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Today’s VLSI : System-on-Chip 
(SoC)
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l peripheral bus (IEEE1394, USB, RS232C, PCI, SCSI, 
AGP, ISA, ATA, …)

l storage (SRAM, DRAM, FLASH-ROM, disk drive)
l network (Modem, Ethernet, wireless)
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l motor



“Design Crisis”

Ø While semiconductor process technology is 
advancing very rapidly, design productivity is not 
catching up à productivity gap is widening 
(design crisis)

Ø Possible solutions to increase design 
productivity

• High-level syntheis à describe at algorithm-level
– limited to VLIW-type architecture which can execute 

single control-flow (instruction-level parallelism)
• Design reuse à IP-based designs

– a limited number of successful IPs (CPU-cores, bus 
systems)

• Unified language from system specification to RTL 
description à consistent description environment à
detect design errors at early design phase



CPU-Core Embedded System (1)
A) Advantages of embedding CPU-cores in VLSI

• Many high-performance low-power CPU cores 
available as IPs (good compilers and debuggers are 
also available for those CPUs)

• Implementing large portion of the system in software 
programs makes the system more flexible to design 
changes (upgrades, dug-fix)
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CPU-Core Embedded System (2)
B) Design paradigm : Hardware/Software Codesign

• Design the hardware and software concurrently
– Hardware : CPU-cores, peripheral devices, custom 

hardware (for time-critical processes)
– Software : program for the CPU-core (for non-time-critical 

processes)
• Find any inconsistencies in the system specifications at 

the early design phase, and make any necessary 
changes to the design.

• Language issues
• Synthesis issues (HW/SW partitioning, Application-

Specific Instruction Processor (ASIP) synthesis)
• Simulation environment (HW/SW cosimulation)



Language Issues
Ø In order to construct a systematic design 

environment for SoC, development of a 
powerful design description language is 
essential. 
• Capture both hardware and software designs
• Easy to write, easy to read
• Support different levels of abstraction (system 

specification à algorithm description à RTL)
Ø Many C-based description languages 

have been proposed. 



C-Based Design Languages (1)
A) Why C-language ?

• Very popular
• Variety of good compilers and debuggers
• A lot of designs are first written in C (design 

reuse)
• Easy to debug (less # of codes, sequential 

execution is easier to understand than 
concurrent execution in HDLs)

• Fast simulation
• Easy to describe both hardware and software



C-Based Design Languages (2)
B) What does C-language lack?

• Hardware behavior description :
– Concurrency, pipelining
– Synchronization
– Detail timing

• Hardware structure description:
– Modules, module instantiation, interconnection
– Hierachical structure
– Bit-size precise data types

Ø These features are built in either as language 
extensions or class libraries in the new C-
based languages.



C-Based Design Languages (3)
C) Examples

• Consortium organized (many companies 
involved in the development of design 
environment)
– SystemC
– SpecC

• Dependent to specific design environment :
– BDL(NEC), Bach-C(Sharp), Handel-C(Celoxica)
– HardwareC(Stanford) : can describe and synthesis 

multiple control-flow designs

• HDL extension :
– SystemVerilog



SystemC Example (1)

class ProcessA : sc_sync { 
public:

const sc_signal <int> & in;
const sc_signal <bool> & in_ready;
sc_signal <int> & out;
sc_signal <bool> & out_ready;
ProcessA(const char *name, sc_clock_edge &CLK, 

const sc_signal<int> & a,
sc_signal<bool> & a_rdy,
sc_signal<int> & b, sc_signal<bool> & 
b_rdy) : sc_sync (name, CLK), in(a), 
in_ready(a_rdy), out(b), 
out_ready(b_rdy){ }

void entry();
};
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SystemC Example (2)

void ProcessA::entry(){ 
while(true){

if(out_ready.read()== true){
wait(); // wait 1 clock cycle
out_ready.write(false);

}
wait_until(in_ready.delayed()== true);
int v = in.read();
out.write(v + out.read());
out_ready.write(true);

}
};

event trigger
(synchronization)

event for 
other processes

internal behavior

All of “entry()” functions are multi-threaded in 
the program and executed concurrently.



SystemC Example (3)

int sc_main(){
sc_signal<int> s1(“sig1”),s2(“sig2”);
sc_signal<bool> rdy1(“rdy1”),rdy2(“rdy2”); 
sc_clock clk(“CLK”,20,0.5,0.0);
ProcessA p1(“P1”,clk.pos(),s1,rdy1,s2,rdy2);
ProcessA p2(“P2”,clk.pos(),s2,rdy2,s1,rdy1);
s1.write(1); s2.write(0);
rdy1.write(true); rdy2.write(false);
sc_start(10000); //run for 10000 time units
return 0;

};
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SystemC Design Flow

• Untimed Functional Model (UTF)
– Collection of concurrent processes communicating through 

buffered channels
• Timed Functional Model (TF)

– Timing information (computation latency) added to UTF to 
estimate timing behavior

• Bus-Cycle Accurate Model (BCA)
– Communications modeled in RTL
– Internal computations still use TF

• Cycle Accurate Model (CA)
– Functionally equivalent to RTL



SystemC Design Flow
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C-Based Design Languages (4)
D) Current and future directions

• Main focus of C-based languages is how to 
model concurrent hardware behavior on 
sequential language (such as C).
– SystemC uses multithreaded execution for each 

process.
• Final goal is to develop a unified language 

which can be used at all levels of abstraction
– System specification
– Algorithm description
– RTL structural description



High-Level Synthesis and 
C-Based Design Methodology

Ø For many C-based design methodologies, RTL description 
is still written by hand

• RTL description is written in C-based language, and is 
“translated” (not “synthesized”) into HDL description for 
logic synthesis

• Not many designers are still convinced that high-level 
synthesis is mature enough to use.

Ø Some C-based design methodologies, however, utilizes 
high-level synthesis aggressively (BDL, Bach-C)

• Each independent process is synthesized into customized 
VLIW processor

• Partitioning the design into multiple processes (each 
implemented with VLIW processors), and implementing 
interconnections of processes is still mainly done by hand.

• Already applied to a number of real LSIs. 


