8.1.2 Optimal Gradient Method for Smooth (Differentiable) Convex Functions

In the case $\mu=0$, there are much simpler variation of the method ${ }^{5}$.

Nesterov's Original Optimal Gradient Method for Smooth Convex Function	
Step 0:	Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, set $\boldsymbol{y}_{0}:=\boldsymbol{x}_{0}, t_{0}:=1$, and $k:=0$.
Step 1:	Compute $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)$.
Step 2:	Set $\boldsymbol{x}_{k+1}:=\boldsymbol{y}_{k}-\frac{1}{L} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)$.
Step 3:	$t_{k+1}:=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$.
Step 4:	Set $\boldsymbol{y}_{k+1}:=\boldsymbol{x}_{k+1}+\frac{t_{k}-1}{t_{k+1}}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right), k:=k+1$ and go to Step 1.

Moreover, there is a simpler variant of this method.

Variant of Nesterov's Optimal Gradient Method for Smooth Convex Function	
Step 0:	Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, set $\boldsymbol{y}_{0}:=\boldsymbol{x}_{0}$ and $k:=1$.
Step 1:	Compute $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k-1}\right)$.
Step 2:	Set $\boldsymbol{x}_{k}:=\boldsymbol{y}_{k-1}-\frac{1}{L} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k-1}\right)$.
Step 3:	Set $\boldsymbol{y}_{k}:=\boldsymbol{x}_{k}+\frac{1}{k+2}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right), k:=k+1$ and go to Step 1.

All of above methods generate sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ such that

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \frac{4 L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}}{(k+1)^{2}}
$$

for $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$.
Recently, it was shown that an extension of this method guarantee a $o\left(k^{-2}\right)$ convergence for $f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)$ by Attouch and Peypouquet ${ }^{6}$.

Kim-Fessler's Optimal Gradient Method for Smooth Convex Function

Step 0: Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, set $\boldsymbol{y}_{0}:=\boldsymbol{x}_{0}, t_{0}:=1$, and $k:=0$.
Step 1: Compute $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)$.
Step 2: Set $\boldsymbol{x}_{k+1}:=\boldsymbol{y}_{k}-\frac{1}{L} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)$.
Step 3: $\quad t_{k+1}:=\left\{\begin{array}{ll}\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}, & \text { if } k<N-2 \\ \frac{1+\sqrt{1+8 t_{k}^{2}}}{2}, & \text { if } k=N-1\end{array}\right.$.
Step 4: Set $\boldsymbol{y}_{k+1}:=\boldsymbol{x}_{k+1}+\frac{t_{k}-1}{t_{k+1}}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)+\frac{t_{k}}{t_{k+1}}\left(\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right), k:=k+1$ and go to Step 1.
It can be shown that the Kim-Fessler's method generate sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{N}$ such that

$$
f\left(\boldsymbol{x}_{N}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \frac{2 L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}}{(N+2)^{2}}
$$

for $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)^{7}$.

[^0]
8.2 Exercises

1. We want to justify the Constant Step Scheme of the Optimal Gradient Method. This is a particular case of the General Scheme for the Optimal Gradient Method for the following choice:

$$
\begin{aligned}
\gamma_{k+1} & :=L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{y}_{k} & =\frac{\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}}{\gamma_{k}+\alpha_{k} \mu} \\
\boldsymbol{x}_{k+1} & =\boldsymbol{y}_{k}-\frac{1}{L} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right) \\
\boldsymbol{v}_{k+1} & =\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}} .
\end{aligned}
$$

(a) Show that $\boldsymbol{v}_{k+1}=\boldsymbol{x}_{k}+\frac{1}{\alpha_{k}}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)$.
(b) Show that $\boldsymbol{y}_{k+1}=\boldsymbol{x}_{k+1}+\beta_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)$ for $\beta_{k}=\frac{\alpha_{k+1} \gamma_{k+1}\left(1-\alpha_{k}\right)}{\alpha_{k}\left(\gamma_{k+1}+\alpha_{k+1} \mu\right)}$.
(c) Show that $\beta_{k}=\frac{\alpha_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}^{2}+\alpha_{k+1}}$.
(d) Explain why $\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+\frac{\mu}{L} \alpha_{k+1}$.

9 Extension of the Optimal Gradient Method (First-Order Method, Accelerated Gradient Method, Fast Gradient Method) for the Min-Max Problems over Simple Closed Convex Sets

Suppose we are given Q a closed convex subset of \mathbb{R}^{n}, simple enough to have an easy projection onto it. E.g., positive orthant, n-dimensional box, simplex, Euclidean ball, ellipsoids, etc.

Given $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}(Q)(i=1,2, \ldots, m)$, we define the following function $f: Q \rightarrow \mathbb{R}$,

$$
\begin{equation*}
f(\boldsymbol{x}):=\max _{1 \leq i \leq m} f_{i}(\boldsymbol{x}) \quad \text { for } \quad \boldsymbol{x} \in Q \tag{18}
\end{equation*}
$$

This function is non-differentiable in general, but convex (see Theorem 5.6). We will see that the method discussed so far can be easily adapted for the following min-max-type convex optimization problem.

$$
\begin{cases}\text { minimize } & f(\boldsymbol{x}) \tag{19}\\ \text { subject to } & \boldsymbol{x} \in Q,\end{cases}
$$

where Q is a closed convex set with a simple structure, and $f(\boldsymbol{x})$ is defined as above.
For a given $\overline{\boldsymbol{x}} \in Q$, let us define the following linearization of $f(\boldsymbol{x})$ at $\overline{\boldsymbol{x}}$.

$$
f(\overline{\boldsymbol{x}} ; \boldsymbol{x}):=\max _{1 \leq i \leq m}\left[f_{i}(\overline{\boldsymbol{x}})+\left\langle\boldsymbol{\nabla} \boldsymbol{f}_{i}(\overline{\boldsymbol{x}}), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle\right], \quad \text { for } \boldsymbol{x} \in Q .
$$

Lemma 9.1 Let $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}(Q) \quad(i=1,2, \ldots, m)$ and $\overline{\boldsymbol{x}} \in Q$. For $\boldsymbol{x} \in Q$, we have

$$
\begin{aligned}
& f(\boldsymbol{x}) \geq f(\overline{\boldsymbol{x}} ; \boldsymbol{x})+\frac{\mu}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}, \\
& f(\boldsymbol{x}) \leq f(\overline{\boldsymbol{x}} ; \boldsymbol{x})+\frac{L}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2} .
\end{aligned}
$$

Proof:

It follows from the properties of $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}(Q)$.
Theorem 9.2 A point $\boldsymbol{x}^{*} \in Q$ is an optimal solution of (19) with $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}(Q)(i=1,2, \ldots, m)$ if and only if

$$
f\left(\boldsymbol{x}^{*} ; \boldsymbol{x}\right) \geq f\left(\boldsymbol{x}^{*} ; \boldsymbol{x}^{*}\right)=f\left(\boldsymbol{x}^{*}\right), \quad \forall \boldsymbol{x} \in Q
$$

Proof:
Indeed, if the inequality is true, it follows from Lemma 9.1 that

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*} ; \boldsymbol{x}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2} \geq f\left(\boldsymbol{x}^{*}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2} \geq f\left(\boldsymbol{x}^{*}\right), \quad \forall \boldsymbol{x} \in Q
$$

For the converse, let \boldsymbol{x}^{*} be an optimal solution of the minimization problem (19). Assume by contradiction that there is a $\boldsymbol{x} \in Q$ such that $f\left(\boldsymbol{x}^{*} ; \boldsymbol{x}\right)<f\left(\boldsymbol{x}^{*}\right)$.

Therefore, from the definition of $f(\cdot)$, letting $j \in\{1,2, \ldots, m\}$ (which temporarily we assume is unique) such that $f_{j}\left(\boldsymbol{x}^{*}\right)=\max _{1 \leq i \leq m} f_{i}\left(\boldsymbol{x}^{*}\right)$, we have

$$
\begin{equation*}
f_{i}\left(\boldsymbol{x}^{*}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}_{i}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle<f_{j}\left(\boldsymbol{x}^{*}\right) \quad \text { for } \quad i=1,2, \ldots, m \tag{20}
\end{equation*}
$$

Notice that $\boldsymbol{x}^{*}+\alpha\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right) \in Q$ for $\alpha \in[0,1]$ since Q is convex. Then, calling $\phi_{i}(\alpha):=f_{i}\left(\boldsymbol{x}^{*}+\right.$ $\alpha\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)$), we have $\phi_{i}^{\prime}(0)=\left\langle\boldsymbol{\nabla} \boldsymbol{f}_{i}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle$ for $(i=1,2, \ldots, m)$. Moreover, $\phi_{i}(0)=f_{i}\left(\boldsymbol{x}^{*}\right)<$ $f_{j}\left(\boldsymbol{x}^{*}\right)$ for $i=1,2, \ldots, m, i \neq j, \phi_{j}(0)=f_{j}\left(\boldsymbol{x}^{*}\right)=f\left(\boldsymbol{x}^{*}\right)$, and $\phi_{j}^{\prime}(0)=\left\langle\boldsymbol{\nabla} \boldsymbol{f}_{j}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle<0$ from (20) for $i=j$. Therefore, there exists $\tilde{\alpha}>0$ small enough such that

$$
\phi_{j}(\tilde{\alpha})=f_{j}\left(\boldsymbol{x}^{*}+\tilde{\alpha}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)<\phi_{j}(0)=f_{j}\left(\boldsymbol{x}^{*}\right)=f\left(\boldsymbol{x}^{*}\right)
$$

and

$$
\phi_{i}(\tilde{\alpha})=f_{i}\left(\boldsymbol{x}^{*}+\tilde{\alpha}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)<f_{j}\left(\boldsymbol{x}^{*}\right) \text { for } i=1,2, \ldots, m, \quad i \neq j
$$

Finally, we have $f\left(\boldsymbol{x}^{*}+\tilde{\alpha}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)=\max _{1 \leq i \leq m} f_{i}\left(\boldsymbol{x}^{*}+\tilde{\alpha}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)<f_{j}\left(\boldsymbol{x}^{*}\right)=\max _{1 \leq i \leq m} f_{i}\left(\boldsymbol{x}^{*}\right)=$ $f\left(\boldsymbol{x}^{*}\right)$. Therefore, we arrived to a contradiction. In the case there exists j_{1}, j_{2} such that $f\left(\boldsymbol{x}^{*}\right)=$ $f_{j_{1}}\left(\boldsymbol{x}^{*}\right)=f_{j_{2}}\left(\boldsymbol{x}^{*}\right)$ and $f_{j_{1}}\left(\boldsymbol{x}^{*}+\tilde{\alpha}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)<f_{j_{2}}\left(\boldsymbol{x}^{*}+\tilde{\alpha}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right.$, we choose $j=j_{2}$ and still we have the same conclusion.

Corollary 9.3 Let \boldsymbol{x}^{*} be a minimum of a max-type function $f(\boldsymbol{x})$ over the set Q as (18). If $f_{i} \in \mathcal{S}_{\mu}^{1}(Q)(i=1,2, \ldots, m)$, then

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2}, \quad \forall \boldsymbol{x} \in Q
$$

Proof:
From Lemma 9.1 and Theorem 9.2, we have for $\forall \boldsymbol{x} \in Q$,

$$
\begin{aligned}
f(\boldsymbol{x}) & \geq f\left(\boldsymbol{x}^{*} ; \boldsymbol{x}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2} \\
& \geq f\left(\boldsymbol{x}^{*} ; \boldsymbol{x}^{*}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2}=f\left(\boldsymbol{x}^{*}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2}
\end{aligned}
$$

Lemma 9.4 Let $f_{i} \in \mathcal{S}_{\mu}^{1}(Q)$ for $(i=1,2, \ldots, m)$ with $\mu>0$ and Q be a closed convex set. Then there is a unique solution \boldsymbol{x}^{*} for the problem (19).

Proof:

Left for exercise.
Definition 9.5 Let $f_{i} \in \mathcal{C}^{1}(Q)(i=1,2, \ldots, m), Q$ a closed convex set, $\overline{\boldsymbol{x}} \in Q$, and $\gamma>0$.
Denote by

$$
\begin{aligned}
\boldsymbol{x}_{f}(\overline{\boldsymbol{x}} ; \gamma) & :=\arg \min _{\boldsymbol{y} \in Q}\left[f(\overline{\boldsymbol{x}} ; \boldsymbol{y})+\frac{\gamma}{2}\|\boldsymbol{y}-\overline{\boldsymbol{x}}\|_{2}^{2}\right] \\
\boldsymbol{g}_{f}(\overline{\boldsymbol{x}} ; \gamma) & :=\gamma\left(\overline{\boldsymbol{x}}-\boldsymbol{x}_{f}(\overline{\boldsymbol{x}} ; \gamma)\right)
\end{aligned}
$$

We call $\boldsymbol{g}_{f}(\overline{\boldsymbol{x}} ; \gamma)$ the gradient mapping of max-type function f on Q. Observe that due to Lemma 9.4, $\boldsymbol{x}_{f}(\overline{\boldsymbol{x}} ; \gamma)$ exists and it is uniquely defined.

Theorem 9.6 Let $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}(Q)(i=1,2, \ldots, m), \gamma \geq L, \gamma>0, Q$ a closed convex set, and $\overline{\boldsymbol{x}} \in Q$. Then

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}_{f}(\overline{\boldsymbol{x}} ; \gamma)\right)+\left\langle\boldsymbol{g}_{f}(\overline{\boldsymbol{x}} ; \gamma), \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{f}(\overline{\boldsymbol{x}} ; \gamma)\right\|_{2}^{2}+\frac{\mu}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}, \quad \forall \boldsymbol{x} \in Q
$$

Proof: Let us use the following notation: $\boldsymbol{x}_{f}:=\boldsymbol{x}_{f}(\overline{\boldsymbol{x}} ; \gamma)$ and $\boldsymbol{g}_{f}:=\boldsymbol{g}_{f}(\overline{\boldsymbol{x}} ; \gamma)$.
From Lemma 9.1 and Corollary 9.3 (taking $f(\boldsymbol{x})$ in there as $\left.f(\overline{\boldsymbol{x}} ; \boldsymbol{x})+\frac{\gamma}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}\right)$, we have $\forall \boldsymbol{x} \in Q$,

$$
\begin{aligned}
f(\boldsymbol{x})-\frac{\mu}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2} & \geq f(\overline{\boldsymbol{x}} ; \boldsymbol{x}) \\
& =f(\overline{\boldsymbol{x}} ; \boldsymbol{x})+\frac{\gamma}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2}-\frac{\gamma}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2} \\
& \geq f\left(\overline{\boldsymbol{x}} ; \boldsymbol{x}_{f}\right)+\frac{\gamma}{2}\left\|\boldsymbol{x}_{f}-\overline{\boldsymbol{x}}\right\|_{2}^{2}+\frac{\gamma}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{f}\right\|_{2}^{2}-\frac{\gamma}{2}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|_{2}^{2} \\
& =f\left(\overline{\boldsymbol{x}} ; \boldsymbol{x}_{f}\right)+\frac{\gamma}{2}\left\|\boldsymbol{x}_{f}-\overline{\boldsymbol{x}}\right\|_{2}^{2}+\frac{\gamma}{2}\left\langle\overline{\boldsymbol{x}}-\boldsymbol{x}_{f}, 2 \boldsymbol{x}-\boldsymbol{x}_{f}-\overline{\boldsymbol{x}}\right\rangle \\
& =f\left(\overline{\boldsymbol{x}} ; \boldsymbol{x}_{f}\right)+\frac{\gamma}{2}\left\|\boldsymbol{x}_{f}-\overline{\boldsymbol{x}}\right\|_{2}^{2}+\frac{\gamma}{2}\left\langle\overline{\boldsymbol{x}}-\boldsymbol{x}_{f}, 2(\boldsymbol{x}-\overline{\boldsymbol{x}})+\overline{\boldsymbol{x}}-\boldsymbol{x}_{f}\right\rangle \\
& =f\left(\overline{\boldsymbol{x}} ; \boldsymbol{x}_{f}\right)+\frac{\gamma}{2}\left\|\boldsymbol{x}_{f}-\overline{\boldsymbol{x}}\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{f}, \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{f}\right\|_{2}^{2} \\
& \geq f\left(\boldsymbol{x}_{f}\right)+\left\langle\boldsymbol{g}_{f}, \boldsymbol{x}-\overline{\boldsymbol{x}}\right\rangle+\frac{1}{2 \gamma}\left\|\boldsymbol{g}_{f}\right\|_{2}^{2}
\end{aligned}
$$

where the last inequality is due to the fact that $\gamma \geq L$.
Now, we are ready to define our estimated sequence. Assume that $f_{i} \in \mathcal{S}_{\mu, L}^{1,1}(Q)(i=1,2, \ldots, m)$ possible with $\mu=0$ (which means that $f_{i} \in \mathcal{F}_{L}^{1,1}(Q)$), $\boldsymbol{x}_{0} \in Q$, and $\gamma_{0}>0$. Define

$$
\begin{aligned}
\phi_{0}(\boldsymbol{x}):= & f\left(\boldsymbol{x}_{0}\right)+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{2}^{2} \\
\phi_{k+1}(\boldsymbol{x}):= & \left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right)+\frac{1}{2 L}\left\|\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle\right. \\
& \left.+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right]
\end{aligned}
$$

for the sequences $\left\{\alpha_{k}\right\}_{k=0}^{\infty}$ and $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ which will be defined later.
Similarly to the previous subsection, we can prove that $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ can be written in the form

$$
\phi_{k}(\boldsymbol{x})=\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|_{2}^{2}
$$

for $\phi_{0}^{*}=f\left(\boldsymbol{x}_{0}\right), \boldsymbol{v}_{0}=\boldsymbol{x}_{0}$:

$$
\begin{aligned}
\gamma_{k+1}= & \left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{v}_{k+1}= & \frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right] \\
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right)+\left(\frac{\alpha_{k}}{2 L}-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\right)\left\|\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right)
\end{aligned}
$$

Now, $\phi_{0}^{*} \geq f\left(\boldsymbol{x}_{0}\right)$. Assuming that $\phi_{k}^{*} \geq f\left(\boldsymbol{x}_{k}\right)$,

$$
\begin{aligned}
\phi_{k+1}^{*} \geq & \left(1-\alpha_{k}\right) f\left(\boldsymbol{x}_{k}\right)+\alpha_{k} f\left(\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right)+\left(\frac{\alpha_{k}}{2 L}-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\right)\left\|\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left\langle\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle \\
\geq & f\left(\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right)+\left(\frac{1}{2 L}-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\right)\left\|\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right)\right\|_{2}^{2} \\
& +\left(1-\alpha_{k}\right)\left\langle\boldsymbol{g}_{f}\left(\boldsymbol{y}_{k} ; L\right), \frac{\alpha_{k} \gamma_{k}}{\gamma_{k+1}}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)+\boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right\rangle+\frac{\left(1-\alpha_{k}\right) \mu}{2}\left\|\boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right\|_{2}^{2}
\end{aligned}
$$

where the last inequality follows from Theorem 9.6 for $\gamma=L$.
Therefore, if we choose

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right) \\
L \alpha_{k}^{2} & =\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\gamma_{k+1} & :=L \alpha_{k}^{2} \\
\boldsymbol{y}_{k} & =\frac{1}{\gamma_{k}+\alpha_{k} \mu}\left(\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}\right)
\end{aligned}
$$

we obtain $\phi_{k+1}^{*} \geq f\left(\boldsymbol{x}_{k+1}\right)$ as desired.
Hereafter, we assume that $L>\mu$ to exclude the trivial case $L=\mu$ with finished in one iteration.

Constant Step Scheme for the Optimal Gradient Method for the Min-Max Problem

Step 0: Choose $\boldsymbol{x}_{0} \in Q, \alpha_{0} \in(0,1)$ such that $\frac{\alpha_{0}\left(\alpha_{0} L-\mu\right)}{1-\alpha_{0}}>0, \mu \leq \frac{\alpha_{0}\left(\alpha_{0} L-\mu\right)}{1-\alpha_{0}} \leq L$, set $\boldsymbol{y}_{0}:=\boldsymbol{x}_{0}, k:=0$.
Step 1: Compute $f_{i}\left(\boldsymbol{y}_{k}\right)$ and $\boldsymbol{\nabla} \boldsymbol{f}_{i}\left(\boldsymbol{y}_{k}\right)(i=1,2, \ldots, m)$.
Step 2: Set $\boldsymbol{x}_{k+1}:=\boldsymbol{x}_{f}\left(\boldsymbol{y}_{k} ; L\right):=\arg \min _{\boldsymbol{x} \in Q}\left[\max _{i=1,2, \ldots, m} f_{i}\left(\boldsymbol{y}_{k}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}_{i}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle\right.$

$$
\left.+\frac{\alpha_{k}\left(\alpha_{k} L-\mu\right)}{2\left(1-\alpha_{k}\right)}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right]
$$

Step 3: Compute $\alpha_{k+1} \in(0,1)$ from the equation $\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+\frac{\mu}{L} \alpha_{k+1}$.
Step 4: Set $\beta_{k}:=\frac{\alpha_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}^{2}+\alpha_{k+1}}$.
Step 5: Set $\boldsymbol{y}_{k+1}:=\boldsymbol{x}_{k+1}+\beta_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right), k:=k+1$ and go to Step 1.
The rate of converge of this method is exactly the same as Theorem 8.6 for $\gamma_{0}:=\alpha_{0}\left(\alpha_{0} L-\right.$ $\mu) /\left(1-\alpha_{0}\right)$, but we need to solve a convex program in Step 2 for each iteration, and it can turn the method computationally expensive.

9.1 Exercises

1. Prove Lemma 9.4.

[^0]: ${ }^{5} Y$. Nesterov, "A method for solving the convex programming problem with convergence rate $\mathcal{O}\left(1 / k^{2}\right)$," Dokl. Akad. Nauk SSSR 269 (1983), pp. 543-547. It also has a scheme to estimate L in the case this constant in unknown.
 ${ }^{6}$ Hedy Attouch and Juan Peypouquet, "The rate of convergence of Nesterovs accelerated forward-backward method is actually faster than $1 / k^{2}$," SIAM Journal on Optimization 26 (2016), pp. 1824-1834.
 ${ }^{7}$ Donghwan Kim and Jeffrey A. Fessler, "Optimized first-order methods for smooth convex minimization," Mathematical Programming 159 (2016), pp. 81-107.

