2nd Report of Mathematical Optimization: Theory and Algorithms

Tokyo Institute of Technology
Department of Mathematical and Computing Science
Mituhiro Fukuda

Due to August 15 (Saturday), 2020, 11:50PM

Submit the report to the OCW-i. It only accepts pdf format files.
This report will correspond to 70% of the final grade of this course.

Answer all the questions below in English.

1. (15 points) Show that the log-sum-exp function, $f(\boldsymbol{x})=\ln \left(\sum_{i=1}^{n} e^{x_{i}}\right)$, is a convex function on \mathbb{R}^{n}.
2. (24 points) Given a convex set $S \subseteq \mathbb{R}^{n}$ and an arbitrarily norm $\|\cdot\|$ in \mathbb{R}^{n}, define the distance of a point $\boldsymbol{x} \in \mathbb{R}^{n}$ to the set S as

$$
\operatorname{dist}(\boldsymbol{x}, S):=\inf _{\boldsymbol{y} \in S}\|\boldsymbol{x}-\boldsymbol{y}\| .
$$

Show that the distance function $\operatorname{dist}(\boldsymbol{x}, S)$ is convex on \boldsymbol{x}. Notice that the convex set S does not need to be closed.
3. (20 points) Let $Q \subseteq \mathbb{R}^{n}$ a convex subset of \mathbb{R}^{n}. A function $f: Q \rightarrow \mathbb{R}$ is called quasiconvex for $Q \subseteq \mathbb{R}^{n}$ if its domain Q is convex all of its level sets $L_{\lambda}:=\{\boldsymbol{x} \in Q \mid f(x) \leq \lambda\}$ are convex for $\forall \lambda \in \mathbb{R}$. Show that a differentiable function $f(\boldsymbol{x})$ is quasiconvex if and only if for any $\boldsymbol{x}, \boldsymbol{y} \in Q$ such that

$$
f(y) \leq f(x) \Rightarrow\langle\boldsymbol{\nabla} f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle \leq 0 .
$$

4. (16 points) Answer "Yes" or "No" to the following questions. Justify your answers.
a. Is the function $f(\boldsymbol{x})$ of problem (1) below differentiable at all points of interior of Q ?
b. Are strongly convex functions also strictly convex functions?
c. Are functions with Lipschitz continuous gradients also Lipschitz continuous functions?
d. Is the Nesterov's optimal gradient method the fastest among all gradient-based methods for any function of the class $\mathcal{F}_{L}^{1}\left(\mathbb{R}^{n}\right)$ or $\mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$?
5. (25 points) Given an non-empty closed convex subset Q of \mathbb{R}^{n} and $f_{i} \in \mathcal{S}_{\mu, L}^{1}(\boldsymbol{Q})$ with $L>\mu>0$ for ($i=1,2, \ldots, m$) , consider the optimization problem

$$
\begin{cases}\text { minimize } & f(\boldsymbol{x}) \equiv \max _{i=1,2, \ldots, m} f_{i}(\boldsymbol{x}) \tag{1}\\ \text { subject to } & \boldsymbol{x} \in Q .\end{cases}
$$

Given $\boldsymbol{x}_{k} \in \mathbb{R}^{n}$, we define

$$
\begin{aligned}
\boldsymbol{x}_{f}\left(\boldsymbol{x}_{k} ; L\right) & :=\arg \min _{\boldsymbol{y} \in Q}\left\{\max _{i=1,2, \ldots, m}\left[f_{i}\left(\boldsymbol{x}_{k}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}_{i}\left(\boldsymbol{x}_{k}\right), \boldsymbol{y}-\boldsymbol{x}_{k}\right\rangle\right]+\frac{L}{2}\left\|\boldsymbol{y}-\boldsymbol{x}_{k}\right\|_{2}^{2}\right\}, \\
\boldsymbol{g}_{f}\left(\boldsymbol{x}_{k} ; L\right) & :=L\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{f}\left(\boldsymbol{x}_{k} ; L\right)\right) .
\end{aligned}
$$

We have shown during the lectures that for any $\boldsymbol{x} \in Q$,
$\max _{i=1,2, \ldots, m} f_{i}(\boldsymbol{x}) \geq \max _{i=1,2, \ldots, m} f_{i}\left(\boldsymbol{x}_{f}\left(\boldsymbol{x}_{k} ; L\right)\right)+\left\langle\boldsymbol{g}_{f}\left(\boldsymbol{x}_{k} ; L\right), \boldsymbol{x}-\boldsymbol{x}_{k}\right\rangle+\frac{1}{2 L}\left\|\boldsymbol{g}_{f}\left(\boldsymbol{x}_{k} ; L\right)\right\|_{2}^{2}+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{2}^{2}$.
a. If $\boldsymbol{x}^{*} \in Q$ is the optimal solution of (1), show that for $\boldsymbol{x}_{k} \in \mathbb{R}^{n}$, we have:

$$
\left\langle\boldsymbol{g}_{f}\left(\boldsymbol{x}_{k} ; L\right), \boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\rangle \geq \frac{1}{2 L}\left\|g_{f}\left(\boldsymbol{x}_{k} ; L\right)\right\|_{2}^{2}+\frac{\mu}{2}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{k}\right\|_{2}^{2}
$$

b. Given $\boldsymbol{x}_{0} \in Q$, consider the steepest descent update $\boldsymbol{x}_{k}:=\boldsymbol{x}_{k-1}-\frac{1}{L} \boldsymbol{g}_{f}\left(\boldsymbol{x}_{k-1} ; L\right)$. Show that

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq\left(1-\frac{\mu}{L}\right)^{k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}
$$

