
VLSI System Design
Part VI : Advanced Topics

Lecturer : Tsuyoshi Isshiki
Dept. Information and Communications Engineering,

Tokyo Institute of Technology
isshiki@ict.e.titech.ac.jp



Today’s VLSI : System-on-Chip 
(SoC)

Bidirectional 
Devices 

System-on-Chip
Input 

Devices 
Output 
Devices I/F

I/F

I/F

l microphone
l camera
l sensor
l keypad
l mouse
l joystick
l switch

l peripheral bus (IEEE1394, USB, RS232C, PCI, SCSI, 
AGP, ISA, ATA, …)

l storage (SRAM, DRAM, FLASH-ROM, disk drive)
l network (Modem, Ethernet, wireless)

l speaker
l LCD/CRT display
l LED light
l motor



“Design Crisis”

Ø While semiconductor process technology is 
advancing very rapidly, design productivity is not 
catching up à productivity gap is widening 
(design crisis)

Ø Possible solutions to increase design 
productivity

• High-level syntheis à describe at algorithm-level
– limited to VLIW-type architecture which can execute 

single control-flow (instruction-level parallelism)
• Design reuse à IP-based designs

– a limited number of successful IPs (CPU-cores, bus 
systems)

• Unified language from system specification to RTL 
description à consistent description environment à
detect design errors at early design phase



CPU-Core Embedded System (1)
A) Advantages of embedding CPU-cores in VLSI

• Many high-performance low-power CPU cores 
available as IPs (good compilers and debuggers are 
also available for those CPUs)

• Implementing large portion of the system in software 
programs makes the system more flexible to design 
changes (upgrades, dug-fix)

On-chip 
memory

Interconnect network 
(busses, crossbar switches, wires)

I/F

CPU-
core On-chip 

memory
On-chip 
memory

Function
al blocks

I/F I/F

Output 
Devices 

Bidirection
al Devices 

Input  
Devices 



CPU-Core Embedded System (2)
B) Design paradigm : Hardware/Software Codesign

• Design the hardware and software concurrently
– Hardware : CPU-cores, peripheral devices, custom 

hardware (for time-critical processes)
– Software : program for the CPU-core (for non-time-critical 

processes)
• Find any inconsistencies in the system specifications at 

the early design phase, and make any necessary 
changes to the design.

• Language issues
• Synthesis issues (HW/SW partitioning, Application-

Specific Instruction Processor (ASIP) synthesis)
• Simulation environment (HW/SW cosimulation)



Language Issues
Ø In order to construct a systematic design 

environment for SoC, development of a 
powerful design description language is 
essential. 
• Capture both hardware and software designs
• Easy to write, easy to read
• Support different levels of abstraction (system 

specification à algorithm description à RTL)
Ø Many C-based description languages 

have been proposed. 



C-Based Design Languages (1)
A) Why C-language ?

• Very popular
• Variety of good compilers and debuggers
• A lot of designs are first written in C (design 

reuse)
• Easy to debug (less # of codes, sequential 

execution is easier to understand than 
concurrent execution in HDLs)

• Fast simulation
• Easy to describe both hardware and software



C-Based Design Languages (2)
B) What does C-language lack?

• Hardware behavior description :
– Concurrency, pipelining
– Synchronization
– Detail timing

• Hardware structure description:
– Modules, module instantiation, interconnection
– Hierachical structure
– Bit-size precise data types

Ø These features are built in either as language 
extensions or class libraries in the new C-
based languages.



C-Based Design Languages (3)
C) Examples

• Consortium organized (many companies 
involved in the development of design 
environment)
– SystemC
– SpecC

• Dependent to specific design environment :
– BDL(NEC), Bach-C(Sharp), Handel-C(Celoxica)
– HardwareC(Stanford) : can describe and synthesis 

multiple control-flow designs

• HDL extension :
– SystemVerilog



SystemC Example (1)

class ProcessA : sc_sync { 
public:

const sc_signal <int> & in;
const sc_signal <bool> & in_ready;
sc_signal <int> & out;
sc_signal <bool> & out_ready;
ProcessA(const char *name, sc_clock_edge &CLK, 

const sc_signal<int> & a,
sc_signal<bool> & a_rdy,
sc_signal<int> & b, sc_signal<bool> & 
b_rdy) : sc_sync (name, CLK), in(a), 
in_ready(a_rdy), out(b), 
out_ready(b_rdy){ }

void entry();
};

clocked process

output port

class 
constructor

behavior 
description

input port



SystemC Example (2)

void ProcessA::entry(){ 
while(true){

if(out_ready.read()== true){
wait(); // wait 1 clock cycle
out_ready.write(false);

}
wait_until(in_ready.delayed()== true);
int v = in.read();
out.write(v + out.read());
out_ready.write(true);

}
};

event trigger
(synchronization)

event for 
other processes

internal behavior

All of “entry()” functions are multi-threaded in 
the program and executed concurrently.



SystemC Example (3)

int sc_main(){
sc_signal<int> s1(“sig1”),s2(“sig2”);
sc_signal<bool> rdy1(“rdy1”),rdy2(“rdy2”); 
sc_clock clk(“CLK”,20,0.5,0.0);
ProcessA p1(“P1”,clk.pos(),s1,rdy1,s2,rdy2);
ProcessA p2(“P2”,clk.pos(),s2,rdy2,s1,rdy1);
s1.write(1); s2.write(0);
rdy1.write(true); rdy2.write(false);
sc_start(10000); //run for 10000 time units
return 0;

};

s1
rdy1

rdy2
s2

P1 P2

clk

signal declaration

process declaration

signal initialization

simulation start

clk

rdy_1

rdy_2

s1

s2

1

0 1

2

3

5

8



SystemC Design Flow

• Untimed Functional Model (UTF)
– Collection of concurrent processes communicating through 

buffered channels
• Timed Functional Model (TF)

– Timing information (computation latency) added to UTF to 
estimate timing behavior

• Bus-Cycle Accurate Model (BCA)
– Communications modeled in RTL
– Internal computations still use TF

• Cycle Accurate Model (CA)
– Functionally equivalent to RTL



SystemC Design Flow

Untimed Functional Model

Timed Functional Model

Bus Cycle Accurate Model

Cycle Accurate Model

Algorithm description

Concurrent process
description

Timing budget
annotation

Clocked interface
description

RTL

system partitioning
parallelization

HW/SW partitioning
performance est.

interface design

behavioral synthesis

manual
design

manual or
automated

Reference C source



C-Based Design Languages (4)
D) Current and future directions

• Main focus of C-based languages is how to 
model concurrent hardware behavior on 
sequential language (such as C).
– SystemC uses multithreaded execution for each 

process.
• Final goal is to develop a unified language 

which can be used at all levels of abstraction
– System specification
– Algorithm description
– RTL structural description



High-Level Synthesis and 
C-Based Design Methodology

Ø For many C-based design methodologies, RTL description 
is still written by hand

• RTL description is written in C-based language, and is 
“translated” (not “synthesized”) into HDL description for 
logic synthesis

• Not many designers are still convinced that high-level 
synthesis is mature enough to use.

Ø Some C-based design methodologies, however, utilizes 
high-level synthesis aggressively (BDL, Bach-C)

• Each independent process is synthesized into customized 
VLIW processor

• Partitioning the design into multiple processes (each 
implemented with VLIW processors), and implementing 
interconnections of processes is still mainly done by hand.

• Already applied to a number of real LSIs. 


