
2020/6/25

Advanced Data Engineering (©H. Yokota) 1

A Short Course for
Relational Databases

Advanced Data Engineering

A Brief Introduction of Relational DB

• The Relational Model
– Proposed by E.F. Codd (IBM) in 1970

• 1981 ACM Turing Award
• 2003.4.18 Died (78 years old)

– Based on the Set Theory
• Basic Concept

– A relation R is a subset of Cartesian product of
domain Di (1 < j < n)

R  D1 x D2 x … x Dj x … x Dn
– A tuple t is an element of a relation: t R

2020/6/25 Advance Data Engineering (©H.Yokota) 30

2020/6/25

Advanced Data Engineering (©H. Yokota) 2

An Illustration of the Model

2020/6/25 Advance Data Engineering (©H.Yokota) 31

(P001, Laptop PC, 2,000) (P001,Laptop PC, 1,500)
(P001, Desktop PC 2,000) (P001, Desktop PC, 1,500)
(P002, Laptop PC, 2,000) (P002,Laptop PC, 1,500)

(P002, Desktop PC 2,000) (P002, Desktop PC, 1,500)
(P003, Laptop PC, 2,000) (P003,Laptop PC, 1,500)

(P003, Desktop PC 2,000) (P003, Desktop PC, 1,500)

(P001, Laptop PC, 1,500)
(P002, Laptop PC, 2,000)

(P003, Desktop PC, 2,000)

Relation

Cartesian Product

Subset

Domains

Tuple

P001
P002
P003

ProductID

D1

Laptop PC
Desktop PC

ProductType

D2

2,000
1,500

Price

D3

R  D1 x D2 x D3

all combination

A model of
real world

Terminologies of Relational DB
• The number of tuples is called cardinality
• A domain in a relation is called an attribute

– Each attribute has an attribute name
– The collection attribute names is called a schema
– n is called a degree of the relation

• A set of attributes which uniquely identifies each
tuple in a relation is called a key of the relation
– There are some candidate keys
– A primary key and other alternate keys

• A relation can be seen as a table.
– A tuple is a row of the table.
– An attribute is a column of the table.

2020/6/25 Advance Data Engineering (©H.Yokota) 32

2020/6/25

Advanced Data Engineering (©H. Yokota) 3

A Table Image of RDB

2020/6/25 Advance Data Engineering (©H.Yokota) 33

ProductID ProductType Price

P001 Laptop PC 1,500

P002 Laptop PC 2,000

P003 Desktop PC 2,000

Products

Cardinality

Tuple

Relation Name
Attribute Name

Attribute

Schema

Degree

Primary Key

Relational Database Operations
• Relational Algebra

– A collection of operators
• take relations as their operands and return relations

as their results

• Relational Calculus
– Specification of requiring results

• An example: { (tr, ts) | R(tr)  S(ts)  tr[X] q ts[Y]}

• Algebra is prescriptive
while Calculus is descriptive
– Both expressive power is identical

2020/6/25 Advance Data Engineering (©H.Yokota) 34

2020/6/25

Advanced Data Engineering (©H. Yokota) 4

Relational Algebra Operations

• Set Operations
– Union (R  S)
– Intersection (R  S)
– Difference (R – S)
– Cartesian Product (R x S)

• Dedicated Relational Algebra Operations
– Projection (pattribute-list R)
– Selection (sconditions R)
– Join (q -Join: R rq s S, eq-Join: R r=s S)
– Division (R  S)

2020/6/25 Advance Data Engineering (©H.Yokota) 35

Set Operations on RDB

2020/6/25 Advance Data Engineering (©H.Yokota) 36

ProductID

P001

Shop-A

Stocks

10

P003 5

ProductID

P002

Shop-B

Stocks

15

P003 5

(P001,10)

(P003,5)

(P002, 15)

Shop-A Shop-B

(P001,10)

(P003,5)

(P002, 15)

Shop-A Shop-B

(P001,10)

(P003,5)

(P002, 15)

Shop-A Shop-B

Union Intersection Difference
Shop-A  Shop-B Shop-A  Shop-B Shop-A - Shop-B

2020/6/25

Advanced Data Engineering (©H. Yokota) 5

Projection p

• Derive specified attributes with eliminating
duplication

2020/6/25 Advance Data Engineering (©H.Yokota) 37

ProductID Price

P001 1,500

P002 2,000

P003 2,000

ProductType

Laptop PC

Desktop PC

pProductType Products = { t[ProductsType] | Products(t) }

* Delta Projection: without eliminating duplication

ProductType

Laptop PC

Laptop PC

Desktop PC

Selection s
• Derive all tuples satisfying specified conditions

2020/6/25 Advance Data Engineering (©H.Yokota) 38

sPrice > 1,800 Products = { t | Products(t)  t[Price] > 1,800}

ProductID ProductType Price

P001 Laptop PC 1,500

P002 Laptop PC 2,000

P003 Desktop PC 2,000

ProductID ProductType Price

P002 Laptop PC 2,000

P003 Desktop PC 2,000

2020/6/25

Advanced Data Engineering (©H. Yokota) 6

Join
• Combine two relations with specified conditions

2020/6/25 Advance Data Engineering (©H.Yokota) 39

Products ProductID =ProductID ShopA

= { (t1, t2) | Products(t1)  ShopA(t2)  t1[ProductsID]=t2[ProductID]}

ProductType Price

Laptop PC 1,500

Laptop PC 2,000

Desktop PC 2,000

ProductID ProductType Price

P001 Laptop PC 1,500

P003 Desktop PC 2,000

Stocks

10

5

ProductID

P001

P002

P003

Stocks

10

5

ProductID

P001

P003

Query Example
• Consider a relational algebra query to derive “ProductName” and

“Price” of products categorized as “Computer”, whose stocks are
more than ten in ShopA or ShopB, under the following four relations:
– Products (ProductID, ProductName, ProductType, Price)
– Categories (ProductType, Category)
– ShopA (ProductID, Stock)
– ShopB (ProductID, Stock)

pProductName, Price (

((Products ProductType = ProductType (sCategory =“Computer” Categories))

ProductID = ProductID ((sStocks>10 ShopA)  (sStocks>10 ShopB))

)
)

2020/6/25 Advance Data Engineering (©H.Yokota) 40

2020/6/25

Advanced Data Engineering (©H. Yokota) 7

Write a query from Google Form
pProductName, Price (
((Products ProductType = ProductType (sCategory =“Computer” Categories))

ProductID = ProductID ((sStocks>10 ShopA)  (sStocks>10 ShopB))
)

)

Projection[ProductName, Price] (
Join[ProductID = ProductID](
Join[ProductType=ProductType] (

Products, Selection[Category=“Computer”](Categories)),
Union(Selection[Stock>10](ShopA), Selection[Stock>10](ShopB))
)

)

2020/6/25 Advance Data Engineering (©H.Yokota) 41

Examples of Query Trees

2020/6/25 Advance Data Engineering (©H.Yokota) 42

S

σ

π

C P

p(s((C P) S)) p((s(C) s(P)) S)

C: Categories, P: Products, S: Shop-A

C P S

σ

π

σ

2020/6/25

Advanced Data Engineering (©H. Yokota) 8

Question (2-1)

• Write a relational algebra query to derive
“ProductID” and “Category” of products whose
price is more than $2,000 and whose stock are
less than ten stocks in both ShopA and ShopB,
under the following four relations:
– Products (ProductID, ProductName, ProductType,

Price)
– Categories (ProductType, Category)
– ShopA (ProductID, Stock)
– ShopB (ProductID, Stock)

2020/6/25 Advance Data Engineering (©H.Yokota) 43

Query Languages
• SQL (Structured Query Language)

– Developed in SystemR Project of IBM
– Standardlized (ANSI/ISO, JIS)
– Data Definition Language (DDL)

+ Data Manipulation Language (DML)
– Directed or Embedded SQL

• From some programming languages

• Basic Syntax (DML)
SELECT List of Attribute Names
FROM List of Relation Names
WHERE Conditions;

2020/6/25 Advance Data Engineering (©H.Yokota) 44

2020/6/25

Advanced Data Engineering (©H. Yokota) 9

SQL Examples (1)
• SELECT DISTINCT ProductType

FROM Products;
– Projection for the Products Table

• pProductType Products
• { t[ProductType] | Products(t) }

• SELECT ProductType
FROM Products;
– Delta Projection

• Without eliminating duplication

2020/6/25 Advance Data Engineering (©H.Yokota) 45

SQL Examples (2)
• SELECT ProductID, ProductType, Price

FROM Products
WHERE Price > 1,800;
– Selection for the Products Table

• sPrice > 1,800 Products
• { t | Products(t)  t[Price] > 1,800}

• SELECT *
FROM Products
WHERE Price > 1,800
AND ProductType = “Laptop PC”;

2020/6/25 Advance Data Engineering (©H.Yokota) 46

2020/6/25

Advanced Data Engineering (©H. Yokota) 10

SQL Examples (3)
• SELECT *

FROM Products, ShopA
WHERE Products.ProductID=ShopA.ProductID;
– Join between the Products and Shop-A Tables

• Products Product-ID = Product-ID Shop-A
• { (t1, t2) | Products(t1)  ShopA(t2)  t1[ProductsID]=t2[ProductID]}

• SELECT *
FROM Products
WHERE ProductID IN

(SELECT ProductID FROM ShopA);

2020/6/25 Advance Data Engineering (©H.Yokota) 47

A Query Example
SELECT Stocks
FROM ShopA
WHERE ProductID IN
(SELECT ProductID
FROM Products
WHERE Price > 1,800
AND ProductType IN
(SELECT ProductType
FROM Categories
WHERE Category = PC));

• Consider another relation
“Categories” having two
attributes: “ProductType”
and “Category”
– Laptop PCs and Desktop PCs

are categorized as PCs in the
table

• Write an SQL query to
derive stocks of PC sold in
the ShopA at the price
higher than $1,800

• Consider Relational Algebra
Expressions for the query

2020/6/25 Advance Data Engineering (©H.Yokota) 48

2020/6/25

Advanced Data Engineering (©H. Yokota) 11

Another Example

SELECT ShopA.Stocks
FROM ShopA, Products, Categories
WHERE ShopA.ProductID = Products.ProductID
AND Products.ProductType =

Categories.ProductType
AND Products.Price > 1,800
AND Categories.Category = PC;

2020/6/25 Advance Data Engineering (©H.Yokota) 49

Question (2-2)

• Write an SQL query to derive “ProductID” and
“Category” of products whose price is more than
$1,500 and whose stock are less than ten stocks
in both ShopA and ShopB, under the following
four relations:
– Products (ProductID, ProductName, ProductType,

Price)
– Categories (ProductType, Category)
– Shop-A (ProductID, Stock)
– Shop-B (ProductID, Stock)

2020/6/25 Advance Data Engineering (©H.Yokota) 50

2020/6/25

Advanced Data Engineering (©H. Yokota) 12

Aggregate Functions (1)

• Count
– SELECT COUNT(*)

FROM Products
– SELECT DISTINCT COUNT(ProductType)

FROM Products
• Summation

– SELECT SUM(Stocks)
FROM ShopA, Products
WHERE ShopA.ProductID=Products.ProductID
AND Products.Price > 1,800

• Other Functions: AVG(), MAX(), MIN()
2020/6/25 Advance Data Engineering (©H.Yokota) 51

Aggregate Functions (2)

• Group By
– SELECT Product-Type, AVG(Price)

FROM Products
GROUP BY ProductType

• Having
– SELECT ProductType

FROM Products
GROUP BY ProductType
HAVING AVG(Price) > 1,800

2020/6/25 Advance Data Engineering (©H.Yokota) 52

Product Type AVG(Price)

Laptop PC 1,750

Desktop PC 2,000

2020/6/25

Advanced Data Engineering (©H. Yokota) 13

Question (2-3)

• Assume the following four relations:
– Products (ProductID, ProductName, ProductType, Price)
– Categories (ProductType, Category)
– ShopA (ProductID, Stock)

A) Write an SQL query to derive average stocks in ShopA
per category of products whose prices are less than
$2,000. The SQL query lists the average stock with the
category name.

B) Write an SQL query to derive category name of
products whose prices are less than $2,000, and
where the average stocks of the category in ShopA is
greater than 5.

2020/6/25 Advance Data Engineering (©H.Yokota) 53

Access Methods

• Sequential access vs. Direct access
• Indexing

– To speed up retrieval
• Inverted File

– Imagine index pages of a book
• Tree structured Index: B-trees

– Common: most relational system support B-trees
– B+tree support both direct & sequential accesses

• Hashing
– Direct access by using a Hash function

2020/6/25 Advance Data Engineering (©H.Yokota) 54

2020/6/25

Advanced Data Engineering (©H. Yokota) 14

Transaction
• A logic unit of work having ACID properties.

– A: Atomicity
• All-or-nothing (Commit: all, Rollback: nothing)

– C: Consistency
• A transaction transforms a consistent state of the database into

another consistent state, without necessarily preserving consistency
at all intermediate points.

– I: Isolation
• Transactions are isolated from one another. Any given transaction's

update are concealed from all the rest transactions running
concurrently, until that transaction commits.

– D: Durability
• Once a transaction commits, its update survive, even if there is a

subsequent system crash.

2020/6/25 Advance Data Engineering (©H.Yokota) 55

Serializability

• Transactions should behave as if they were
run serially
– Even though their execution may overlap in time

• Concurrency control is required
– Using Locks

• Two Phase Lock (2PL) is essential
• Deadlocks can be occurred

– Using Timestamp
• We will consider distributed lock/commit

2020/6/25 Advance Data Engineering (©H.Yokota) 56

2020/6/25

Advanced Data Engineering (©H. Yokota) 15

Recovery

• Transaction Recovery
– Rollback by the user, or for serializability
– States are kept on volatile memory

• System Recovery
– Caused by system failures
– States are kept on non volatile memory
– Recovered by checkpoint and logs

• Media Recovery
– Caused by media failures

2020/6/25 Advance Data Engineering (©H.Yokota) 57

Transaction control in SQL
• BEGIN WORK

– Declaration of starting a transaction
• COMMIT WORK

– Declaration of terminating a normal transaction
• ROLLBACK WORK

– Abortion of a transaction

• We will also consider other controls for
extended transaction models

2020/6/25 Advance Data Engineering (©H.Yokota) 58

2020/6/25

Advanced Data Engineering (©H. Yokota) 16

OLTP / OLAP

• OLTP: On Line Transaction Processing
– Typically handling simultaneous fixed form queries

for data entry and retrieval
• Banking system, Trading system, POS system, etc.

• OLAP: On Line Analytical Processing
– Handling ad hoc complex queries for strategic

decision support of managers

2020/6/25 Advance Data Engineering (©H.Yokota) 59

Recent Trend

• ACID properties are too strong for scalability
– Some applications does not require strong

consistency
• Such as Twitter, Facebook, etc.
• How about Amazon ?

• BASE transaction model (for KVS)
– Basically Available
– Soft state
– Eventually consistent

2020/6/25 Advance Data Engineering (©H.Yokota) 60

