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Goals of Parallel Processing (1)
• To improve performance

– Speedup
• Shorten the execution time for the same size of problem

– Scaleup
• Increase the size of problem which can be treated during 

the same time period
– (Increase the amount of data in databases)

• To improve reliability
– Redundant configuration for fault tolerant

• Data/Process Replication (cf. Data Distribution)
– One of main issues of transaction processing
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Goals of Parallel Processing (2)

• What are others?
– Functionality?

• Can be simulated (emulated) in a single processor

– Easy to use? (or to maintenance)
• in distributed environment

– It is basically a matter of performance or reliability
– The other aspects can also be simulated

– ???
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Speedup
• A parallel process includes 

portions which cannot be 
executed in parallel but 
sequential (eg. Initialization)

• We divide execution time 
into two parts: executed in 
parallel and sequential

• We denote the ratio of 
parallel by using p
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Scaleup

• When each processor executes completely 
independent process, x times number of processes 
are completed during a unit time

• The communication overhead decrease the number 
of completed processes, which is proportional to the 
size of system, but the scaleup still has linearity
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Linear Scaleup
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Question (8-1)

• In the case of parallel processing in data 
engineering, the realizations of the linear 
scaleup tends to be easier than those of the 
linear speedup.  Consider the reasons for this 
matter.
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Parallel Hardware Configuration (1)

• Memory Oriented Classification
– Shared Memory Parallel (SMP) Model

• Sequent Symmetry, etc
– Distributed Memory Parallel (DMP) Model

[inc. Distributed SM]
• Thinking Machines CM5, nCUBE, etc

– Non-Uniformly-Memory-Access (NUMA) Model
• SGI Origin, NEC Cenju, etc.

– Cache-Only-Memory-Architecture (COMA) Model
• KSR
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SMP Model
Shared Memory Parallel Model

• The shared memory becomes a bottleneck for the 
scalability
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Interconnection Network or Bus

Shared Memory

DMP Model
Distributed Memory Parallel Model
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Interconnection Network or Bus

M0 M1 Mn

Local Memories

• This configuration has large scalability, but requires 
programming skills for messages

Message Passing
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NUMA Model
Non-Uniformly-Memory-Access Model
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• A combination of SMP and DMP

Parallel Hardware Configuration (2)

• Disk Oriented Classification
– Shared Everything

• All disks and memory modules are shared by the 
processors

• For less than 64 disks
– Shared Disks

• Each processor can directory access any disk, but each 
processor has its own private memory

– Shared Nothing
• Each processor has its own private memory and 

dedicated disk drives
• For more than 1024 disks
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Shared Everything
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• The shared memory and shared disks becomes 
bottlenecks

Shared Disks
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• The shared disks still be bottlenecks
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Shared Nothing
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Interconnection Network or Bus

• This configuration has large scalability

Local Disks

Communication Cost in Interconnection 
Network or Bus

• Focus on bandwidth requirement
• Notations:

– Communication Cost for Memory Access: Cm

– Communication Cost for Disk Access: Cd

– Access Ratio for Local Memory: lm
– Access Ratio for Local Disks: ld

• Bandwidth for each the configurations:
– Shared Everything: CSE = Cm + Cd

– Shared Disks: CSＤ =  (1- lm) ｘ Cm + Cd

– Shared Nothing: CSＮ = (1- lm) ｘ Cm + (1- lｄ) ｘ Cd
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Comparison on 
Communication Cost

• When lm, lｄ, 1 
 CSE >> CSＮ

• Usually Cｍ >>  Cｄ

 CSE - CSＤ > CSＤ - CSＮ

• In DE Processing, Cd tend to be large 
 CSＤ >> CSＮ
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Estimation (1)
• Suppose:

– The number of processors = 100
– Memory access unit = 4B/word
– Memory access frequency = 100,000 word/s
– Disk page size = 8KB/page
– Disk access frequency = 1 page/s
– Access ratio for local memory lm = 95%
– Access ratio for local disk ld = 90%

• Calculate CSE , CSＤ , CSＮ

• Consider a case of the disk access frequency becomes 
10 page/s

2020/7/20 Advance Data Engineering (©H.Yokota) 202



2020/7/20

Advanced Data Engineering (©H. Yokota) 10

Estimation (2)
• Memory access costs Cm :

Memory access unit x Memory access frequency x processor #
= 4B/word x 100,000 word/s x 100 = 40MB/s

• Disk access costs Cd :
Disk page size x Disk access frequency x processor#
= 8KB/page x  1 page/s x 100 = 0.8MB/s

• CSE , CSＤ , CSＮ

– CSE = Cm + Cd =40 + 0.8 = 40.8MB/s
– CSＤ =  (1- lm) ｘ Cm + Cd = 0.05x40 + 0.8 = 2.8MB/s
– CSＮ = (1- lm) ｘ Cm + (1- lｄ) ｘ Cd = 0.05 x 40 + 0.1 x 0.8 = 2.08 MB/s

• When the disk access frequency = 10 page/s
– CSE = Cm + Cd =40 + 8 = 48MB/s
– CSＤ =  (1- lm) ｘ Cm + Cd = 0.05x40 + 8 = 10MB/s
– CSＮ = (1- lm) ｘ Cm + (1- lｄ) ｘ Cd = 0.05 x 40 + 0.1 x 8 = 2.8 MB/s
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small diff

large diff

large diff

Question (8-2)

• Estimate the cost of NUMA with Disk configuration CNM
for the Global and Local Networks with the following 
assumptions (c.f. next page figure) :
– The number of processors in a cluster = 10
– The number of clusters = 10
– A disk is connected to each cluster
– Memory access unit = 4B/word
– Memory access frequency = 100,000 word/s
– Disk page size = 8KB/page
– Disk access frequency = 1 page/s and 10 page/s
– Access ratio for memories in local CPU lm1 = 90%
– Access ratio for memories in local cluster lm2 = 5%
– Access ratio for disks in local cluster ld = 90% 
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NUMA Model with Disk
Non-Uniformly-Memory-Access Model
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Layers of Parallel DＢ Operations
• Inter-Transaction (Inter-Query) Parallelism

– Executing Multiple Transaction Simultaneously 
with Concurrency Control

• Intra-Transaction (Intra-Query) Parallelism
– Inter-Operation Parallelism

• Simultaneous Execution of nodes in a Query Tree
• Pipelined Parallelism (Following Data Flow)

– Intra-Operation Parallelism
• Partitioned Parallelism
• Parallel Algorithm for the operation
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Inter-Query Parallelism
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• Executing multiple queries (transactions)

Intra-Query Parallelism 
Inter-Operation Parallelism: Simultaneous Execution
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Intra-Query Parallelism 
Inter-Operation Parallelism: Pipeline
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Parallel Relational Operations
• Intra Operation Parallelism
• Parallelizing Relational Operations

– Selection / Projection Operations
• Parallel Scan

– Join / Aggregate Functions (with Group-By) 
Operations

• Dedicated Parallel Algorithms

• The Way of Parallel Scan
– Depend on Tuple Placement
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Tuple Placement
• Horizontal Partition (Fragmentation)

– Each Processing Element has a subset of tuples
• Round-Robin Partitioning
• Hash Partitioning
• Value Range Partitioning

• Vertical Partition (Fragmentation)
– Each Processing Element has a subset of attributes 

of all tuples
• Called as Transposed Files

• Duplication
– Each Processing Element has all whole tuples
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Horizontal Partition
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D1 D2 D3 D4

Subset of tuples having all attributes

Vertical Partition
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D1 D2 D3 D4

All tuples having  a subset of attributes
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Duplication
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D1 D2 D3 D4

All tuples having all attributes

Parallel Scan for 
Duplicate Placement

• Query Decomposition
– Original Query

SELECT  Product-Number, Price
FROM   Product WHERE   Price > 170,000

– Decomposed Query
SELECT  Product-Number, Price
FROM    Product WHERE   Price > 170,000
AND   Tuple-ID >= (i-1)*D AND  Tuple-ID < i*D

– D = {R}/n
– Usually, Tuple-ID cannot be treated by user
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Query Decomposition

• Assignment for one processing element
– Comparison: {R}/n, 
– I/O: |R|/n

• No Inter-Query Parallelism
• Disk Utilization (Total)

– Need n times Disk Space
• Update Cost

– Update All Copies (Need Synchronization)
• Query Decomposition can also be used for Shared 

Disk
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Round-Robin Partition
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Round-Robin Partitioning
• Advantages

– No skew in data distribution
• Ideally, at most one object difference

• Disadvantages
– Cannot determine disk storing target data

• Every disk has to participate for each retrieval 
operation
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Hash Partition
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Hash Partitioning
• Advantages

– Rather small skew in data distribution
– Can determine disk for strict match queries

• Disadvantages
– Cannot treat range queries
– Cannot treat I/O clustering
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Value Range Partition
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Value Range Partitioning

• Advantages
– Can determine which disk should contain object 

data
– Can treat range queries
– Can cluster I/O operations for near values

• Disadvantages
– Potentially skew the distribution of data

• Even if the initial data allocation has no skew
• Fixed criteria for partitioning cause skew

2020/7/20 Advance Data Engineering (©H.Yokota) 223

Question (8-3)

• Estimate costs (rough execution time) for 
Horizontal Partition

• Estimate costs (rough execution time) for 
Vertical Partition
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Assumptions for Question (8-2)
• Disk transfer bandwidth: 10MB/s
• Cardinality of a relation R: 100,000
• Total length of a tuple: 1,000B
• Search condition:

a) Attribute X = 123 (4B integer)
b) Attribute Y = 456 (4B integer)

• The number of tuples satisfying condition a: 1,000
• The number of tuples satisfying condition b: 500
• The number of tuples satisfying both condition: 100
• The size for TID: 4B
• Attributes included in output: X and Y
• The number of processors: 2
• Network bandwidth: 10MB/s
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Horizontal Partition
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Index for Parallel Databases

• Many indexing methods have been proposed
– At first, hash based approach cannot handle range queries
– Some distributed hash table based methods capable of 

handling range queries have been proposed recently

• Distributed Hash Table(DHT) based methods
– P-Tree, P-Ring

• Skip List based methods
– Skip Graph

• B-tree based methods
– Fat-Btree, a+Btree,  RP*, …
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P-Ring [Machanavajihala et al. 2007]
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• Based on Hash Table
– Managing the key space distributed on nodes in a ring

• Each node has a table so called Hierarchical Ring(HR)
– It keeps information of O neighbors in OL-1 distance ( O: order,  L: Leverl)
– In the under example, order is 2,  Level 1 has 21-1 = 1 distance, and Lever 2 

has 22-1= 2 distance

Order

Advance Data Engineering (©H.Yokota)
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SkipGraph [Aspnes and Shah, 2007]

• Based on layered lists
• Each node has random bit sequence called Membership Vector（MV）

• The n-th bit from MSB in MV corresponds to link connections in 
LEVEL n.
– Ex: since P1(MV : 00) and P3(MV : 01) have 1 in MSB, both of them have 

pointers in LEVEL 1
– Neighboring nodes are linked in  LEVEL 0
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Fat-Btree
• A parallel B-tree structure we proposed in ICDE’99
• Each PE has a subtree of the whole B-tree

• The leaf pages of the B+-tree are distributed among PEs
• The root node and intermediate index nodes between the root 

node and leaf nodes allocated to the PE are contained
• The leaf pages are not duplicated

• The leaf pages have a high update frequency
• The nodes with a higher update frequency need a lower cost of 

update
• The root page and the index pages are only required for 

locating the leaf pages stored in each PE
• Any node can accept access requests for data stored in any node 

(highly parallel access)
• Fat-Btree provides

broad bandwidth access with low update overhead

2020/7/20 Advance Data Engineering (©H.Yokota) 230



2020/7/20

Advanced Data Engineering (©H. Yokota) 24

An Example of the Fat-Btree
The root updated 

infrequently has copies to 
enable parallel access

Leaves have no copies to 
reduce synchronization costs 

for frequent updates

Data

root

PE0 PE1 PE2 PE3
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Advantages of Fat-Btree (vs. DHT)

• Low costs for accessing the next data
– In many cases, continuous data are stored in very 

close location in a storage device by Fat-Btree
• Efficient node determination for queries

– Nodes concerned in the queries are determined in 
early stage by traversing upper layer nodes of the Fat-
Btree.

• It is especially effective for range queries

• Efficient load balance
– Data migration for balancing load can be done locally 

in Fat-Btree and transparent to clients
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Parallel Scan 
for Horizontal Partition (1)

• Value Range or Hash Partitioning
– For the Partitioned Attribute

• No Intra-Operation Parallelism
• Inter-Operation Parallelism (Inter-Query)

– For the Other Attributes
• No Inter-Operation Parallelism
• Intra-Operation Parallelism 
• Assignment for one processing element

– Comparison: {R}/n
– I/O: |R|/n
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Parallel Scan 
for Horizontal Partition (2)

• Round-Robin Partitioning
– No Inter-Operation Parallelism
– Intra-Operation Parallelism 
– Assignment for one processing element

• Comparison: {R}/n
• I/O: |R|/n

• Disk Utilization (Total)
– Same as a Single Disk

• Update Cost
– Update Can be done in Parallel
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Parallel Scan 
for Vertical Partition (1)

• Transposed File
– A tuple is divided into sub-tuples containing some 

attributes
• Each sub-tuple has the same Tuple-Identifier  TID

– Tuples can be reconstructed by TID-Join
• TID-Join: Eq-Join of same TID

– Merit:
• Decrease Disk I/O for queries requiring small number of attributes

– Demerit:
• Cost for TID-Join (Especially for large number of attributes)
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Vertical Partition
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D1 D2 D3 D4

TIDs

Partitioned attributes have TIDs to reconstruct original relation
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Parallel Scan 
for Vertical Partition (2)

• Historical Background
– The concept of vertical partitioning is NOT new

• CPU Performance for TID-Join was a bottleneck
– Vertical Partitioning had no effect for speed-up

– The bottleneck move from CPU to Disk I/O
• Less I/O by vertical partitioning becomes effective

• Partitioning Strategy
– Depend on Queries

• If the queries have the same pattern, vertical partitioning 
is a good means
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