

n

S ||

：

n

S ||

：

n

S ||

：

Total I/O : (|R| + |S|) ×n

2020/7/23

Advanced Data Engineering (©H. Yokota) 3

Parallelize Sort Merge Join (1)
• Assumption: Both relations are fragmented
• Type 1

– Sort one relation in parallel for the target attribute
• S'0, S'1, …, S'n-1

– Broadcast maximum and minimum values in S'i
– Send each tuple of Ri to a PE correspond to the value

• Sort all received tuples in the PE

– Do Sort-Merge Join in each PE

2020/7/23 Advance Data Engineering (©H.Yokota) 236

Parallelize Sort Merge Join

2020/7/23 Advance Data Engineering (©H.Yokota) 237

PE0 PE1 PEn-1…

S’0 S’1 S’n-1
…

Interconnection Network or Bus

PE0 PE1 PEn-1…

R0 R1 Rn-1
…

PE2

S’2

PE2

R2

Sorted

max0min0 max1min1 max2min2 maxn-1minn-1

2020/7/23

Advanced Data Engineering (©H. Yokota) 4

Parallelize Sort Merge Join (2)
• Type 2

– Sort both relations in parallel for the target attribute
• R'0, R'1, …, R'n-1

• S'0, S'1, …, S'n-1

– Broadcast maximum and minimum values in S'i
– Send each tuple of R'j to a PE correspond to the value

• R'j may be sent to multiple PEs

– Do Sort-Merge Join in each PE
– Disk I/O: |R|/n + |S|/n, Total Disk I/O |R|+|S|

• Parallel Sort Algorithm
– There are so many parallel sort algorithm

2020/7/23 Advance Data Engineering (©H.Yokota) 238

Parallelize Sort Merge Join

2020/7/23 Advance Data Engineering (©H.Yokota) 239

PE0 PE1 PEn-1…

S’0 S’1 S’n-1
…

Interconnection Network or Bus

PE0 PE1 PEn-1…

R’0 R’1 R’n-1
…

PE2

S’2

PE2

R’2

Sorted

max0min0 max1min1 max2min2 maxn-1minn-1

Sorted

max0min0 max1min1 max2min2 maxn-1minn-1

2020/7/23

Advanced Data Engineering (©H. Yokota) 5

Parallel Merge Sort (1)

2020/7/23 Advance Data Engineering (©H.Yokota) 240

Do Parallel

8 7 6 5 4 3 2 1

Gathered into a PE

8 7 6 4

5 3 2 1

8 6

7 4

3 1

5 2

8

6

4

7

1

3

5

2

Parallel Merge Sort (2)
• Construct log({R}) stages for sorting a stream

– Use {R}/2 PEs at first
– Finally, all tuples are gathered into a PE
– Comparisons in each stage can be done in parallel

• Cost for sorting {R} = 2m tuples
– Communication paths: 2m + 2m-1 + … + 21 = 2 x ({R} -1)
– Data transfer: m x {R} = {R}log2{R}
– Total comparison: ((1+1-1) x {R}/2) + ((2+2-1) x {R}/22 + … +

(({R}/2+{R}/2-1) x {R}/2m) = {R}log2{R} - ({R} - 1)
– By parallel processing (time for corresponding):

(2-1) + (22-1) + … + (2m-1) = 2({R} - 1) - log2{R}

2020/7/23 Advance Data Engineering (©H.Yokota) 241

2020/7/23

Advanced Data Engineering (©H. Yokota) 6

Costs for Parallel Block Merge Sort
• For sorting tuples larger than the number of

PEs
– Using N = 2n PEs, n 1 (N 2)

• A comparison operation is replaced by a
stream merge

• Total Data transfer: n x {R} = log2N x {R}
– By parallel processing (time for corresponding)

(1/N + 2/N + … + 1/2) x {R}
= (1-(1/2)n+1)/(1-1/2) x {R}
=(2- 1/N) x {R} (how many tuples are transferred)

2020/7/23 Advance Data Engineering (©H.Yokota) 242

Parallel Block Merge Sort

2020/7/23 Advance Data Engineering (©H.Yokota) 243

Gathered into a PE

Do Parallel

2020/7/23

Advanced Data Engineering (©H. Yokota) 7

Parallel Block Merge Sort (2)
• If disks are used in each stage

– Total I/O : 2n× |R| = 2 log2N x |R|
– the i-th stage: read |R|/2n-(i-1), write |R|/2n-i

– By parallel processing (time for corresponding)
Sn

i=1 |R|/2i + Sn
i=1 |R|/2i-1

= ((1-(1/2)n)/(1-1/2)) x |R| + 2((1-(1/2)n)/(1-1/2)) x|R|
= 6 x (1 – 1/N) x |R|

– Expect Pipeline effect

2020/7/23 Advance Data Engineering (©H.Yokota) 244

Question (9-1)

• Roughly estimate the execution time for
parallel block 2way merge sort using 8 and 16
processors, where
– Cardinality of a relation R: 100,000
– Total length of a tuple: 100B
– Disk transfer bandwidth: 10MB/s
– Network (connection) bandwidth: 10MB/s
– Ignore CPU costs, disk access latency, and network

setup time

2020/7/23 Advance Data Engineering (©H.Yokota) 245

2020/7/23

Advanced Data Engineering (©H. Yokota) 8

Bitonic Sort (1)

• Bitonic Sequence
– There exist 1 j 2n which satisfies

• a1 a2 … aj aj+1 … a2n

• For a bitonic sequence a1, a2, … , a2n
– Let di = min(ai, an+i) and ei = max(ai, an+i)

where 1 i n
– Then d1, d2, …, dn and e1, e2, …, en are also bitonic

sequences
– And max(d1, d2, …, dn) min(e1, e2, …, en)

2020/7/23 Advance Data Engineering (©H.Yokota) 246

Bitonic Sort (2)

• If there is a bitonic sequence, ordered small (half
size) bitonic sequence can be generated by
exchanging elements in a distance
– Finally, the small bitonic sequence becomes an element
– That is the result of the sort operation

• A Problem: How to generate the first bitonic
sequence
– Answer: Concatenation of two half size sorted sequence
– Recursively continue until an element

2020/7/23 Advance Data Engineering (©H.Yokota) 247

2020/7/23

Advanced Data Engineering (©H. Yokota) 9

Bitonic Sort (3)

2020/7/23 Advance Data Engineering (©H.Yokota) 248

Bitonic Sequence

compare

e

d

Parallel Bitonic Sort (1)

• A relation is horizontally fragmented
– R0, R1, …, Rn-1

• Exchanging elements in a distance can be
done in parallel

• Results are also fragmented
– There is no bottleneck like parallel merge sort

2020/7/23 Advance Data Engineering (©H.Yokota) 249

2020/7/23

Advanced Data Engineering (©H. Yokota) 10

Parallel Bitonic Sort (2)

2020/7/23 Advance Data Engineering (©H.Yokota) 250

8

6

4

7

1

3

5

2

L

H

H

L

H

L

L

H

6

8

7

4

3

1

2

5

3

5

2

1

6

4

7

8

L

H

L

H

H

L

H

L

L

H

L

H

H

L

H

L

4

6

7

8

5

3

2

1

4 2

3 1

2 4

1 3

5 5

6 6

7 7

8 8

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

1

2

3

4

5

6

7

8

Cost for Parallel Bitonic Sort

• The number of stages for generating bitonic sequence:
– log2{R}=m

• The number of stages for 2i length bitonic sequence:
– log2 2i = i

• Total stages:
– Sm

i=1 log2 2i = Sm
i=1 i = m(m+1)/2 = (log2{R}(log2{R}+1)) / 2

• Total data transfer:
– {R} ×((log2{R}(log2{R} +1)) / 2)

• Total data exchanges:
– (1/2)×{R}×((log2{R}(log2{R} +1)) / 2)

• By parallel processing (time for corresponding):
– (log2{R}(log2{R} +1)) / 2

2020/7/23 Advance Data Engineering (©H.Yokota) 251

2020/7/23

Advanced Data Engineering (©H. Yokota) 11

Parallel Block Bitonic Sort

2020/7/23 Advance Data Engineering (©H.Yokota) 252

PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

TIME

merge

smaller

larger

PEi

PEj

Block Data Exchange

Cost for Parallel Block Bitonic Sort

• For sorting tuples larger than the number of PEs (N =
2n)

• Merge two streams and leave smaller (larger) part
• Total stages: Sn

i=1 i = n(n+1) / 2
• Total data transfer: {R} x n(n+1) / 2
• By parallel processing (time for corresponding):

– {R} x n(n+1) / 2N
• Total I/O (read and write for each stage) :

– |R| x n(n+1)
• By parallel processing (time for corresponding):

– |R|/N x n(n+1) = (log2N(log2N+1)) / N} x |R|

2020/7/23 Advance Data Engineering (©H.Yokota) 253

2020/7/23

Advanced Data Engineering (©H. Yokota) 12

Question (9-2)

• Roughly estimate the execution time for
parallel block bitonic sort using 8 and 16
processors, where
– Cardinality of a relation R: 100,000
– Total length of a tuple: 100B
– Disk transfer bandwidth: 10MB/s
– Network bandwidth: 10MB/s
– Ignore CPU costs, disk access latency, and network

setup time

2020/7/23 Advance Data Engineering (©H.Yokota) 254

Illustration of Simple Hash Join

2020/7/23 Advance Data Engineering (©H.Yokota) 255

R h(x)
Hash
Table

R’

Build

|M|

Overflow

S h(x)
Hash
Table

S’

Probe

Overflow
Results

2020/7/23

Advanced Data Engineering (©H. Yokota) 13

Parallelize Simple Hash Join

• Where can we parallelize simple hash join?
• Loop ?

– There are dependencies in iteration
• (i-1)-th results are used for i-th iteration

• A step of the iteration ?
– That IS Join

• The Original Problem

• It is hard to parallelize simple hash join

2020/7/23 Advance Data Engineering (©H.Yokota) 256

Illustration of GRACE Hash Join

2020/7/23 Advance Data Engineering (©H.Yokota) 257

Join Phase

Ri h2(x) Hash
Table

Hash Build

i = 1, …, n

Si h2(x) Hash
Table

Hash Probe

Results

R h1(x)

R1

R2

Rn

:

Partitioning Phase

Hash

Partition

S h1(x)

S1

S2

Sn

:

Hash

Partition

2020/7/23

Advanced Data Engineering (©H. Yokota) 14

Parallelize GRACE Hash Join

• Parallelize Bucket Decomposition in Phase 1
– Each relation is partitioned in advance

• The average number of tuples in each disk {R}/N and {S}/N
• Selection operations are also executed in advance in parallel

– Virtually divide connected disk into Read Disk and Write
Disk

– Assign each bucket to each processor
• Send each tuple by its hash value

• Parallelize Join Operation in Phase 2
– There is no communication within Phase 2

2020/7/23 Advance Data Engineering (©H.Yokota) 258

Pseudo Code for Phase1
• Each PE has two threads:

Thread 1:
for (j = 1; j {R/N}; j++) {
read j-th tuple t and attribute value v in t;
x = h0(v); /* e.g. h(v) = mod(v, N) */
send t to PEx

}
Thread 2

for (;;) {
receive t and attribute value v in t;
y = h1(v);
write t into a file for y

}
• It should be combined with the phase switch of all-to-all

communication
2020/7/23 Advance Data Engineering (©H.Yokota) 259

2020/7/23

Advanced Data Engineering (©H. Yokota) 15

Parallel GRACE Hash Join (1)

2020/7/23 Advance Data Engineering (©H.Yokota) 260

PE0 PE1 PEn-1…

R’0 R’1 R’n-1
…

Interconnection Network or Bus

PE0 PE1 PEn-1…

R0 R1 Rn-1
…

Read

|R|/N

Receive
&

Write

|R|/N

&
Hash

&
Send

Parallel GRACE Hash Join (2)

2020/7/23 Advance Data Engineering (©H.Yokota) 261

PE0 PE1 PEn-1…

Interconnection Network or Bus

S’0 S’1 S’n-1
…

PE0 PE1 PEn-1…

S0 S1 Sn-1
…

Read

|S|/N

Receive
&

Write

|S|/N

&
Hash

&
Send

2020/7/23

Advanced Data Engineering (©H. Yokota) 16

Parallel GRACE Hash Join (3)

2020/7/23 Advance Data Engineering (©H.Yokota) 262

PE0 PE1 PEn-1…

Interconnection Network or Bus

R’0,S’0 R’1,S’1 R’n-1,S’n-1
…

Read & Local Join

Phase 2

(|R| + |S|) / N

Cost of Parallel GRACE Hash Join

• Phase 1
– (|R| + |S|) / N read and (|R| + |S|) / N write in each PE
– With all-to-all communication cost: a

• Phase 2
– (|R| + |S|) / N read in each PE
– No communication

• Total I/O in each PE
– 3 x (|R| + |S|) / N
– It means (1/N + a), if there is no skew

2020/7/23 Advance Data Engineering (©H.Yokota) 263

2020/7/23

Advanced Data Engineering (©H. Yokota) 17

Estimate a(1/3)

• Bandwidth of each connection of network: 10MB/s
• Network setup time for each connection: 50 ms
• |R| and |S|: 64MB each
• The number of processors (N): 8
• Consider the cost for communication, assuming each

processing element has enough large buffer space to
keep |R|/N or |S|/N

• Also consider the cost when each processing
element has memory for two pages (8KB)

2020/7/23 Advance Data Engineering (©H.Yokota) 264

Estimate a(2/3)
• When we have enough memory, we can reduce the

number of communication into the number of
processing elements N, i.e., 8.

• Each processing element has |R|/N and |S|/N data,
i.e., X =64MB/8 = 8 MB for each relation..

• In each communication phase, each processing
element send X/N data, i.e. Y = 8MB/8 = 1MB

• Data transfer time is Z = Y/10MB/s = 100ms
• Network setup time is 50 ms which can negligible in

this case.
• Since we have 8 phases for each relation, the cost for

communication is 8 x 2 x Z = 1.6s

2020/7/23 Advance Data Engineering (©H.Yokota) 265

2020/7/23

Advanced Data Engineering (©H. Yokota) 18

Estimate a(3/3)

• When we have memory for only two pages (8KB),
each processing element has to send page by page.

• We can apply the double buffering method
• Network setup is required for each buffer switch
• Since each processing element has to send 8MB data

for each relation, 8MB/4KB = 2K buffer switch occurs.
• The cost for network setup is 50 ms x 2K = 100ms for

each relation
• Total cost is 1.6s + 0.2 = 1.8s

2020/7/23 Advance Data Engineering (©H.Yokota) 266

Double Buffering

• It enables simultaneous reading and writing
2020/7/23 Advance Data Engineering (©H.Yokota) 267

Buf. 1 Buf. 2

Writing

Reading

Buf. 1 Buf. 2

Writing

Reading

Time

2020/7/23

Advanced Data Engineering (©H. Yokota) 19

Question (9-3)

• Estimate the execution time for the GRACE Hash Join
with considering the network communication cost
under the assumption of:
– Having enough memory
– Using 8MB/s bandwidth disks
– Network bandwidth is 10MB/s
– Ignoring seek time, rotational latency, network setup time

• Estimate the execution time for increasing the
number of PEs from 8 to 16

2020/7/23 Advance Data Engineering (©H.Yokota) 268

Illustration of Hybrid Hash Join

2020/7/23 Advance Data Engineering (©H.Yokota) 269

R h1(x) R2

Rn

:

S h1(x) S2

Sn

:

Partitioning Phase Join Phase

Ri h2(x) Hash
Table

Si h2(x) Hash
Table

Hash

Hash

Hash

Hash

Build

Probe

i = 2, …, n

Results

Hash
Table

Hash
Table

Results

Build

Probe

Partition

Partition

2020/7/23

Advanced Data Engineering (©H. Yokota) 20

Parallelize Hybrid Hash Join

• Consider how to parallelize the Hybrid hash join
• Pseudo Code

Thread 2
for (;;) {

receive t and attribute value v in t;
y = h1(v);
if y is 0 then build (or probe) a hash table
else write t into a file for y

}

2020/7/23 Advance Data Engineering (©H.Yokota) 270

Multiple Joins

• There tend to be a number of join operations
in a query
– The query construct a query tree
– The configuration of the tree deeply influence the

performance of query processing
• especially under parallel environment

• Parallel executions in a query tree
– Independent executions
– Pipeline executions

• Here, we assume hash join algorithm

2020/7/23 Advance Data Engineering (©H.Yokota) 271

2020/7/23

Advanced Data Engineering (©H. Yokota) 21

Notation of a Hash Join Node

• Let left input is for
Build and right for
Probe
– Hash Join cannot

start Probe until the
Build Phase is
finished

2020/7/23 Advance Data Engineering (©H.Yokota) 272

Build Probe

Hash
Table

Left Input Right Input

Results

Query Tree Configurations

2020/7/23 Advance Data Engineering (©H.Yokota) 273

Hash
Join

Hash
Join

Hash
Join

Hash
Join

Hash
Join

Hash
Join

Hash
Join

Hash
Join

Hash
Join

R S

T

U

R S T U

R

S

T U

Left Deep Tree Bushy Tree Right Deep Tree

2020/7/23

Advanced Data Engineering (©H. Yokota) 22

Parallel Multiple Join

• Parallel execution of multiple join is depend
on the structure of the query tree
– Left Deep Tree:

• Sequential

– Right Deep Tree:
• Pipeline Execution (Parallel Build)

– Bushy Tree:
• Child node can be executed in parallel
• Pipeline Execution can also be done

2020/7/23 Advance Data Engineering (©H.Yokota) 274

