経営経済のための 最適化理論特講

複数財オークションのアルゴリズムと 離散最適化

第12回 均衡を近似的に求めるアルゴリズム

塩浦昭義 東京工業大学 経営工学系 shioura.a.aa@m.titech.ac.jp

均衡配分の計算:評価値が既知の場合

- ・以前示した定理より、総評価値最大の財の配分は均衡配分
- ・総評価値最大配分の計算: 増加路を使ったアルゴリズムを (大幅に)一般化した方法により可能

均衡配分の計算:評価値が既知の場合

ステップO: $X_1 = X_2 = \cdots = X_m = \emptyset$ とおく.

ステップ1: $N \setminus \bigcup_{i=1}^m X_i = \emptyset$ ならば終了.

現在の配分 $(X_1, X_2, ..., X_m)$ は総評価値最大の均衡配分.

ステップ2:配分に対する以下の更新方法で,

総評価値が最大になるものを求める.

- X_{i_1} に, ある $j_1 \in N \setminus \bigcup_{i=1}^m X_i$ を追加, ある $j_2 \in X_{i_1}$ を削除.
- X_{i_2} に j_2 を追加, ある $j_3 \in X_{i_2}$ を削除.

. . .

- $X_{i_{k-1}}$ に j_{k-1} を追加, ある $j_k \in X_{i_{k-1}}$ を削除.
- $X_{i_{\nu}}$ に j_{k} を追加.

ステップ3:上記の更新方法で配分を更新.ステップ1へ.

更新方法には, 厳密には 細かい条件が 必要

反復オークション

反復オークションのアルゴリズム

- その1:均衡を近似的に計算 [Kelso-Crawford 1982]
 - Bertsekas (1979), Crawford, Knoer (1981) の一般化
 - 単調に価格を増加,均衡配分(および均衡価格の近似値)を 求める
 - 各反復で、入札者の利得最大の財集合ひとつの情報が必要
 - ・価格増加のルールは簡単: 希望が重複→価格を増やす
- その2:均衡を厳密に計算 [Gul-Stacchetti 2000]
 - Demange, Gale, Sotomayor (1986)の一般化
 - ・単調に価格を増加,均衡価格(および均衡配分)を求める
 - 各反復で、入札者の利得最大の財集合すべての情報が必要
 - 価格増加のルールは複雑:
 - ・得た情報を使い、価格を増やす財をうまく選ぶ。

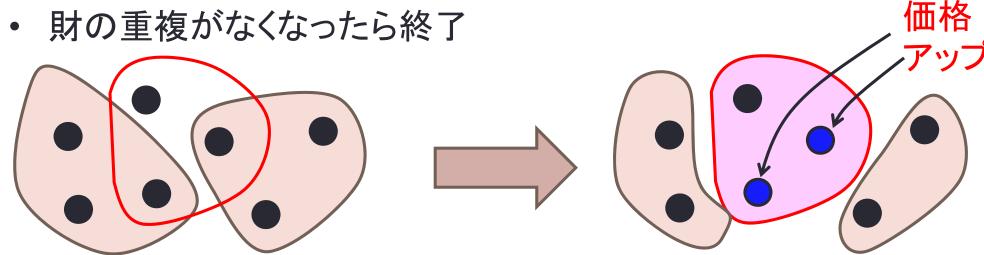
均衡を近似的に計算するアルゴリズム

アルゴリズムの概要

Kelso-Crawford (1982) が提案(Blumrosen-Nisan(2007)も参照)

アルゴリズムの流れ

- 各入札者は順番に、現在の価格の下で(ほぼ)利得最大の財集合を一つ選ぶ
- ・選んだ財集合に、他の入札者が既に選んだ財が含まれる →重複した財を奪い、価格を上げる
- ・ 財を取られた入札者: 利得最大の財集合を選び直す



均衡を近似的に計算:変数と出力

δ: アルゴリズムのパラメータ, > 0

変数: p(j) --- 財 j の暫定価格, δの整数倍

 S_i --- 入札者 i に割り当ての財集合, 常に重複無し

出力: δ均衡 --- 以下の条件を満たす

財の配分 $S_1, ..., S_m$ と価格p(1), ..., p(n)

(条件1) 各入札者 i に対し, S_i は価格 p' において利得最大

$$p'(j) = \begin{cases} p(j) & (j \in S_i) \\ p(j) + \delta & (j \in N \setminus S_i) \end{cases}$$

(価格 p において、ほぼ利得最大の財集合が割り当て)

(条件2) $p(j) = 0 \ (\forall j \in N \setminus \bigcup_{i \in B} S_i)$

(未割り当ての財の価格=O)

均衡を近似的に計算:アルゴリズム

ステップO: 各財 j に対し p(j) = 0. 各入札者 i に対し S_i=Ø.

ステップ1: 各入札者 i に対し, 価格 p' での利得最大の

財集合で、S_iを含むものを D_i とおく.

$$p'(j) = \begin{cases} p(j) & (j \in S_i) \\ p(j) + \delta & (j \in N \setminus S_i) \end{cases}$$

ステップ2: 各入札者 i に対し S_i = D_i → δ均衡(終了)

ステップ3: S_i ≠ D_i なる入札者 i を選ぶ.

ステップ4: 各 $j \in D_i \setminus S_i$ に対し, p(j):=p(j) + δ.

S_i を D_i に置き換える.

他の入札者 h に対し、 S_h と D_i に重複があれば、

それを削除.

ステップ1へ戻る.

均衡を近似的に計算:詳しいアルゴリズム

ステップO: 各財 j に対し p(j) = 0, 各入札者 i に対し S_i=Ø,

B'=B とおく.

B'=不満をもっている可能性 ステップ1: B'= Ø ならば終了. _____ のある入札者の集合

ステップ2: B'から入札者 i を選ぶ.

ステップ3: 入札者 i に対し, 価格 q での利得最大の

財集合で、S_i を含むものを D とおく(←必ず存在)

$$q(j) = \begin{cases} p(j) & (j \in S_i) \\ p(j) + \delta & (j \in N \setminus S_i) \end{cases}$$

ステップ4: 各 $j \in D \setminus S_i$ に対し、 $p(j):=p(j) + \delta$.

S_i を D に置き換える. B' から i を削除.

他の入札者 h に対し、 S_n と D に重複があれば、

それをS_hから削除し、hをB'に追加.

ステップ1へ戻る.

単一需要モデルに特殊化

ステップO: 各財 i に対し p(j) = 0, 各入札者 i に対し

B'=B とおく.

B'=財の割当のない

ステップ1: B'= Ø ならば終了. ~

入札者の集合

ステップ2: B'から入札者 i を選ぶ.

ステップ3:入札者 i に対し, 価格 p での利得最大の財を j とおく

ステップ4: $p(j_i):=p(j_i) + δ$.

B' から i を削除.

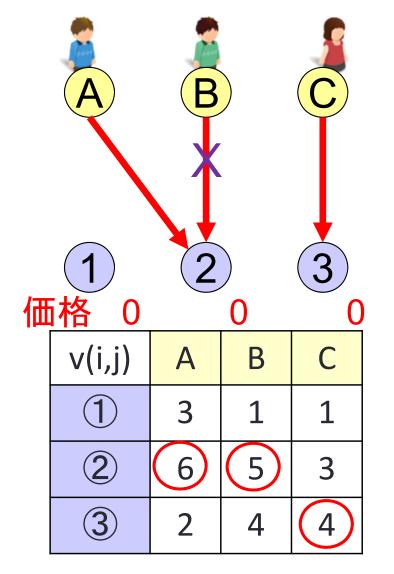
j* を持っていた入札者 h を B' に追加.

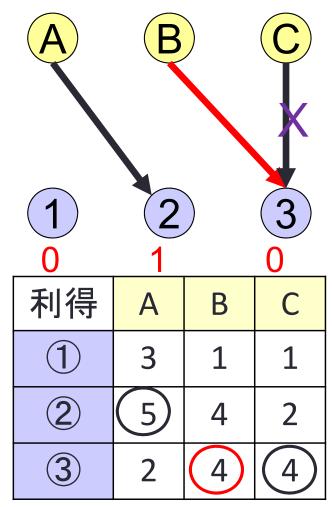
ステップ1へ戻る.

単一需要モデルのときのアルゴリズムに一致する

アルゴリズムの実行例

δ=1のとき

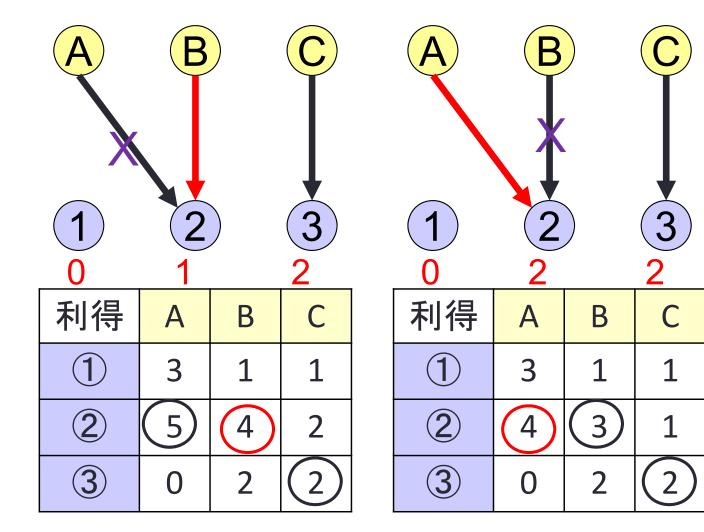




A 1 0	B 2		3
利得	А	В	С
1	3	1	1
2	5	4	2
3	1	3	3

アルゴリズムの実行例(2)

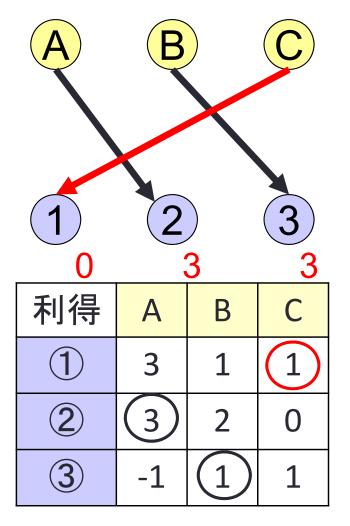
δ=1のとき



A	B	C	
1	2	3	3
利得	А	В	С
1	3	1	1
2	3	2	0
3	0	2	2

アルゴリズムの実行例(2)

δ=1のとき



終了 均衡配分× 均衡価格〇

反復オークションのための問題例

- 入札者a: 重み和(①:2, ②:4, ③:3, ④:1, ⑤:5)
- 入札者b: 財集合(①:2, ②:5, ③:1, ④:4, ⑤:3) の中の

上位2つの財に依存

- {①, ②, ③}→評価値2+5, {③, ④, ⑤}→評価値4+3
- 入札者c: 財の数に依存(1つ:4,2つ:7,3つ:10,4つ:12,5つ:13)

均衡価格=(2,4,3,3,3) ←極小均衡価格 均衡配分: a {5}, b {2,4}, c {1,3} または a {3,5}, b {2,4}, c {1}

アルゴリズムの実行例(1)

- 入札者a: 重み和(①:2, ②:4, ③:3, ④:1, ⑤:5)
- 入札者b: 財集合(①:2, ②:5, ③:1, ④:4, ⑤:3) の中の上位2つの財に依存
- 入札者c: 財の数に依存(1つ:4, 2つ:7, 3つ:10, 4つ:12, 5つ:13)

- ステップO: 価格 p=(0,0,0,0,0), 配分 Ø, Ø, Ø, B'={a,b,c}
- ステップ2: i=aを選択
- ・ステップ3:入札者aの価格 (1,1,1,1,1)での利得最大の集合D=N
- ステップ4:
 - D S_a = Nに含まれる財の価格を上げる→p=(1,1,1,1,1)
 - $S_a = D = N$, $S_b = \emptyset$, $S_c = \emptyset$, $B' = \{b,c\}$

アルゴリズムの実行例(2)

- 入札者a: 重み和(①:2, ②:4, ③:3, ④:1, ⑤:5)
- 入札者b: 財集合(①:2, ②:5, ③:1, ④:4, ⑤:3) の中の上位2つの財に依存
- 入札者c: 財の数に依存(1つ:4,2つ:7,3つ:10,4つ:12,5つ:13)
- p=(1,1,1,1,1)
- $S_a = N$, $S_b = \emptyset$, $S_c = \emptyset$,
- $B' = \{b,c\}$
- ステップ2: i=bを選択
- ステップ3:入札者bの価格 (2,2,2,2,2)での利得最大の集合 D={2,4}
- ステップ4:
 - D S_b = {2,4} に含まれる財の価格を上げる→p=(1,2,1,2,1)
 - $S_b = D = \{2,4\}, S_a = N-D=\{1,3,5\}, S_c = \emptyset,$
 - $B' = \{a,c\}$

アルゴリズムの実行例(3)

- 入札者a: 重み和(①:2, ②:4, ③:3, ④:1, ⑤:5)
- 入札者b: 財集合(①:2, ②:5, ③:1, ④:4, ⑤:3) の中の上位2つの財に依存
- p=(1,2,1,2,1)

 入札者c: 財の数に依存(1つ:4,2つ:7,3つ:10,4つ:12,5つ:13)
- $S_b = \{2,4\}, S_a = \{1,3,5\}, S_c = \emptyset$
- $B' = \{a,c\}$
- ステップ2: i=cを選択
- ステップ3:入札者cの価格 (2,3,2,3,2)での利得最大の集合 D={1,3,5}
- ステップ4:
 - D S_c ={1,3,5}に含まれる財の価格を上げる→(2,2,2,2,2)
 - $S_c = D = \{1,3,5\}, S_a = \{1,3,5\}-D = \emptyset, S_b = \{2,4\}-D = \{2,4\},$
 - $B' = \{a\}$

アルゴリズムの実行例(4)

- 入札者a: 重み和(①:2, ②:4, ③:3, ④:1, ⑤:5)
- 入札者b: 財集合(①:2, ②:5, ③:1, ④:4, ⑤:3) の中の上位2つの財に依存
- 入札者c: 財の数に依存(1つ:4,2つ:7,3つ:10,4つ:12,5つ:13)
- p=(2,2,2,2,2)
- $S_c = \{1,3,5\}, S_a = \emptyset, S_b = \{2,4\}, B' = \{a\}$
- ステップ2: i=aを選択
- ステップ3:入札者cの価格 (3,3,3,3,3)での利得最大の集合 D={2,5}
- ステップ4:
 - D S_a ={2,5} に含まれる財の価格を上げる→(2,3,2,2,3)
 - $S_a = D = \{2,5\}, S_b = \{2,4\}-D=\{4\}, S_c = \{1,3,5\}-D=\{1,3\},$
 - $B' = \{b,c\}$

アルゴリズムの実行例(5)

- 入札者a: 重み和(①:2, ②:4, ③:3, ④:1, ⑤:5)
- 入札者b: 財集合(①:2, ②:5, ③:1, ④:4, ⑤:3) の中の上位2つの財に依存

• 入札者c: 財の数に依存(1つ:4,2つ:7,3つ:10,4つ:12,5つ:13)

- p=(2,3,2,2,3)
- $S_a = \{2,5\}, S_b = \{4\}, S_c = \{1,3\}, B' = \{b,c\}$
- ステップ2: i=bを選択
- ・ステップ3:入札者cの価格 (3,4,3,<mark>2,</mark>4)での利得最大の集合 D={2,4}
- ステップ4:
 - D S_b ={2} に含まれる財の価格を上げる→(2,4,2,2,3)
 - $S_b = D = \{2,4\}, S_c = \{1,3\}-D=\{1,3\}, S_a = \{2,5\}-D=\{5\},$
 - $B' = \{a,c\}$

アルゴリズムの実行例(6)

- 入札者a: 重み和(①:2, ②:4, ③:3, ④:1, ⑤:5)
- 入札者b: 財集合(①:2, ②:5, ③:1, ④:4, ⑤:3) の中の上位2つの財に依存

• 入札者c: 財の数に依存(1つ:4,2つ:7,3つ:10,4つ:12,5つ:13)

- p=(2,4,2,2,3)
- $S_a = \{5\}, S_b = \{2,4\}, S_c = \{1,3\}, B' = \{a,c\}$
- ステップ2: i=cを選択
- ステップ3:入札者cの価格 (2,5,2,3,4)での利得最大の集合
 D={1,3}
- ステップ4:
 - D S_c = Ø に含まれる財の価格を上げる→ p 変更せず
 - S_a = {5}, S_b = {2,4}, S_c = {1,3}, 変更せず
 - $B' = \{a\}$

アルゴリズムの実行例(7)

- 入札者a: 重み和(①:2, ②:4, ③:3, ④:1, ⑤:5)
- 入札者b: 財集合(①:2, ②:5, ③:1, ④:4, ⑤:3) の中の上位2つの財に依存

• 入札者c: 財の数に依存(1つ:4,2つ:7,3つ:10,4つ:12,5つ:13)

- p=(2,4,2,2,3)
- $S_a = \{5\}$, $S_b = \{2,4\}$, $S_c = \{1,3\}$, $B' = \{a\}$
- ステップ2: i=aを選択
- ステップ3:入札者cの価格 (3,5,3,3,3)での利得最大の集合
 D={5}
- ステップ4:
 - D S_a = Ø に含まれる財の価格を上げる→ p 変更せず
 - S_a = {5}, S_b = {2,4}, S_c = {1,3}, 変更せず
 - B' = Ø → 次の反復でアルゴリズム終了

得られた財配分の近似最適性

定理 アルゴリズムで得られた財配分の総評価値

≧ 財配分の総評価値の最大値 – nδ

系 評価値が整数値のとき, δ =1/(n+1) とおくと, アルゴリズムで得られた財配分 = 総評価値最大の財配分

[証明] (S₁, ..., S_m): アルゴリズムの財配分,

(X₁, ..., X_m): 総評価値最大の財配分

(条件1) 各入札者 i に対し, S_i は価格 p' において利得最大

$$p'(j) = \begin{cases} p(j) & (j \in S_i) \\ p(j) + \delta & (j \in N \setminus S_i) \end{cases}$$

(条件2) $p(j) = 0 \ (\forall j \in N \setminus \bigcup_{i \in B} S_i)$

得られた財配分の近似最適性

$$p(S_i) \equiv \sum_{j \in S_i} p(j)$$

[証明のつづき]

条件1より、
$$v_i(S_i) - p(S_i) = v_i(S_i) - p'(S_i) \ge v_i(X_i) - p'(X_i)$$

= $v_i(X_i) - p(X_i) - |X_i \cap S_i|\delta$

$$\sum_{i \in B} v_i(S_i) - \sum_{i \in B} p(S_i)$$

$$\geq \sum_{i \in B} v_i(X_i) - \sum_{i \in B} p(X_i) - \sum_{i \in B} |X_i \cap S_i| \delta$$

条件2より、 $\sum_{i \in B} p(S_i) = p(N)$

価格の非負性より、 $\sum_{i \in B} p(X_i) \leq p(N)$

 $X_i \cap S_i$ は互いに素なので、 $\sum_{i \in B} |X_i \cap S_i| \delta \leq n\delta$

$$\sum_{i \in B} v_i(S_i) - p(N) \ge \sum_{i \in B} v_i(X_i) - p(N) - n\delta$$

$$\sum_{i \in B} v_i(S_i) \ge \sum_{i \in B} v_i(X_i) - n\delta$$

アルゴリズムの正当性

命題 各反復のステップ1において、各入札者 h に対し、 $\exists X \in D_h(p')$ s.t. $X \supseteq S_h$

[証明] 命題が k-1 回目のステップ1で成立と仮定, k 回目の反復でも成り立つことを証明.

仮定:第 k-1 回目のステップ1: $\exists X \in D_h(p')$ s.t. $X \supseteq S_h^{(k-1)}$

 $S_h^{(k-1)}$:第 k-1 回目の反復における S_h

k 回目のステップ1の価格 p'を q'とおく

 $\rightarrow \exists Y \in D_h(q')$ s.t. $Y \supseteq S_h^{(k)}$ を示せば良い

2つのケース

① h=i(入札者 h=i が直前のステップ4 で他人の財を奪っている場合) $S_h^{(k)} = X \in D_h(p')$ なので、q' = p' を示せばよい $(Y = S_h^{(k)})$ とすればよい) p' = p において、 $S_h^{(k-1)}$ 以外の財のみ価格を δ だけアップ q = p において、 $S_h^{(k)} - S_h^{(k-1)}$ の財のみ価格を δ だけアップ q' = q において、 $S_h^{(k)}$ 以外の財のみ価格を δ だけアップ p' = p において、p' = p において、p' = p において、p' = p' 以外の財のみ価格をp = p'

アルゴリズムの正当性

② h≠i (h は財を奪われる側の入札者の場合) 第 k-1 回目のステップ4で $S_h^{(k-1)}$ から財が奪われる(かもしれない) \rightarrow その残りの財集合が $S_h^{(k)}$ 入札者iが他者から奪った財の価格のみアップ つまり, $q(j) = p(j) + \delta \left(j \in D_i \setminus S_i^{(k-1)} \right)$, q(j) = p(j) (それ以外の財 j) $\leftarrow S_h^{(k)}$ の財はこちら p' = p において、 $S_h^{(k-1)}$ 以外の財のみ価格を δ だけアップ q' = q において、 $S_h^{(k)}$ ($\subseteq S_h^{(k-1)}$) 以外の財のみ価格を δ だけアップ よって, $p' \leq q'$ かつ p'(j) = q'(j) ($j \in S_h^{(k)}$) 成立 粗代替性より、 $\exists Y \in D_i(q')$

s.t. $Y \supseteq D_h$ の中で価格不変の財すべて $\supseteq S_h^{(k)}$

演習問題

問題1: 財集合が {1,2,3,4}, 入札者3人の評価関数が以下のように与えられているとする. δ=10 として, 均衡を近似的に計算するアルゴリズムを適用せよ.

- Aさん: ①を含む財集合は70,
 - ①を含まず, ④を含む財集合は50,
 - それ以外はO
- Bさん: 重み和(1:60, 2:70, 3:40, 4:30, 5:80)
- Cさん:財の数依存(1つ:90, 2つ:150, 3つ:200, 4つ:240, 5つ:250)