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Parallel Aggregation

• Based on sequential aggregation algorithm 
using hash
– Hashing for a Group-By operation
– Applying aggregation functions to each group

• Count, Sum, Average, Max, Min

• Three algorithms for parallel execution
– Centralized Two Phase Algorithm (C-2P)
– Two-Phase Algorithm (2P)
– Repartitioning Algorithm (Rep)
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Centralized Two Phase Algorithm (C-2P)

1. Read tuples from each local disk, apply a hash 
function, and execute aggregate function for 
hash buckets in each PE

2. Send the results of aggregation to a node to 
merge them

 The centralized node will be a bottleneck 
when the number of PE increases
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Centralized Two Phase Algorithm (C-2P)
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Pseudo Code for C-2P

In each PE (indicated by x)
for(i=1; i<={Rx}; i++) {

get i-th tuple t from Rx;
derive target attribute value v in t;
y = h(v);
keep t in buffer[y] }

for(i=1; i <= group#; i++) {
apply aggregate functions for buffer[i]
send the result to a PE}

In the PE(0)
merge the results for each group
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Two-Phase Algorithm (2P)

1. Read tuples from each local disk, apply a hash 
function, and execute aggregate function for 
hash buckets in each PE

2. Send the results of aggregation to nodes
corresponded with hash partition in parallel

 The merge operations are also executed in 
parallel
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Two-Phase Algorithm (2P)
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Pseudo Code for 2P
In each PE (indicated by x)
for(i=1; i<={Rx}; i++) {
get i-th tuple t from Rx;
derive target attribute value v in t;
y = h(v);
keep t in buffer[y] }

for(i=1; i <= group#; i++) {
apply aggregate functions for buffer[i]
z = h2(i);
send the result to PE(z)}

In each PE
merge the results for corresponding groups
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Repartitioning Algorithm (Rep)

1. Read tuples from each local disk, and apply a 
hash function

2. Send the result to nodes depend on the hash 
result

3. A node receive the result execute aggregate 
function in parallel

 The number of invocations of aggregate 
functions can be reduced
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Repartitioning Algorithm (Rep)
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Pseudo Code for Rep (1)

In each PE (indicated by x)
for(i=1; i<={Rx}; i++) {

get i-th tuple t from Rx;
derive target attribute value v in t;
y = h2(v);
send t to PE(y) }
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Pseudo Code for Rep (2)
In each PE

merge tuples;
n = count tuples;
for(i = 1, i < n ; i++) {

get i-th tuple from buffer and derive target attribute 
value v in t;
z = h(v);
store t in buffer[z];
} 

for( j= 1; j < number of buffer in the PE; j++)  {
apply aggregate functions for buffer[j]

}
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Comparison on Parallel Aggregation

• From: 
– Adaptive Parallel 

Aggregation Algorithm
– A. Shatdal and J.F. 

Naufhton, 
– Proc. of Int'l Conf. 

SIGMOD '95, 
pp.104--114, (fig1)

• Using 32 PEs
• The graph indicates:

– When there are small 
groups, 2p is better

– Otherwise, Rep is 
better
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Question (10-1)
• From the discussion for comparing C-2P, 2P, 

and Rep, we can find that the problem size 
(the number of groups) and communication 
costs are influential factors for the 
performance of parallel processing.

• Describe the difference of curves in the graph 
when a lower bandwidth network is used.

2020/7/27 Advance Data Engineering (©H.Yokota) 268

Skews in a Join Operation
• If there are skews in parallel processing,

– We cannot obtain enough scalability
• Speed-up is restricted by the slowest PE 

• Consider GRACE Hash Join
– There are several reasons for skews

• Assumptions
– Selection Operations are executed before the Join 

Operation
– Results can be output from each PE
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• Suppose you have 100 jobs and 10 members
• If the jobs are evenly distributed to 9 

members (5 jobs for each), but one member 
takes 55 jobs, then speed up is less than twice.
– You have to wait till the last member is finished.
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Skews in a Join Operation
• If there are skews in parallel processing,

– We cannot obtain enough scalability
• Speed-up is restricted by the slowest PE 

• Consider GRACE Hash Join
– There are several reasons for skews

• Assumptions
– Selection Operations are executed before the Join 

Operation
– Results can be output from each PE
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Types of Skews in a Join Operation

• Tuple Placement Skew
– Tuple distribution skew before starting the query

• Selectivity Skew
– Skew in the results of the selection before join

• Redistribution Skew
– Bucket size skew in distribution phase of join 

operation
• Join Product Skew

– Skew in the results of join phase
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Handling of Skews in a Join
• Tuple Placement Skew:

– Adjustment of tuple placement
• Round-Robin partitioning, Hash partitioning, others

• Selectivity Skew / Redistribution Skew:
– Fine Bucket Method (will be described soon)

• Join Product Skew:
– Dynamic bucket allocation / output tuple 

allocation

• Focus on the Fine Bucket Method
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Fine Bucket Method (1)
• If the number of PEs Np is equal to the number of 

buckets Nb

– Skews cannot be removed with any placement strategies

PE1

Bucket#: Nb

PE2 PE3 PE4 PE#: Np

Nb = Np
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Fine Bucket Method (2)

• Make the number of buckets Nb quite larger 
than the number of PEs Np

PE1

Bucket#: Nb

PE2 PE3 PE4 PE#: Np

Nb >> Np
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Fine Bucket Method (3)

• Goal: task size in each PE becomes equivalent 

PE1 PE2 PE3 PE4
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A Bucket Allocation Strategy
• LPT (Longest Processing Time) First Strategy

– Heuristics for Minimum Make Span
• Spreading Bucket Method

– Calculation of bucket size and plan making
– Distribute buckets to all PEs and make a plan in one 

of them
– Merit of Spreading Bucket

• There is no data concentration in a particular PE + Disk
• Distribution of fine bucket in each module is similar

– It is easy to obtain statistics information
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Rotational Bucket Collection (1)
• Routing without congestion during collecting 

buckets
• Cluster fine buckets into equalized task group 

by LPT First
– Distribute Np subtask group into Np PEs

• i-th PE PEi ( 1  i  Np) 
– Read i-th subtask group from 

(((i + j) - 2)   mod   Np) + 1 
module in j-th step
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Rotational Bucket Collection (2)

Interconnection Network or Bus
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Rotational Bucket Collection (2)

Interconnection Network or Bus

1 2 3 4

1j =

i =
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Rotational Bucket Collection (2)

Interconnection Network or Bus

1 2 3 4

2j =

i =
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Rotational Bucket Collection (2)

Interconnection Network or Bus

1 2 3 4

3j =

i =
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Rotational Bucket Collection (2)

Interconnection Network or Bus

1 2 3 4

4j =

i =

j =
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Process Flow of Fine Buckets

1. All tuples are hashed into Nb buckets, where 
Np << Nb

2. Applying the Spreading-Bucket Method
3. Make task groups by the LPT First Scheduling
4. Applying the Rotational Bucket Collection
5. Do Join operation in each node
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Costs of Fine Buckets
1. I/O for 1 PE during Hash: 

2×(|R| + |S|)/ Np

2. The Spreading-Bucket Method can be done on-
the-fly

3. Data collection for scheduling can be overlap 
on the I/O

4. I/O for collecting task groups: 
2×(|R| + |S|)/ Np

5. I/O for Join operation: 
(|R| + |S|)/ Np



2020/7/27

Advanced Data Engineering (H. Yokota) 16

2020/7/27 Advance Data Engineering (©H.Yokota) 285

Comparison on costs of Fine Buckets

• Let the maximum skew a%
– When Np is infinity, a% for sequential execution time

• Thus, the execution time: a /100 ×3 × (|R| + |S|)

• When we adopt the Fine Bucket Method with the 
Spreading Bucket Method
– Total I/O Cost: 5 ×(|R| + |S|)/ Np

• A Rough Comparison
– If a /100 ×3 × (|R| + |S|) > 5 ×(|R| + |S|)/ Np ,  then Fine 

Bucket is effective
– For Np=10, if a > 17 %, then Fine Bucket is effective
– For Np=100, if a > 1.7%, then Fine Bucket is  effective

Question (10-2)

• In actual situations, it is hard to make the load 
distribution completely even by the LPT First 
Strategy.
a. Consider the condition of α for the case in which the 

Fine Bucket Method with the Spreading Bucket 
Method is effective for Np = 100, when we assume 
that the maximum skew remains β% (difference 
between the longest and shortest execution time is 
β% of the sequential execution time)after applying 
the Fine Bucket Method.

b. Consider approaches to make β smaller.
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Combination of Methods

• Tuple placement Method
– For Tuple Placement Skews

• Fine Bucket Method 
– For Selectivity / Redistribution Skews

• Dynamic bucket allocation / output tuple 
allocation Method
– Join Product Skews

• Each method is independent
– Combine these methods
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Parallelize Hybrid Hash Join

• Prepare a corresponding Hash Table in each 
PE
– It is difficult to build the Hash Table during read 

disk, because data is fragmented to all disks
– Build the Hash Table while writing data into the 

disk in the Phase 1
• It can reduce time of Phase 2

• However, we can not apply the fine bucket 
method


