Optimal Gradient Method for Smooth (Differentiable) Convex Functions

In the case $\mu = 0$, there are much simpler variation of the method⁵.

Nesterov's Original Optimal Gradient Method for Smooth Convex Function

Step 0: Choose $x_0 \in \mathbb{R}^n$, set $y_0 := x_0$, $t_0 := 1$, and k := 0.

Step 1: Compute $\nabla f(y_k)$.

Step 2: Set $x_{k+1} := y_{\underline{k}} - \frac{1}{L} \nabla f(y_k)$.

Step 3: $t_{k+1} := \frac{1 + \sqrt{1 + 4t_k^2}}{2}$. Step 4: Set $y_{k+1} := x_{k+1} + \frac{t_k - 1}{t_{k+1}} (x_{k+1} - x_k), k := k + 1 \text{ and go to Step 1.}$

Moreover, there is a simpler variant of this method.

Variant of Nesterov's Optimal Gradient Method for Smooth Convex Function

Choose $\mathbf{x}_0 \in \mathbb{R}^n$, set $\mathbf{y}_0 := \mathbf{x}_0$ and k := 1. Step 0:

Compute $\nabla f(y_{k-1})$.

Step 1: Compute $\nabla f(\mathbf{y}_{k-1})$. Step 2: Set $\mathbf{x}_k := \mathbf{y}_{k-1} - \frac{1}{L} \nabla f(\mathbf{y}_{k-1})$. Step 3: Set $\mathbf{y}_k := \mathbf{x}_k + \frac{k-1}{k+2} (\mathbf{x}_k - \mathbf{x}_{k-1}), \ k := k+1 \text{ and go to Step 1.}$

All of above methods generate sequence $\{x_k\}_{k=0}^{\infty}$ such that

$$f(x_k) - f(x^*) \le \frac{4L||x_0 - x^*||_2^2}{(k+1)^2}.$$

for $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$.

Recently, it was shown that an extension of this method guarantee a $o(k^{-2})$ convergence for $f(\mathbf{x}_k) - f(\mathbf{x}^*)$ by Attouch and Peypouquet⁶.

Kim-Fessler's Optimal Gradient Method for Smooth Convex Function

Step 0: Choose $x_0 \in \mathbb{R}^n$, set $y_0 := x_0, t_0 := 1$, and k := 0.

Step 1: Compute $\nabla f(y_k)$.

Step 1: Compare 7 $f(y_k)$.

Step 2: Set $x_{k+1} := y_k - \frac{1}{L} \nabla f(y_k)$.

Step 3: $t_{k+1} := \begin{cases} \frac{1+\sqrt{1+4t_k^2}}{2}, & \text{if } k < N-2 \\ \frac{1+\sqrt{1+8t_k^2}}{2}, & \text{if } k = N-1 \end{cases}$ Step 4: Set $y_{k+1} := x_{k+1} + \frac{t_k-1}{t_{k+1}} (x_{k+1} - x_k) + \frac{t_k}{t_{k+1}} (x_{k+1} - y_k), k := k+1 \text{ and go to Step 1.}$

It can be shown that the Kim-Fessler's method generate sequence $\{x_k\}_{k=0}^N$ such that

$$f(x_N) - f(x^*) \le \frac{2L\|x_0 - x^*\|_2^2}{(N+2)^2}.$$

for $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)^{7}$.

⁵Y. Nesterov, "A method for solving the convex programming problem with convergence rate $\mathcal{O}(1/k^2)$," Dokl. Akad. Nauk SSSR 269 (1983), pp. 543–547. It also has a scheme to estimate L in the case this constant in unknown.

⁶Hedy Attouch and Juan Peypouquet, "The rate of convergence of Nesterovs accelerated forward-backward method is actually faster than $1/k^2$," SIAM Journal on Optimization 26 (2016), pp. 1824-1834.

⁷Donghwan Kim and Jeffrey A. Fessler, "Optimized first-order methods for smooth convex minimization," Mathematical Programming 159 (2016), pp. 81-107.

8.2 Exercises

1. We want to justify the Constant Step Scheme of the Optimal Gradient Method. This is a particular case of the General Scheme for the Optimal Gradient Method for the following choice:

$$egin{array}{lcl} \gamma_{k+1} &:=& Llpha_k^2 = (1-lpha_k)\gamma_k + lpha_k\mu \ & oldsymbol{y}_k &=& rac{lpha_k\gamma_koldsymbol{v}_k + \gamma_{k+1}oldsymbol{x}_k}{\gamma_k + lpha_k\mu} \ & oldsymbol{x}_{k+1} &=& oldsymbol{y}_k - rac{1}{L}oldsymbol{
abla} oldsymbol{f}(oldsymbol{y}_k) \ & oldsymbol{v}_{k+1} &=& rac{(1-lpha_k)\gamma_koldsymbol{v}_k + lpha_k\muoldsymbol{y}_k - lpha_koldsymbol{
abla} oldsymbol{f}(oldsymbol{y}_k)}{\gamma_{k+1}}. \end{array}$$

- (a) Show that $v_{k+1} = x_k + \frac{1}{\alpha_k}(x_{k+1} x_k)$.
- (b) Show that $\mathbf{y}_{k+1} = \mathbf{x}_{k+1} + \beta_k(\mathbf{x}_{k+1} \mathbf{x}_k)$ for $\beta_k = \frac{\alpha_{k+1}\gamma_{k+1}(1-\alpha_k)}{\alpha_k(\gamma_{k+1}+\alpha_{k+1}\mu)}$.
- (c) Show that $\beta_k = \frac{\alpha_k(1-\alpha_k)}{\alpha_k^2 + \alpha_{k+1}}$.
- (d) Explain why $\alpha_{k+1}^2 = (1 \alpha_{k+1})\alpha_k^2 + \frac{\mu}{L}\alpha_{k+1}$.

9 Extension of the Optimal Gradient Method (First-Order Method, Accelerated Gradient Method, Fast Gradient Method) for the Min-Max Problems over Simple Closed Convex Sets

Suppose we are given Q a <u>closed convex</u> subset of \mathbb{R}^n , <u>simple enough</u> to have an easy projection onto it. E.g., positive orthant, n-dimensional box, simplex, Euclidean ball, ellipsoids, etc.

Given $f_i \in \mathcal{S}_{\mu,L}^{1,1}(Q)$ $(i=1,2,\ldots,m)$, we define the following function $f:Q\to\mathbb{R}$,

$$f(\boldsymbol{x}) := \max_{1 \le i \le m} f_i(\boldsymbol{x}) \quad \text{for} \quad \boldsymbol{x} \in Q.$$
 (18)

This function is non-differentiable in general, but convex (see Theorem 5.6). We will see that the method discussed so far can be easily adapted for the following min-max-type convex optimization problem.

$$\begin{cases}
 \text{minimize} & f(\mathbf{x}) \\
 \text{subject to} & \mathbf{x} \in Q,
\end{cases}$$
(19)

where Q is a closed convex set with a simple structure, and f(x) is defined as above.

For a given $\bar{x} \in Q$, let us define the following linearization of f(x) at \bar{x} .

$$f(\bar{\boldsymbol{x}}; \boldsymbol{x}) := \max_{1 \leq i \leq m} \left[f_i(\bar{\boldsymbol{x}}) + \langle \boldsymbol{\nabla} \boldsymbol{f}_i(\bar{\boldsymbol{x}}), \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle \right], \quad \text{for } \boldsymbol{x} \in Q.$$

Lemma 9.1 Let $f_i \in \mathcal{S}_{\mu,L}^{1,1}(Q)$ $(i=1,2,\ldots,m)$ and $\bar{\boldsymbol{x}} \in Q$. For $\boldsymbol{x} \in Q$, we have

$$f(x) \ge f(\bar{x}; x) + \frac{\mu}{2} ||x - \bar{x}||_2^2,$$

$$f(x) \le f(\bar{x}; x) + \frac{L}{2} ||x - \bar{x}||_2^2.$$

Proof:

It follows from the properties of $f_i \in \mathcal{S}_{\mu,L}^{1,1}(Q)$.

Theorem 9.2 A point $x^* \in Q$ is an optimal solution of (19) with $f_i \in \mathcal{S}^{1,1}_{\mu,L}(Q)$ (i = 1, 2, ..., m) if and only if

$$f(\boldsymbol{x}^*; \boldsymbol{x}) \ge f(\boldsymbol{x}^*; \boldsymbol{x}^*) = f(\boldsymbol{x}^*), \quad \forall \boldsymbol{x} \in Q.$$

Proof:

Indeed, if the inequality is true, it follows from Lemma 9.1 that

$$f(x) \ge f(x^*; x) + \frac{\mu}{2} ||x - x^*||_2^2 \ge f(x^*) + \frac{\mu}{2} ||x - x^*||_2^2 \ge f(x^*), \quad \forall x \in Q.$$

For the converse, let x^* be an optimal solution of the minimization problem (19). Assume by contradiction that there is a $x \in Q$ such that $f(x^*; x) < f(x^*)$.

Therefore, from the definition of $f(\cdot)$, letting $j \in \{1, 2, ..., m\}$ (which temporarily we assume is unique) such that $f_j(\mathbf{x}^*) = \max_{1 \le i \le m} f_i(\mathbf{x}^*)$, we have

$$f_i(\boldsymbol{x}^*) + \langle \nabla f_i(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle < f_j(\boldsymbol{x}^*) \quad \text{for} \quad i = 1, 2, \dots, m$$
 (20)

Notice that $\boldsymbol{x}^* + \alpha(\boldsymbol{x} - \boldsymbol{x}^*) \in Q$ for $\alpha \in [0,1]$ since Q is convex. Then, calling $\phi_i(\alpha) := f_i(\boldsymbol{x}^* + \alpha(\boldsymbol{x} - \boldsymbol{x}^*))$, we have $\phi_i'(0) = \langle \nabla \boldsymbol{f}_i(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle$ for (i = 1, 2, ..., m). Moreover, $\phi_i(0) = f_i(\boldsymbol{x}^*) < f_j(\boldsymbol{x}^*)$ for $i = 1, 2, ..., m, i \neq j, \phi_j(0) = f_j(\boldsymbol{x}^*) = f(\boldsymbol{x}^*), \text{ and } \phi_j'(0) = \langle \nabla \boldsymbol{f}_j(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle < 0$ from (20) for i = j. Therefore, there exists $\tilde{\alpha} > 0$ small enough such that

$$\phi_j(\tilde{\alpha}) = f_j(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*)) < \phi_j(0) = f_j(\boldsymbol{x}^*) = f(\boldsymbol{x}^*)$$

and

$$\phi_i(\tilde{\alpha}) = f_i(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*)) < f_j(\boldsymbol{x}^*) \text{ for } i = 1, 2, \dots, m, \quad i \neq j.$$

Finally, we have $f(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*)) = \max_{1 \leq i \leq m} f_i(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*)) < f_j(\boldsymbol{x}^*) = \max_{1 \leq i \leq m} f_i(\boldsymbol{x}^*) = f(\boldsymbol{x}^*)$. Therefore, we arrived to a contradiction. In the case there exists j_1, j_2 such that $f(\boldsymbol{x}^*) = f_{j_1}(\boldsymbol{x}^*) = f_{j_2}(\boldsymbol{x}^*)$ and $f_{j_1}(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*)) < f_{j_2}(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*))$, we choose $j = j_2$ and still we have the same conclusion.

Corollary 9.3 Let x^* be a minimum of a max-type function f(x) over the set Q as (18). If $f_i \in \mathcal{S}^1_{\mu}(Q)$ (i = 1, 2, ..., m), then

$$f(x) \ge f(x^*) + \frac{\mu}{2} ||x - x^*||_2^2, \quad \forall x \in Q.$$

Proof:

From Lemma 9.1 and Theorem 9.2, we have for $\forall x \in Q$,

$$f(x) \geq f(x^*; x) + \frac{\mu}{2} ||x - x^*||_2^2$$

 $\geq f(x^*; x^*) + \frac{\mu}{2} ||x - x^*||_2^2 = f(x^*) + \frac{\mu}{2} ||x - x^*||_2^2.$

Lemma 9.4 Let $f_i \in \mathcal{S}^1_{\mu}(Q)$ for (i = 1, 2, ..., m) with $\mu > 0$ and Q be a closed convex set. Then there is a unique solution \boldsymbol{x}^* for the problem (19).

Proof:

Left for exercise.

Definition 9.5 Let $f_i \in \mathcal{C}^1(Q)$ (i = 1, 2, ..., m), Q a closed convex set, $\bar{x} \in Q$, and $\gamma > 0$. Denote by

$$egin{aligned} & oldsymbol{x}_f(ar{oldsymbol{x}};\gamma) &:= & rg \min_{oldsymbol{y} \in Q} \left[f(ar{oldsymbol{x}};oldsymbol{y}) + rac{\gamma}{2} \|oldsymbol{y} - ar{oldsymbol{x}}\|_2^2
ight], \ & oldsymbol{g}_f(ar{oldsymbol{x}};\gamma) &:= & \gamma(ar{oldsymbol{x}} - oldsymbol{x}_f(ar{oldsymbol{x}};\gamma)). \end{aligned}$$

We call $g_f(\bar{x};\gamma)$ the gradient mapping of max-type function f on Q. Observe that due to Lemma 9.4, $x_f(\bar{x}; \gamma)$ exists and it is uniquely defined.

Theorem 9.6 Let $f_i \in \mathcal{S}_{u,L}^{1,1}(Q)$ $(i = 1, 2, ..., m), \gamma \geq L, \gamma > 0, Q$ a closed convex set, and $\bar{x} \in Q$. Then

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}_f(\bar{\boldsymbol{x}};\gamma)) + \langle \boldsymbol{g}_f(\bar{\boldsymbol{x}};\gamma), \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle + \frac{1}{2\gamma} \|\boldsymbol{g}_f(\bar{\boldsymbol{x}};\gamma)\|_2^2 + \frac{\mu}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|_2^2, \quad \forall \boldsymbol{x} \in Q.$$

Let us use the following notation: $x_f := x_f(\bar{x}; \gamma)$ and $g_f := g_f(\bar{x}; \gamma)$. From Lemma 9.1 and Corollary 9.3 (taking f(x) in there as $f(\bar{x}; x) + \frac{\gamma}{2} ||x - \bar{x}||_2^2$), we have $\forall \boldsymbol{x} \in Q$,

$$f(x) - \frac{\mu}{2} \|x - \bar{x}\|_{2}^{2} \geq f(\bar{x}; x)$$

$$= f(\bar{x}; x) + \frac{\gamma}{2} \|x - \bar{x}\|_{2}^{2} - \frac{\gamma}{2} \|x - \bar{x}\|_{2}^{2}$$

$$\geq f(\bar{x}; x_{f}) + \frac{\gamma}{2} \|x_{f} - \bar{x}\|_{2}^{2} + \frac{\gamma}{2} \|x - x_{f}\|_{2}^{2} - \frac{\gamma}{2} \|x - \bar{x}\|_{2}^{2}$$

$$= f(\bar{x}; x_{f}) + \frac{\gamma}{2} \|x_{f} - \bar{x}\|_{2}^{2} + \frac{\gamma}{2} \langle \bar{x} - x_{f}, 2x - x_{f} - \bar{x} \rangle$$

$$= f(\bar{x}; x_{f}) + \frac{\gamma}{2} \|x_{f} - \bar{x}\|_{2}^{2} + \frac{\gamma}{2} \langle \bar{x} - x_{f}, 2(x - \bar{x}) + \bar{x} - x_{f} \rangle$$

$$= f(\bar{x}; x_{f}) + \frac{\gamma}{2} \|x_{f} - \bar{x}\|_{2}^{2} + \langle g_{f}, x - \bar{x} \rangle + \frac{1}{2\gamma} \|g_{f}\|_{2}^{2}$$

$$\geq f(x_{f}) + \langle g_{f}, x - \bar{x} \rangle + \frac{1}{2\gamma} \|g_{f}\|_{2}^{2},$$

where the last inequality is due to the fact that $\gamma \geq L$.

Now, we are ready to define our estimated sequence. Assume that $f_i \in \mathcal{S}_{\mu,L}^{1,1}(Q)$ (i = 1, 2, ..., m) possible with $\mu = 0$ (which means that $f_i \in \mathcal{F}_L^{1,1}(Q)$), $\boldsymbol{x}_0 \in Q$, and $\gamma_0 > 0$. Define

$$\begin{split} \phi_0(\boldsymbol{x}) &:= f(\boldsymbol{x}_0) + \frac{\gamma_0}{2} \|\boldsymbol{x} - \boldsymbol{x}_0\|_2^2, \\ \phi_{k+1}(\boldsymbol{x}) &:= (1 - \alpha_k) \phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{x}_f(\boldsymbol{y}_k; L)) + \frac{1}{2L} \|\boldsymbol{g}_f(\boldsymbol{y}_k; L)\|_2^2 + \langle \boldsymbol{g}_f(\boldsymbol{y}_k; L), \boldsymbol{x} - \boldsymbol{y}_k \rangle \right. \\ &\left. + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2 \right], \end{split}$$

for the sequences $\{\alpha_k\}_{k=0}^{\infty}$ and $\{\boldsymbol{y}_k\}_{k=0}^{\infty}$ which will be defined later. Similarly to the previous subsection, we can prove that $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$ can be written in the form

$$\phi_k(x) = \phi_k^* + \frac{\gamma_k}{2} ||x - v_k||_2^2$$

for
$$\phi_0^* = f(x_0), v_0 = x_0$$
:

$$\gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k \mu
\mathbf{v}_{k+1} = \frac{1}{\gamma_{k+1}} [(1 - \alpha_k)\gamma_k \mathbf{v}_k + \alpha_k \mu \mathbf{y}_k - \alpha_k \mathbf{g}_f(\mathbf{y}_k; L)],
\phi_{k+1}^* = (1 - \alpha_k)\phi_k^* + \alpha_k f(\mathbf{x}_f(\mathbf{y}_k; L)) + \left(\frac{\alpha_k}{2L} - \frac{\alpha_k^2}{2\gamma_{k+1}}\right) \|\mathbf{g}_f(\mathbf{y}_k; L)\|_2^2
+ \frac{\alpha_k (1 - \alpha_k)\gamma_k}{\gamma_{k+1}} \left(\frac{\mu}{2} \|\mathbf{y}_k - \mathbf{v}_k\|_2^2 + \langle \mathbf{g}_f(\mathbf{y}_k; L), \mathbf{v}_k - \mathbf{y}_k \rangle\right).$$

Now, $\phi_0^* \ge f(\boldsymbol{x}_0)$. Assuming that $\phi_k^* \ge f(\boldsymbol{x}_k)$,

$$\phi_{k+1}^{*} \geq (1 - \alpha_{k}) f(\boldsymbol{x}_{k}) + \alpha_{k} f(\boldsymbol{x}_{f}(\boldsymbol{y}_{k}; L)) + \left(\frac{\alpha_{k}}{2L} - \frac{\alpha_{k}^{2}}{2\gamma_{k+1}}\right) \|\boldsymbol{g}_{f}(\boldsymbol{y}_{k}; L)\|_{2}^{2}$$

$$+ \frac{\alpha_{k}(1 - \alpha_{k})\gamma_{k}}{\gamma_{k+1}} \langle \boldsymbol{g}_{f}(\boldsymbol{y}_{k}; L), \boldsymbol{v}_{k} - \boldsymbol{y}_{k} \rangle$$

$$\geq f(\boldsymbol{x}_{f}(\boldsymbol{y}_{k}; L)) + \left(\frac{1}{2L} - \frac{\alpha_{k}^{2}}{2\gamma_{k+1}}\right) \|\boldsymbol{g}_{f}(\boldsymbol{y}_{k}; L)\|_{2}^{2}$$

$$+ (1 - \alpha_{k}) \left\langle \boldsymbol{g}_{f}(\boldsymbol{y}_{k}; L), \frac{\alpha_{k}\gamma_{k}}{\gamma_{k+1}} (\boldsymbol{v}_{k} - \boldsymbol{y}_{k}) + \boldsymbol{x}_{k} - \boldsymbol{y}_{k} \right\rangle + \frac{(1 - \alpha_{k})\mu}{2} \|\boldsymbol{x}_{k} - \boldsymbol{y}_{k}\|_{2}^{2},$$

where the last inequality follows from Theorem 9.6 for $\gamma = L$.

Therefore, if we choose

$$\begin{array}{rcl} \boldsymbol{x}_{k+1} & = & \boldsymbol{x}_f(\boldsymbol{y}_k;L), \\ L\alpha_k^2 & = & (1-\alpha_k)\gamma_k + \alpha_k\mu, \\ \gamma_{k+1} & := & L\alpha_k^2, \\ \boldsymbol{y}_k & = & \frac{1}{\gamma_k + \alpha_k\mu}(\alpha_k\gamma_k\boldsymbol{v}_k + \gamma_{k+1}\boldsymbol{x}_k), \end{array}$$

we obtain $\phi_{k+1}^* \ge f(\boldsymbol{x}_{k+1})$ as desired.

Hereafter, we assume that $L > \mu$ to exclude the trivial case $L = \mu$ with finished in one iteration.

Constant Step Scheme for the Optimal Gradient Method for the Min-Max

Step 0: Choose
$$\boldsymbol{x}_0 \in Q$$
, $\alpha_0 \in (0,1)$ such that $\frac{\alpha_0(\alpha_0L-\mu)}{1-\alpha_0} > 0$, $\mu \leq \frac{\alpha_0(\alpha_0L-\mu)}{1-\alpha_0} \leq L$, set $\boldsymbol{y}_0 := \boldsymbol{x}_0$, $k := 0$.

Step 1: Compute
$$f_i(\boldsymbol{y}_k)$$
 and $\nabla f_i(\boldsymbol{y}_k)$ $(i = 1, 2, ..., m)$.

Step 2: Set
$$x_{k+1} := x_f(y_k; L) := \arg\min_{x \in Q} \left[\max_{i=1,2,...,m} f_i(y_k) + \langle \nabla f_i(y_k), x - y_k \rangle + \frac{\alpha_k(\alpha_k L - \mu)}{2(1 - \alpha_k)} \|x - y_k\|_2^2 \right].$$
Step 3: Compute $\alpha_{k+1} \in (0,1)$ from the equation $\alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + \frac{\mu}{L}\alpha_{k+1}.$
Step 4: Set $\beta_k := \frac{\alpha_k(1 - \alpha_k)}{\alpha_k^2 + \alpha_{k+1}}.$
Step 5: Set $y_{k+1} := x_{k+1} + \beta_k(x_{k+1} - x_k), \ k := k+1 \ \text{and go to Step 1}.$

Step 3: Compute
$$\alpha_{k+1} \in (0,1)$$
 from the equation $\alpha_{k+1}^2 = (1-\alpha_{k+1})\alpha_k^2 + \frac{\mu}{L}\alpha_{k+1}$.

Step 4: Set
$$\beta_k := \frac{\alpha_k(1-\alpha_k)}{\alpha_k^2 + \alpha_{k+1}}$$

Step 5: Set
$$y_{k+1} := x_{k+1} + \beta_k(x_{k+1} - x_k), k := k+1$$
 and go to Step 1.

The rate of converge of this method is exactly the same as Theorem 8.6 for $\gamma_0 := \alpha_0(\alpha_0 L \mu$ /(1 - α_0), but we need to solve a convex program in Step 2 for each iteration, and it can turn the method computationally expensive.

9.1 Exercises

1. Prove Lemma 9.4.