2020/6/25

A Short Course for
Relational Databases

Advanced Data Engineering

A Brief Introduction of Relational DB

* The Relational Model
— Proposed by E.F. Codd (IBM) in 1970
* 1981 ACM Turing Award
* 2003.4.18 Died (78 years old)
— Based on the Set Theory
* Basic Concept

— A relation R is a subset of Cartesian product of
domainD; (1<j<n)

Rc D;x D,x..xD;jx..xD,
— A tuple tis an element of a relation: t € R

2020/6/25 Advance Data Engineering (©H.Yokota) 30

Advanced Data Engineering (OH. Yokota) 1



2020/6/25

An lllustration of the Model

ProductID ProductType Price

Domains

D, b;

Cartesian Product

A model of
Relation real world
Rc D;xD,xD; (P02 Deskion PC 2.000) < Tuple

2020/6/25 Advance Data Engineering (©H.Yokota) 31

Terminologies of Relational DB

The number of tuples is called cardinality

A domain in a relation is called an attribute
— Each attribute has an attribute name
— The collection attribute names is called a schema
— nis called a degree of the relation
A set of attributes which uniquely identifies each
tuple in a relation is called a key of the relation
— There are some candidate keys
— A primary key and other alternate keys
A relation can be seen as a table.
— Atupleis a row of the table.
— An attribute is a column of the table.

2020/6/25 Advance Data Engineering (©H.Yokota) 32

Advanced Data Engineering (OH. Yokota) 2



A Table Image of RDB

Relation N
Attribute Name L Schema

Products /

Primary Key

Cardinality

bY
E Attribute

Degree

2020/6/25 Advance Data Engineering (©H.Yokota) 83

Relational Database Operations

* Relational Algebra

— A collection of operators

* take relations as their operands and return relations
as their results

* Relational Calculus
— Specification of requiring results
* An example: {(t, t,) | R(t,) A S(t,) A t,[X] Ot [Y]}
* Algebra is prescriptive
while Calculus is descriptive
— Both expressive power is identical

2020/6/25 Advance Data Engineering (©H.Yokota) 34

Advanced Data Engineering (OH. Yokota)

2020/6/25



Relational Algebra Operations

* Set Operations
— Union (RU S)
— Intersection (RN S)
— Difference (R—S)
— Cartesian Product (R x S)
* Dedicated Relational Algebra Operations
— Projection (T, ibute-tist R)
— Selection (6, gitions R)
—Join (0 -Join: R,y S, eg-Join: RP<,_, S)
— Division (R + S)

2020/6/25 Advance Data Engineering (©H.Yokota) 85|

Set Operations on RDB

Shop-A U Shop-B Shop-A n Shop-B Shop-A — Shop-B
Union Intersection Difference
2020/6/25 Advance Data Engineering (©H.Yokota) 36

Advanced Data Engineering (OH. Yokota)

2020/6/25



2020/6/25

Projection

* Derive specified attributes with eliminating
duplication

TproductType P roducts = { t{[ProductsType] | Products(t) }

* Delta Projection: without eliminating duplication

2020/6/25 Advance Data Engineering (©H.Yokota) 37

Selection ¢

* Derive all tuples satisfying specified conditions

Gprice > 1,800 Products = { t | Products(t) A t[Price] > 1,800}

2020/6/25 Advance Data Engineering (©H.Yokota) 38

Advanced Data Engineering (OH. Yokota) 5



2020/6/25

Join X

* Combine two relations with specified conditions

-|><|

-

Products D<l pogyciin =producin ShopA
S5 d A, 12) | Products(t;{()VQC%QQQQ;}@@;]_[E&QuctslD]=t2[ProductID]}39

Query Example

* Consider a relational algebra query to derive “ProductName” and
“Price” of products categorized as “Computer”, whose stocks are
more than ten in ShopA or ShopB, under the following four relations:

— Products (ProductID, ProductName, ProductType, Price)
— Categories (ProductType, Category)

— ShopA (ProductID, Stock)

— ShopB (ProductID, Stock)

T ProductName, Price (
((PrOdUCtS N ProductType = ProductType (G Category =“Computer” Categories))
N ProductID = ProductID ((G Stocks>10 ShOpA) o (G Stocks>10 ShOpB))

)
)

2020/6/25 Advance Data Engineering (©H.Yokota) 40

Advanced Data Engineering (OH. Yokota)



2020/6/25

Write a query from Google Form

T ProductName, Price (
(PI’OdUCtS NProductType = ProductType (G Category =“Computer” Categorles))

N ProductID = ProductID ((G Stocks>10 ShOpA) o (G Stocks>10 ShOpB))

)

Projection[ProductName, Price] (
Join[ProductID = ProductID]
Join[ProductType=ProductType] (
Products, Selection[Category="Computer”](Categories)),
Union(Selection[Stock>10](ShopA), Selection[Stock>10](ShopB))

)
2020/6/25 Advance Data Engineering (©H.Yokota) 41
Examples of Query Trees
©(c((C X P) XS)) ((o(C) X o(P) ) X S)
C: Categories, P: Products, S: Shop-A
2020/6/25 Advance Data Engineering (©H.Yokota) 42

Advanced Data Engineering (OH. Yokota)



Question (2-1)

* Write a relational algebra query to derive
“ProductID” and “Category” of products whose
price is more than $2,000 and whose stock are
less than ten stocks in both ShopA and ShopB,
under the following four relations:

— Products (ProductID, ProductName, ProductType,
Price)

— Categories (ProductType, Category)
— ShopA (ProductlD, Stock)
— ShopB (ProductID, Stock)

2020/6/25 Advance Data Engineering (©H.Yokota)

Query Languages

e SQL (Structured Query Language)
— Developed in SystemR Project of IBM
— Standardlized (ANSI/ISO, JIS)

— Data Definition Language (DDL)
+ Data Manipulation Language (DML)

— Directed or Embedded SQL
* From some programming languages
* Basic Syntax (DML)
SELECT List of Attribute Names
FROM List of Relation Names
WHERE Conditions;

2020/6/25 Advance Data Engineering (©H.Yokota)

44

Advanced Data Engineering (OH. Yokota)

2020/6/25



2020/6/25

SQL Examples (1)

e SELECT DISTINCT ProductType
FROM  Products;

— Projection for the Products Table
* TcProductType Products
* {t[ProductType] | Products(t) }

e SELECT ProductType
FROM  Products;

— Delta Projection
* Without eliminating duplication

2020/6/25 Advance Data Engineering (©H.Yokota) 45

SQL Examples (2)

e SELECT ProductlD, ProductType, Price
FROM  Products
WHERE Price > 1,800;
— Selection for the Products Table

* Oprice > 1,800 Products
* {t | Products(t) A t[Price] > 1,800}

e SELECT *
FROM  Products
WHERE Price > 1,800
AND ProductType = “Laptop PC”;

2020/6/25 Advance Data Engineering (©H.Yokota) 46

Advanced Data Engineering (OH. Yokota) 9



SQL Examples (3)

e SELECT *

FROM

Products, ShopA

WHERE Products.ProductiD=ShopA.ProductID;

— Join between the Products and Shop-A Tables

* Products |><|Product-ID=Product—ID Shop-A
e {(t1, t2) | Products(tl) A ShopA(t2) A t1[ProductsID]=t2[ProductID]}

e SELECT *

2020/6/25

FROM Products
WHERE ProductID IN

(SELECT ProductID FROM ShopA);

Advance Data Engineering (©H.Yokota)

47

2020/6/25

A Query Example

Consider another relation
“Categories” having two
attributes: “ProductType”
and “Category”

— Laptop PCs and Desktop PCs
are categorized as PCs in the
table

Write an SQL query to
derive stocks of PC sold in
the ShopA at the price
higher than $1,800

Consider Relational Algebra
Expressions for the query

SELECT Stocks
FROM ShopA
WHERE ProductID IN
(SELECT ProductID
FROM Products
WHERE Price > 1,800
AND ProductType IN
(SELECT ProductType
FROM Categories
WHERE Category = PC));

Advance Data Engineering (©H.Yokota)

48

Advanced Data Engineering (OH. Yokota)

2020/6/25

10



2020/6/25

Another Example

SELECT ShopA.Stocks
FROM ShopA, Products, Categories
WHERE ShopA.ProductID = Products.ProductID

AND Products.ProductType =
Categories.ProductType

AND Products.Price > 1,800
AND Categories.Category = PC;

2020/6/25 Advance Data Engineering (©H.Yokota) 49

Question (2-2)

* Write an SQL query to derive “ProductID” and
“Category” of products whose price is more than
$1,500 and whose stock are less than ten stocks
in both ShopA and ShopB, under the following
four relations:

— Products (ProductID, ProductName, ProductType,
Price)

— Categories (ProductType, Category)

— Shop-A (ProductlD, Stock)

— Shop-B (ProductID, Stock)

2020/6/25 Advance Data Engineering (©H.Yokota) 50

Advanced Data Engineering (OH. Yokota) 11



Aggregate Functions (1)

* Count

— SELECT COUNT(*)
FROM Products

— SELECT DISTINCT COUNT(ProductType)
FROM Products
* Summation

— SELECT SUM(Stocks)
FROM ShopA, Products
WHERE ShopA.ProductIiD=Products.ProductID
AND Products.Price > 1,800

e Other Functions: AVG(), MAX(), MIN()

2020/6/25 Advance Data Engineering (©H.Yokota) 51

Aggregate Functions (2)

* Group By
— SELECT Product-Type, AVG(Price)

FROM Products
GROUP BY ProductType

— SELECT ProductType

FROM Products
GROUP BY ProductType
HAVING AVG(Price) > 1,800

2020/6/25 Advance Data Engineering (©H.Yokota) 52

Advanced Data Engineering (OH. Yokota)

2020/6/25

12



Question (2-3)

* Assume the following four relations:

— Products (ProductID, ProductName, ProductType, Price)
— Categories (ProductType, Category)
— ShopA (ProductlD, Stock)

A) Write an SQL query to derive average stocks in ShopA
per category of products whose prices are less than
$2,000. The SQL query lists the average stock with the
category name.

B) Write an SQL query to derive category name of
products whose prices are less than $2,000, and
where the average stocks of the category in ShopA is
greater than 5.

Access Methods

Sequential access vs. Direct access
Indexing
— To speed up retrieval
Inverted File
— Imagine index pages of a book
Tree structured Index: B-trees

— Common: most relational system support B-trees
— B+tree support both direct & sequential accesses

Hashing
— Direct access by using a Hash function

Advanced Data Engineering (OH. Yokota)

2020/6/25

13



2020/6/25

Transaction

* Alogic unit of work having ACID properties.
— A: Atomicity
e All-or-nothing (Commit: all, Rollback: nothing)

C: Consistency

* A transaction transforms a consistent state of the database into
another consistent state, without necessarily preserving consistency
at all intermediate points.

I: Isolation

* Transactions are isolated from one another. Any given transaction's
update are concealed from all the rest transactions running
concurrently, until that transaction commits.

D: Durability

* Once a transaction commits, its update survive, even if thereis a
subsequent system crash.

Serializability

* Transactions should behave as if they were
run serially

— Even though their execution may overlap in time
* Concurrency control is required

— Using Locks
* Two Phase Lock (2PL) is essential
* Deadlocks can be occurred

— Using Timestamp
* We will consider distributed lock/commit

Advanced Data Engineering (OH. Yokota) 14



Recovery

* Transaction Recovery
— Rollback by the user, or for serializability
— States are kept on volatile memory

* System Recovery
— Caused by system failures
— States are kept on non volatile memory
— Recovered by checkpoint and logs

* Media Recovery
— Caused by media failures

Transaction control in SQL
BEGIN WORK

— Declaration of starting a transaction

COMMIT WORK

— Declaration of terminating a normal transaction

ROLLBACK WORK

— Abortion of a transaction

We will also consider other controls for
extended transaction models

Advanced Data Engineering (OH. Yokota)

2020/6/25

15



2020/6/25

OLTP / OLAP

* OLTP: On Line Transaction Processing

— Typically handling simultaneous fixed form queries
for data entry and retrieval
* Banking system, Trading system, POS system, etc.

* OLAP: On Line Analytical Processing

— Handling ad hoc complex queries for strategic
decision support of managers

Recent Trend

* ACID properties are too strong for scalability

— Some applications does not require strong
consistency
* Such as Twitter, Facebook, etc.
* How about Amazon ?

* BASE transaction model (for KVS)
— Basically Available
— Soft state
— Eventually consistent

Advanced Data Engineering (OH. Yokota) 16



