
2020/7/27

Advanced Data Engineering (H. Yokota) 1

Parallel Aggregation

• Based on sequential aggregation algorithm
using hash
– Hashing for a Group-By operation
– Applying aggregation functions to each group

• Count, Sum, Average, Max, Min

• Three algorithms for parallel execution
– Centralized Two Phase Algorithm (C-2P)
– Two-Phase Algorithm (2P)
– Repartitioning Algorithm (Rep)

2020/7/27 Advance Data Engineering (©H.Yokota) 255

Centralized Two Phase Algorithm (C-2P)

1. Read tuples from each local disk, apply a hash
function, and execute aggregate function for
hash buckets in each PE

2. Send the results of aggregation to a node to
merge them

 The centralized node will be a bottleneck
when the number of PE increases

2020/7/27 Advance Data Engineering (©H.Yokota) 256

2020/7/27

Advanced Data Engineering (H. Yokota) 2

Centralized Two Phase Algorithm (C-2P)

2020/7/27 Advance Data Engineering (©H.Yokota) 257

R1 R2 R3 R4

AF AF AF AF AF AF AF AFAF AF AF AF AF AF AF AF

Hash HashHash Hash

Network

Mg Mg Mg Mg

Pseudo Code for C-2P

In each PE (indicated by x)
for(i=1; i<={Rx}; i++) {

get i-th tuple t from Rx;
derive target attribute value v in t;
y = h(v);
keep t in buffer[y] }

for(i=1; i <= group#; i++) {
apply aggregate functions for buffer[i]
send the result to a PE}

In the PE(0)
merge the results for each group

2020/7/27 Advance Data Engineering (©H.Yokota) 258

2020/7/27

Advanced Data Engineering (H. Yokota) 3

Two-Phase Algorithm (2P)

1. Read tuples from each local disk, apply a hash
function, and execute aggregate function for
hash buckets in each PE

2. Send the results of aggregation to nodes
corresponded with hash partition in parallel

 The merge operations are also executed in
parallel

2020/7/27 Advance Data Engineering (©H.Yokota) 259

Two-Phase Algorithm (2P)

2020/7/27 Advance Data Engineering (©H.Yokota) 260

R1 R2 R3 R3

Hash

AF AF AF AF

Hash

AF AF AF AF

Hash

AF AF AF AF

Hash

AF AF AF AF

Network

Mg Mg MgMg

H H H H H H H H H H H H H H H H

2020/7/27

Advanced Data Engineering (H. Yokota) 4

Pseudo Code for 2P
In each PE (indicated by x)
for(i=1; i<={Rx}; i++) {
get i-th tuple t from Rx;
derive target attribute value v in t;
y = h(v);
keep t in buffer[y] }

for(i=1; i <= group#; i++) {
apply aggregate functions for buffer[i]
z = h2(i);
send the result to PE(z)}

In each PE
merge the results for corresponding groups

2020/7/27 Advance Data Engineering (©H.Yokota) 261

Repartitioning Algorithm (Rep)

1. Read tuples from each local disk, and apply a
hash function

2. Send the result to nodes depend on the hash
result

3. A node receive the result execute aggregate
function in parallel

 The number of invocations of aggregate
functions can be reduced

2020/7/27 Advance Data Engineering (©H.Yokota) 262

2020/7/27

Advanced Data Engineering (H. Yokota) 5

Repartitioning Algorithm (Rep)

2020/7/27 Advance Data Engineering (©H.Yokota) 263

R1 R2 R3 R3

Hash Hash Hash Hash

Network

Mg Mg MgMg

AF AF AF AF

Pseudo Code for Rep (1)

In each PE (indicated by x)
for(i=1; i<={Rx}; i++) {

get i-th tuple t from Rx;
derive target attribute value v in t;
y = h2(v);
send t to PE(y) }

2020/7/27 Advance Data Engineering (©H.Yokota) 264

2020/7/27

Advanced Data Engineering (H. Yokota) 6

Pseudo Code for Rep (2)
In each PE

merge tuples;
n = count tuples;
for(i = 1, i < n ; i++) {

get i-th tuple from buffer and derive target attribute
value v in t;
z = h(v);
store t in buffer[z];
}

for(j= 1; j < number of buffer in the PE; j++) {
apply aggregate functions for buffer[j]

}
2020/7/27 Advance Data Engineering (©H.Yokota) 265

Comparison on Parallel Aggregation

• From:
– Adaptive Parallel

Aggregation Algorithm
– A. Shatdal and J.F.

Naufhton,
– Proc. of Int'l Conf.

SIGMOD '95,
pp.104--114, (fig1)

• Using 32 PEs
• The graph indicates:

– When there are small
groups, 2p is better

– Otherwise, Rep is
better

2020/7/27 Advance Data Engineering (©H.Yokota) 266

There are idle
nodes having

no task

The centralized
node is a

bottleneck

Network
traffic is the

overhead

Invocations
of aggregate

function
becomes

heavy

2020/7/27

Advanced Data Engineering (H. Yokota) 7

2020/7/27 Advance Data Engineering (©H.Yokota) 267

Question (10-1)
• From the discussion for comparing C-2P, 2P,

and Rep, we can find that the problem size
(the number of groups) and communication
costs are influential factors for the
performance of parallel processing.

• Describe the difference of curves in the graph
when a lower bandwidth network is used.

2020/7/27 Advance Data Engineering (©H.Yokota) 268

Skews in a Join Operation
• If there are skews in parallel processing,

– We cannot obtain enough scalability
• Speed-up is restricted by the slowest PE

• Consider GRACE Hash Join
– There are several reasons for skews

• Assumptions
– Selection Operations are executed before the Join

Operation
– Results can be output from each PE

2020/7/27

Advanced Data Engineering (H. Yokota) 8

Image of skews

M/標準

M/標準

M/標準

M/標準

M/標準

M/標準

M/標準

2020/7/27 Advance Data Engineering (©H.Yokota) 269

• Suppose you have 100 jobs and 10 members
• If the jobs are evenly distributed to 9

members (5 jobs for each), but one member
takes 55 jobs, then speed up is less than twice.
– You have to wait till the last member is finished.

2020/7/27 Advance Data Engineering (©H.Yokota) 270

Skews in a Join Operation
• If there are skews in parallel processing,

– We cannot obtain enough scalability
• Speed-up is restricted by the slowest PE

• Consider GRACE Hash Join
– There are several reasons for skews

• Assumptions
– Selection Operations are executed before the Join

Operation
– Results can be output from each PE

2020/7/27

Advanced Data Engineering (H. Yokota) 9

2020/7/27 Advance Data Engineering (©H.Yokota) 271

Types of Skews in a Join Operation

• Tuple Placement Skew
– Tuple distribution skew before starting the query

• Selectivity Skew
– Skew in the results of the selection before join

• Redistribution Skew
– Bucket size skew in distribution phase of join

operation
• Join Product Skew

– Skew in the results of join phase

2020/7/27 Advance Data Engineering (©H.Yokota) 272

Handling of Skews in a Join
• Tuple Placement Skew:

– Adjustment of tuple placement
• Round-Robin partitioning, Hash partitioning, others

• Selectivity Skew / Redistribution Skew:
– Fine Bucket Method (will be described soon)

• Join Product Skew:
– Dynamic bucket allocation / output tuple

allocation

• Focus on the Fine Bucket Method

2020/7/27

Advanced Data Engineering (H. Yokota) 10

2020/7/27 Advance Data Engineering (©H.Yokota) 273

Fine Bucket Method (1)
• If the number of PEs Np is equal to the number of

buckets Nb

– Skews cannot be removed with any placement strategies

PE1

Bucket#: Nb

PE2 PE3 PE4 PE#: Np

Nb = Np

2020/7/27 Advance Data Engineering (©H.Yokota) 274

Fine Bucket Method (2)

• Make the number of buckets Nb quite larger
than the number of PEs Np

PE1

Bucket#: Nb

PE2 PE3 PE4 PE#: Np

Nb >> Np

2020/7/27

Advanced Data Engineering (H. Yokota) 11

2020/7/27 Advance Data Engineering (©H.Yokota) 275

Fine Bucket Method (3)

• Goal: task size in each PE becomes equivalent

PE1 PE2 PE3 PE4

2020/7/27 Advance Data Engineering (©H.Yokota) 276

A Bucket Allocation Strategy
• LPT (Longest Processing Time) First Strategy

– Heuristics for Minimum Make Span
• Spreading Bucket Method

– Calculation of bucket size and plan making
– Distribute buckets to all PEs and make a plan in one

of them
– Merit of Spreading Bucket

• There is no data concentration in a particular PE + Disk
• Distribution of fine bucket in each module is similar

– It is easy to obtain statistics information

2020/7/27

Advanced Data Engineering (H. Yokota) 12

2020/7/27 Advance Data Engineering (©H.Yokota) 277

Rotational Bucket Collection (1)
• Routing without congestion during collecting

buckets
• Cluster fine buckets into equalized task group

by LPT First
– Distribute Np subtask group into Np PEs

• i-th PE PEi (1 i Np)
– Read i-th subtask group from

(((i + j) - 2) mod Np) + 1
module in j-th step

2020/7/27 Advance Data Engineering (©H.Yokota) 278

Rotational Bucket Collection (2)

Interconnection Network or Bus

2020/7/27

Advanced Data Engineering (H. Yokota) 13

2020/7/27 Advance Data Engineering (©H.Yokota) 279

Rotational Bucket Collection (2)

Interconnection Network or Bus

1 2 3 4

1j =

i =

2020/7/27 Advance Data Engineering (©H.Yokota) 280

Rotational Bucket Collection (2)

Interconnection Network or Bus

1 2 3 4

2j =

i =

2020/7/27

Advanced Data Engineering (H. Yokota) 14

2020/7/27 Advance Data Engineering (©H.Yokota) 281

Rotational Bucket Collection (2)

Interconnection Network or Bus

1 2 3 4

3j =

i =

2020/7/27 Advance Data Engineering (©H.Yokota) 282

Rotational Bucket Collection (2)

Interconnection Network or Bus

1 2 3 4

4j =

i =

j =

2020/7/27

Advanced Data Engineering (H. Yokota) 15

2020/7/27 Advance Data Engineering (©H.Yokota) 283

Process Flow of Fine Buckets

1. All tuples are hashed into Nb buckets, where
Np << Nb

2. Applying the Spreading-Bucket Method
3. Make task groups by the LPT First Scheduling
4. Applying the Rotational Bucket Collection
5. Do Join operation in each node

2020/7/27 Advance Data Engineering (©H.Yokota) 284

Costs of Fine Buckets
1. I/O for 1 PE during Hash:

2×(|R| + |S|)/ Np

2. The Spreading-Bucket Method can be done on-
the-fly

3. Data collection for scheduling can be overlap
on the I/O

4. I/O for collecting task groups:
2×(|R| + |S|)/ Np

5. I/O for Join operation:
(|R| + |S|)/ Np

2020/7/27

Advanced Data Engineering (H. Yokota) 16

2020/7/27 Advance Data Engineering (©H.Yokota) 285

Comparison on costs of Fine Buckets

• Let the maximum skew a%
– When Np is infinity, a% for sequential execution time

• Thus, the execution time: a /100 ×3 × (|R| + |S|)

• When we adopt the Fine Bucket Method with the
Spreading Bucket Method
– Total I/O Cost: 5 ×(|R| + |S|)/ Np

• A Rough Comparison
– If a /100 ×3 × (|R| + |S|) > 5 ×(|R| + |S|)/ Np , then Fine

Bucket is effective
– For Np=10, if a > 17 %, then Fine Bucket is effective
– For Np=100, if a > 1.7%, then Fine Bucket is effective

Question (10-2)

• In actual situations, it is hard to make the load
distribution completely even by the LPT First
Strategy.
a. Consider the condition of α for the case in which the

Fine Bucket Method with the Spreading Bucket
Method is effective for Np = 100, when we assume
that the maximum skew remains β% (difference
between the longest and shortest execution time is
β% of the sequential execution time)after applying
the Fine Bucket Method.

b. Consider approaches to make β smaller.

2020/7/27 Advance Data Engineering (©H.Yokota) 286

2020/7/27

Advanced Data Engineering (H. Yokota) 17

2020/7/27 Advance Data Engineering (©H.Yokota) 287

Combination of Methods

• Tuple placement Method
– For Tuple Placement Skews

• Fine Bucket Method
– For Selectivity / Redistribution Skews

• Dynamic bucket allocation / output tuple
allocation Method
– Join Product Skews

• Each method is independent
– Combine these methods

2020/7/27 Advance Data Engineering (©H.Yokota) 288

Parallelize Hybrid Hash Join

• Prepare a corresponding Hash Table in each
PE
– It is difficult to build the Hash Table during read

disk, because data is fragmented to all disks
– Build the Hash Table while writing data into the

disk in the Phase 1
• It can reduce time of Phase 2

• However, we can not apply the fine bucket
method

