
2020/7/20

Advanced Data Engineering (©H. Yokota) 1

Goals of Parallel Processing (1)
• To improve performance

– Speedup
• Shorten the execution time for the same size of problem

– Scaleup
• Increase the size of problem which can be treated during

the same time period
– (Increase the amount of data in databases)

• To improve reliability
– Redundant configuration for fault tolerant

• Data/Process Replication (cf. Data Distribution)
– One of main issues of transaction processing

2020/7/20 Advance Data Engineering (©H.Yokota) 185

Goals of Parallel Processing (2)

• What are others?
– Functionality?

• Can be simulated (emulated) in a single processor

– Easy to use? (or to maintenance)
• in distributed environment

– It is basically a matter of performance or reliability
– The other aspects can also be simulated

– ???

2020/7/20 Advance Data Engineering (©H.Yokota) 186

2020/7/20

Advanced Data Engineering (©H. Yokota) 2

Speedup
• A parallel process includes

portions which cannot be
executed in parallel but
sequential (eg. Initialization)

• We divide execution time
into two parts: executed in
parallel and sequential

• We denote the ratio of
parallel by using p

2020/7/20 Advance Data Engineering (©H.Yokota) 187

x
p

p

x
part

part

partpart
ExecTime

ExecTime

Speedup

para

seq

paraseq

para

seq

1

1

Linear Speedup

2020/7/20 Advance Data Engineering (©H.Yokota) 188

x

p
p

x

part
part

partpart
ExecTime

ExecTime

Speedup

para

seq

paraseq

para

seq

1

1
0

20

40

60

80

100

0 20 40 60 80 100

x: Hardware Size

S
p
e
e
d
u
p

1 0.999 0.99 0.9p:

2020/7/20

Advanced Data Engineering (©H. Yokota) 3

Scaleup

• When each processor executes completely
independent process, x times number of processes
are completed during a unit time

• The communication overhead decrease the number
of completed processes, which is proportional to the
size of system, but the scaleup still has linearity

2020/7/20 Advance Data Engineering (©H.Yokota) 189

Linear Scaleup

2020/7/20 Advance Data Engineering (©H.Yokota) 190

0

20

40

60

80

100

0 20 40 60 80 100

x: Hardware Size

S
c
a
le

u
p

0 0.2 0.4O:

o

x

Throughput

Throughput

Scaleup

seq

para

1
x : Hardware Size
o : Parallelization

Overhead [O(x)]
e.g. communication cost

2020/7/20

Advanced Data Engineering (©H. Yokota) 4

Question (8-1)

• In the case of parallel processing in data
engineering, the realizations of the linear
scaleup tends to be easier than those of the
linear speedup. Consider the reasons for this
matter.

2020/7/20 Advance Data Engineering (©H.Yokota) 191

Parallel Hardware Configuration (1)

• Memory Oriented Classification
– Shared Memory Parallel (SMP) Model

• Sequent Symmetry, etc
– Distributed Memory Parallel (DMP) Model

[inc. Distributed SM]
• Thinking Machines CM5, nCUBE, etc

– Non-Uniformly-Memory-Access (NUMA) Model
• SGI Origin, NEC Cenju, etc.

– Cache-Only-Memory-Architecture (COMA) Model
• KSR

2020/7/20 Advance Data Engineering (©H.Yokota) 192

2020/7/20

Advanced Data Engineering (©H. Yokota) 5

SMP Model
Shared Memory Parallel Model

• The shared memory becomes a bottleneck for the
scalability

2020/7/20 Advance Data Engineering (©H.Yokota) 193

P0 P1 Pn…

Interconnection Network or Bus

Shared Memory

DMP Model
Distributed Memory Parallel Model

2020/7/20 Advance Data Engineering (©H.Yokota) 194

P0 P1 Pn…

Interconnection Network or Bus

M0 M1 Mn

Local Memories

• This configuration has large scalability, but requires
programming skills for messages

Message Passing

2020/7/20

Advanced Data Engineering (©H. Yokota) 6

NUMA Model
Non-Uniformly-Memory-Access Model

2020/7/20 Advance Data Engineering (©H.Yokota) 195

P00

…

Global Network or Bus

S
ha

re
d

M
e

m
or

y 0

L
oc

al
 N

e
tw

o
rk

 o
r

B
us

P01

P0m

Pn0

S
ha

re
d

M
e

m
o

ry
n

L
oc

al
 N

e
tw

o
rk

 o
r

B
us

Pn1

Pnm

• A combination of SMP and DMP

Parallel Hardware Configuration (2)

• Disk Oriented Classification
– Shared Everything

• All disks and memory modules are shared by the
processors

• For less than 64 disks
– Shared Disks

• Each processor can directory access any disk, but each
processor has its own private memory

– Shared Nothing
• Each processor has its own private memory and

dedicated disk drives
• For more than 1024 disks

2020/7/20 Advance Data Engineering (©H.Yokota) 196

2020/7/20

Advanced Data Engineering (©H. Yokota) 7

Shared Everything

2020/7/20 Advance Data Engineering (©H.Yokota) 197

P0 P1 Pn…

Interconnection Network or Bus

Shared Memory D0 D1 Dm
…

Shared Disks

• The shared memory and shared disks becomes
bottlenecks

Shared Disks

2020/7/20 Advance Data Engineering (©H.Yokota) 198

Shared Disks

D0 D1 Dm
…

P0 P1 Pn…

Interconnection Network or Bus

M0 M1 Mn

• The shared disks still be bottlenecks

2020/7/20

Advanced Data Engineering (©H. Yokota) 8

Shared Nothing

2020/7/20 Advance Data Engineering (©H.Yokota) 199

D0 D1 Dn
…

P0 P1 Pn…

M0 M1 Mn

Interconnection Network or Bus

• This configuration has large scalability

Local Disks

Communication Cost in Interconnection
Network or Bus

• Focus on bandwidth requirement
• Notations:

– Communication Cost for Memory Access: Cm

– Communication Cost for Disk Access: Cd

– Access Ratio for Local Memory: lm
– Access Ratio for Local Disks: ld

• Bandwidth for each the configurations:
– Shared Everything: CSE = Cm + Cd

– Shared Disks: CSＤ = (1- lm) ｘ Cm + Cd

– Shared Nothing: CSＮ = (1- lm) ｘ Cm + (1- lｄ) ｘ Cd
2020/7/20 Advance Data Engineering (©H.Yokota) 200

2020/7/20

Advanced Data Engineering (©H. Yokota) 9

Comparison on
Communication Cost

• When lm, lｄ, 1
 CSE >> CSＮ

• Usually Cｍ >> Cｄ

 CSE - CSＤ > CSＤ - CSＮ

• In DE Processing, Cd tend to be large
 CSＤ >> CSＮ

2020/7/20 Advance Data Engineering (©H.Yokota) 201

Estimation (1)
• Suppose:

– The number of processors = 100
– Memory access unit = 4B/word
– Memory access frequency = 100,000 word/s
– Disk page size = 8KB/page
– Disk access frequency = 1 page/s
– Access ratio for local memory lm = 95%
– Access ratio for local disk ld = 90%

• Calculate CSE , CSＤ , CSＮ

• Consider a case of the disk access frequency becomes
10 page/s

2020/7/20 Advance Data Engineering (©H.Yokota) 202

2020/7/20

Advanced Data Engineering (©H. Yokota) 10

Estimation (2)
• Memory access costs Cm :

Memory access unit x Memory access frequency x processor #
= 4B/word x 100,000 word/s x 100 = 40MB/s

• Disk access costs Cd :
Disk page size x Disk access frequency x processor#
= 8KB/page x 1 page/s x 100 = 0.8MB/s

• CSE , CSＤ , CSＮ

– CSE = Cm + Cd =40 + 0.8 = 40.8MB/s
– CSＤ = (1- lm) ｘ Cm + Cd = 0.05x40 + 0.8 = 2.8MB/s
– CSＮ = (1- lm) ｘ Cm + (1- lｄ) ｘ Cd = 0.05 x 40 + 0.1 x 0.8 = 2.08 MB/s

• When the disk access frequency = 10 page/s
– CSE = Cm + Cd =40 + 8 = 48MB/s
– CSＤ = (1- lm) ｘ Cm + Cd = 0.05x40 + 8 = 10MB/s
– CSＮ = (1- lm) ｘ Cm + (1- lｄ) ｘ Cd = 0.05 x 40 + 0.1 x 8 = 2.8 MB/s

2020/7/20 Advance Data Engineering (©H.Yokota) 203

small diff

large diff

large diff

Question (8-2)

• Estimate the cost of NUMA with Disk configuration CNM
for the Global and Local Networks with the following
assumptions (c.f. next page figure) :
– The number of processors in a cluster = 10
– The number of clusters = 10
– A disk is connected to each cluster
– Memory access unit = 4B/word
– Memory access frequency = 100,000 word/s
– Disk page size = 8KB/page
– Disk access frequency = 1 page/s and 10 page/s
– Access ratio for memories in local CPU lm1 = 90%
– Access ratio for memories in local cluster lm2 = 5%
– Access ratio for disks in local cluster ld = 90%

2020/7/20 Advance Data Engineering (©H.Yokota) 204

2020/7/20

Advanced Data Engineering (©H. Yokota) 11

NUMA Model with Disk
Non-Uniformly-Memory-Access Model

2020/7/20 Advance Data Engineering (©H.Yokota) 205

P00

…

Global Network or Bus

S
ha

re
d

M
e

m
or

y 0

L
oc

al
 N

e
tw

o
rk

 o
r

B
us

P01

P09

P90

S
ha

re
d

M
em

o
ry

9

L
oc

al
 N

e
tw

o
rk

 o
r

B
us

P91

P99

D0 D9

: :

M00

M01

M09

M90

M91

M99

Layers of Parallel DＢ Operations
• Inter-Transaction (Inter-Query) Parallelism

– Executing Multiple Transaction Simultaneously
with Concurrency Control

• Intra-Transaction (Intra-Query) Parallelism
– Inter-Operation Parallelism

• Simultaneous Execution of nodes in a Query Tree
• Pipelined Parallelism (Following Data Flow)

– Intra-Operation Parallelism
• Partitioned Parallelism
• Parallel Algorithm for the operation

2020/7/20 Advance Data Engineering (©H.Yokota) 206

2020/7/20

Advanced Data Engineering (©H. Yokota) 12

Inter-Query Parallelism

2020/7/20 Advance Data Engineering (©H.Yokota) 207

Other Queries

s

U

s s s

• Executing multiple queries (transactions)

Intra-Query Parallelism
Inter-Operation Parallelism: Simultaneous Execution

2020/7/20 Advance Data Engineering (©H.Yokota) 208

s

U

s s s

• Parallel execution of multiple operations in a tree

2020/7/20

Advanced Data Engineering (©H. Yokota) 13

Intra-Query Parallelism
Inter-Operation Parallelism: Pipeline

2020/7/20 Advance Data Engineering (©H.Yokota) 209

s

U

s s s

Intra-Operation Parallelism

2020/7/20 Advance Data Engineering (©H.Yokota) 210

s

U

s s s

2020/7/20

Advanced Data Engineering (©H. Yokota) 14

Parallel Relational Operations
• Intra Operation Parallelism
• Parallelizing Relational Operations

– Selection / Projection Operations
• Parallel Scan

– Join / Aggregate Functions (with Group-By)
Operations

• Dedicated Parallel Algorithms

• The Way of Parallel Scan
– Depend on Tuple Placement

2020/7/20 Advance Data Engineering (©H.Yokota) 211

Tuple Placement
• Horizontal Partition (Fragmentation)

– Each Processing Element has a subset of tuples
• Round-Robin Partitioning
• Hash Partitioning
• Value Range Partitioning

• Vertical Partition (Fragmentation)
– Each Processing Element has a subset of attributes

of all tuples
• Called as Transposed Files

• Duplication
– Each Processing Element has all whole tuples

2020/7/20 Advance Data Engineering (©H.Yokota) 212

2020/7/20

Advanced Data Engineering (©H. Yokota) 15

Horizontal Partition

2020/7/20 Advance Data Engineering (©H.Yokota) 213

D1 D2 D3 D4

Subset of tuples having all attributes

Vertical Partition

2020/7/20 Advance Data Engineering (©H.Yokota) 214

D1 D2 D3 D4

All tuples having a subset of attributes

2020/7/20

Advanced Data Engineering (©H. Yokota) 16

Duplication

2020/7/20 Advance Data Engineering (©H.Yokota) 215

D1 D2 D3 D4

All tuples having all attributes

Parallel Scan for
Duplicate Placement

• Query Decomposition
– Original Query

SELECT Product-Number, Price
FROM Product WHERE Price > 170,000

– Decomposed Query
SELECT Product-Number, Price
FROM Product WHERE Price > 170,000
AND Tuple-ID >= (i-1)*D AND Tuple-ID < i*D

– D = {R}/n
– Usually, Tuple-ID cannot be treated by user

2020/7/20 Advance Data Engineering (©H.Yokota) 216

2020/7/20

Advanced Data Engineering (©H. Yokota) 17

Query Decomposition

• Assignment for one processing element
– Comparison: {R}/n,
– I/O: |R|/n

• No Inter-Query Parallelism
• Disk Utilization (Total)

– Need n times Disk Space
• Update Cost

– Update All Copies (Need Synchronization)
• Query Decomposition can also be used for Shared

Disk

2020/7/20 Advance Data Engineering (©H.Yokota) 217

Round-Robin Partition

2020/7/20 Advance Data Engineering (©H.Yokota) 218

25

37

2

18

21

14

D1 D2 D3 D4

33

5

Partitioned Attribute

SELECT *
FROM R
WHERE Att3>22
AND Att3 < 28

SELECT *
FROM R
WHERE Att3=21

2020/7/20

Advanced Data Engineering (©H. Yokota) 18

Round-Robin Partitioning
• Advantages

– No skew in data distribution
• Ideally, at most one object difference

• Disadvantages
– Cannot determine disk storing target data

• Every disk has to participate for each retrieval
operation

2020/7/20 Advance Data Engineering (©H.Yokota) 219

Hash Partition

2020/7/20 Advance Data Engineering (©H.Yokota) 220

Hash Function

2

5

14

18

21

26

D1 D2 D3 D4

33

37

Partitioned Attribute

SELECT *
FROM R
WHERE Att3>22
AND Att3 < 28

SELECT *
FROM R
WHERE Att3=21

2020/7/20

Advanced Data Engineering (©H. Yokota) 19

Hash Partitioning
• Advantages

– Rather small skew in data distribution
– Can determine disk for strict match queries

• Disadvantages
– Cannot treat range queries
– Cannot treat I/O clustering

2020/7/20 Advance Data Engineering (©H.Yokota) 221

Value Range Partition

2020/7/20 Advance Data Engineering (©H.Yokota) 222

f 2

x 5

i 14

g 18

y 21

a 26

D1 D2 D3 D4

d 33

p 37

0 - 9 10 - 19 20 - 29 30 - 39

Partitioned Attribute

Att1 Att2 Att3 Att4

SELECT *
FROM R
WHERE Att1=“g”

SELECT *
FROM R
WHERE Att3>22
AND Att3 < 28

2020/7/20

Advanced Data Engineering (©H. Yokota) 20

Value Range Partitioning

• Advantages
– Can determine which disk should contain object

data
– Can treat range queries
– Can cluster I/O operations for near values

• Disadvantages
– Potentially skew the distribution of data

• Even if the initial data allocation has no skew
• Fixed criteria for partitioning cause skew

2020/7/20 Advance Data Engineering (©H.Yokota) 223

Question (8-3)

• Estimate costs (rough execution time) for
Horizontal Partition

• Estimate costs (rough execution time) for
Vertical Partition

2020/7/20 Advance Data Engineering (©H.Yokota) 224

2020/7/20

Advanced Data Engineering (©H. Yokota) 21

Assumptions for Question (8-2)
• Disk transfer bandwidth: 10MB/s
• Cardinality of a relation R: 100,000
• Total length of a tuple: 1,000B
• Search condition:

a) Attribute X = 123 (4B integer)
b) Attribute Y = 456 (4B integer)

• The number of tuples satisfying condition a: 1,000
• The number of tuples satisfying condition b: 500
• The number of tuples satisfying both condition: 100
• The size for TID: 4B
• Attributes included in output: X and Y
• The number of processors: 2
• Network bandwidth: 10MB/s

2020/7/20 Advance Data Engineering (©H.Yokota) 225

Horizontal Partition

2020/7/20 Advance Data Engineering (©H.Yokota) 226

X Y X Y

50,000

1000B 1000B

Vertical Partition

TID X TID

100,000

4B 4B

・・・

TID Y TID

4B 4B

・・・
100,000

50,000

2020/7/20

Advanced Data Engineering (©H. Yokota) 22

Index for Parallel Databases

• Many indexing methods have been proposed
– At first, hash based approach cannot handle range queries
– Some distributed hash table based methods capable of

handling range queries have been proposed recently

• Distributed Hash Table(DHT) based methods
– P-Tree, P-Ring

• Skip List based methods
– Skip Graph

• B-tree based methods
– Fat-Btree, a+Btree, RP*, …

2020/7/20 Advance Data Engineering (©H.Yokota) 227

P-Ring [Machanavajihala et al. 2007]

2020/7/20 228

• Based on Hash Table
– Managing the key space distributed on nodes in a ring

• Each node has a table so called Hierarchical Ring(HR)
– It keeps information of O neighbors in OL-1 distance (O: order, L: Leverl)
– In the under example, order is 2, Level 1 has 21-1 = 1 distance, and Lever 2

has 22-1= 2 distance

Order

Advance Data Engineering (©H.Yokota)

2020/7/20

Advanced Data Engineering (©H. Yokota) 23

SkipGraph [Aspnes and Shah, 2007]

• Based on layered lists
• Each node has random bit sequence called Membership Vector（MV）

• The n-th bit from MSB in MV corresponds to link connections in
LEVEL n.
– Ex: since P1(MV : 00) and P3(MV : 01) have 1 in MSB, both of them have

pointers in LEVEL 1
– Neighboring nodes are linked in LEVEL 0

2020/7/20 229

Level1

Level0

P1 P2 P3 P4 P5

2015

10

5

5

10

15 20

25

25

[6,8]保持データ [11,13] [16,18] [21,23] [26,28]

00 10 01 00 11MV

Level2 5 20

Advance Data Engineering (©H.Yokota)

Fat-Btree
• A parallel B-tree structure we proposed in ICDE’99
• Each PE has a subtree of the whole B-tree

• The leaf pages of the B+-tree are distributed among PEs
• The root node and intermediate index nodes between the root

node and leaf nodes allocated to the PE are contained
• The leaf pages are not duplicated

• The leaf pages have a high update frequency
• The nodes with a higher update frequency need a lower cost of

update
• The root page and the index pages are only required for

locating the leaf pages stored in each PE
• Any node can accept access requests for data stored in any node

(highly parallel access)
• Fat-Btree provides

broad bandwidth access with low update overhead

2020/7/20 Advance Data Engineering (©H.Yokota) 230

2020/7/20

Advanced Data Engineering (©H. Yokota) 24

An Example of the Fat-Btree
The root updated

infrequently has copies to
enable parallel access

Leaves have no copies to
reduce synchronization costs

for frequent updates

Data

root

PE0 PE1 PE2 PE3
2020/7/20 Advance Data Engineering (©H.Yokota) 231

Advantages of Fat-Btree (vs. DHT)

• Low costs for accessing the next data
– In many cases, continuous data are stored in very

close location in a storage device by Fat-Btree
• Efficient node determination for queries

– Nodes concerned in the queries are determined in
early stage by traversing upper layer nodes of the Fat-
Btree.

• It is especially effective for range queries

• Efficient load balance
– Data migration for balancing load can be done locally

in Fat-Btree and transparent to clients

2020/7/20 Advance Data Engineering (©H.Yokota) 232

2020/7/20

Advanced Data Engineering (©H. Yokota) 25

Parallel Scan
for Horizontal Partition (1)

• Value Range or Hash Partitioning
– For the Partitioned Attribute

• No Intra-Operation Parallelism
• Inter-Operation Parallelism (Inter-Query)

– For the Other Attributes
• No Inter-Operation Parallelism
• Intra-Operation Parallelism
• Assignment for one processing element

– Comparison: {R}/n
– I/O: |R|/n

2020/7/20 Advance Data Engineering (©H.Yokota) 233

Parallel Scan
for Horizontal Partition (2)

• Round-Robin Partitioning
– No Inter-Operation Parallelism
– Intra-Operation Parallelism
– Assignment for one processing element

• Comparison: {R}/n
• I/O: |R|/n

• Disk Utilization (Total)
– Same as a Single Disk

• Update Cost
– Update Can be done in Parallel

2020/7/20 Advance Data Engineering (©H.Yokota) 234

2020/7/20

Advanced Data Engineering (©H. Yokota) 26

Parallel Scan
for Vertical Partition (1)

• Transposed File
– A tuple is divided into sub-tuples containing some

attributes
• Each sub-tuple has the same Tuple-Identifier TID

– Tuples can be reconstructed by TID-Join
• TID-Join: Eq-Join of same TID

– Merit:
• Decrease Disk I/O for queries requiring small number of attributes

– Demerit:
• Cost for TID-Join (Especially for large number of attributes)

2020/7/20 Advance Data Engineering (©H.Yokota) 235

Vertical Partition

2020/7/20 Advance Data Engineering (©H.Yokota) 236

D1 D2 D3 D4

TIDs

Partitioned attributes have TIDs to reconstruct original relation

2020/7/20

Advanced Data Engineering (©H. Yokota) 27

Parallel Scan
for Vertical Partition (2)

• Historical Background
– The concept of vertical partitioning is NOT new

• CPU Performance for TID-Join was a bottleneck
– Vertical Partitioning had no effect for speed-up

– The bottleneck move from CPU to Disk I/O
• Less I/O by vertical partitioning becomes effective

• Partitioning Strategy
– Depend on Queries

• If the queries have the same pattern, vertical partitioning
is a good means

2020/7/20 Advance Data Engineering (©H.Yokota) 237

