
Now, since ∇fµ,L(x0) = −µ(L/µ−1)
4 e1, and A is a tridiagonal matrix, [xk]i = 0 for i = k+1, k+

2, . . ., and

∥xk − x∗∥22 ≥
∞∑

i=k+1

[x∗]2i =

∞∑
i=k+1

q2i =
q2(k+1)

1− q2
= q2k∥x0 − x∗∥22.

Finally, the first inequality follows from Corollary 5.17.

7 The Steepest Descent Method for Differentiable Convex and
Differentiable Strongly Convex Functions with Lipschitz Con-
tinuous Gradients

Let us consider the steepest descent method with constant step h.

Theorem 7.1 Let f ∈ F1,1
L (Rn), and 0 < h < 2

L . The steepest descent method with constant step
generates a sequence which converges as follows:

f(xk)− f(x∗) ≤ 2(f(x0)− f(x∗))∥x0 − x∗∥22
2∥x0 − x∗∥22 + kh(2− Lh)(f(x0)− f(x∗))

.

Proof:
Denote rk = ∥xk − x∗∥2. Then

r2k+1 = ∥xk − x∗ − h∇f(xk)∥22
= r2k − 2h⟨∇f(xk),xk − x∗⟩+ h2∥∇f(xk)∥22
= r2k − 2h⟨∇f(xk)−∇f(x∗),xk − x∗⟩+ h2∥∇f(xk)∥22

≤ r2k − h

(
2

L
− h

)
∥∇f(xk)∥22,

where the last inequality follows from Theorem 5.13.
Therefore, since 0 < h < 2

L , rk+1 < rk < · · · < r0.
Now

f(xk+1) ≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22

= f(xk)− h∥∇f(xk)∥22 +
L

2
∥ − h∇f(xk)∥22 (12)

= f(xk)− ω∥∇f(xk)∥22 < f(xk), (13)

where ω = h(1− L
2 h). Denoting by ∆k = f(xk)− f(x∗), from the convexity of f(x), Theorem 5.7,

and the Cauchy-Schwarz inequality,

∆k = f(xk)− f(x∗) ≤ ⟨∇f(xk),xk − x∗⟩ ≤ ∥∇f(xk)∥2rk ≤ ∥∇f(xk)∥2r0. (14)

Combining (13) and (14),

∆k+1 ≤ ∆k −
ω

r20
∆2

k.

Thus dividing by ∆k∆k+1,
1

∆k+1
≥ 1

∆k
+

ω

r20

∆k

∆k+1
≥ 1

∆k
+

ω

r20
.

since ∆k
∆k+1

≥ 1. Summing up these inequalities we get

1

∆k+1
≥ 1

∆0
+

ω

r20
(k + 1).
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To obtain the optimal step size, it is sufficient to find the maximum of the function ω := ω(h) =
h(1− L

2 h) which is h∗ := 1/L.

Corollary 7.2 If f ∈ F1,1
L (Rn), the steepest descent method with constant step h = 1/L yields

f(xk)− f(x∗) ≤ 2L∥x0 − x∗∥22
k + 4

.

That is, {f(xk)}∞k=0 converges R-sublinearly to f(x∗).

Proof:
Left for exercise.

Theorem 7.3 Let f ∈ S1,1
µ,L(R

n), and 0 < h ≤ 2
µ+L . The steepest descent method with constant

step generates a sequence which converges as follows:

f(xk)− f(x∗) ≤ L

2

(
1− 2hµL

µ+ L

)k

∥x0 − x∗∥22,

∥xk − x∗∥22 ≤
(
1− 2hµL

µ+ L

)k

∥x0 − x∗∥22.

If h = 2
µ+L , then

f(xk)− f(x∗) ≤ L

2

(
L/µ− 1

L/µ+ 1

)2k

∥x0 − x∗∥22,

∥xk − x∗∥2 ≤
(
L/µ− 1

L/µ+ 1

)k

∥x0 − x∗∥2.

That is, {xk}∞k=0 and {f(xk)}∞k=0 converges R-linearly to x∗ and f(x∗), respectively.

Proof:
Denote rk = ∥xk − x∗∥2. Then

r2k+1 = ∥xk − x∗ − h∇f(xk)∥22
= r2k − 2h⟨∇f(xk),xk − x∗⟩+ h2∥∇f(xk)∥22
= r2k − 2h⟨∇f(xk)−∇f(x∗),xk − x∗⟩+ h2∥∇f(xk)∥22

≤ r2k − 2h

(
µL

µ+ L
r2k +

1

µ+ L
∥∇f(xk)−∇f(x∗)∥22

)
+ h2∥∇f(xk)∥22

=

(
1− 2hµL

µ+ L

)
r2k + h

(
h− 2

µ+ L

)
∥∇f(xk)∥22

from Theorems 5.13 and 5.23, and it proves the first two inequalities.
Now, for h = 2/(L+ µ) and again from Theorem 5.13,

f(xk)− f(x∗)− ⟨∇f(x∗),xk − x∗⟩ ≤ L

2
∥xk − x∗∥22

≤ L

2

(
L/µ− 1

L/µ+ 1

)2k

r20.
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Theorem 7.4 (Yuan 2010) 2 In the special case of a strongly convex quadratic function f(x) =
1
2⟨Ax,x⟩+ ⟨a,x⟩+ α with λ1(A) = L ≥ λn(A) = µ > 0, we can obtain

∥xk − x∗∥2 ≤

 L/µ− 1

L/µ+
√

µ
2L

k

∥x0 − x∗∥2

for the steepest descent method with “exact line search”.

• Note that the previous result for the steepest descent method, Theorem 4.18, was only a local
result. Theorems 7.1 and 7.3 guarantee that the steepest descent method converges for any
starting point x0 ∈ Rn (due to convexity).

• Comparing the rate of convergence of the steepest descent method for the classes F1,1
L (Rn)

and S1,1
µ,L(R

n) (Theorems 7.1, Corollary 7.2, and 7.3, respectively) with their lower complexity
bounds (Theorems 6.1 and 6.2, respectively), we possible have a huge gap.

7.1 Exercises

1. Prove Corollary 7.2.

2. Consider a sequence {βk}∞k=0 which converges to zero.

The sequence is said to converge Q-sublinearly if

lim
k→∞

sup

∣∣∣∣βk+1

βk

∣∣∣∣ = 1.

A zero converging sequence {βk}∞k=0 is said to converge R-sublinearly if it is dominated by a
Q-sublinearly converging sequence. That is, if there is a Q-sublinearly converging sequence
{β̂k}∞k=0 such that 0 ≤ |βk| ≤ β̂k.

(a) Give an example of a Q-sublinear converging sequence which is not Q-linear converging
sequence.

(b) Give an example of a R-sublinear converging sequence which is not R-linear converging
sequence.

8 The Optimal Gradient Method (First-Order Method, Acceler-
ated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov3 in 1983. In [Nesterov03, Nesterov18],
he gives a reinterpretation of the algorithm and provides another justification of it which attains
the same complexity bound of the original article.

Definition 8.1 A pair of sequences {ϕk(x)}∞k=0 and {λk}∞k=0 with λk ≥ 0 is called an estimate
sequence of the function f(x) if

λk → 0,

and for any x ∈ Rn and any k ≥ 0, we have

ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x).

2Y.-X. Yuan, “A short note on the Q-linear convergence of the steepest descent method”, Mathematical Program-
ming 123 (2010), pp. 339–343.

3Y. Nesterov, “A method for solving the convex programming problem with convergence rate O(1/k2),” Dokl.
Akad. Nauk SSSR 269 (1983), pp. 543–547.
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Lemma 8.2 Given an estimate sequence {ϕk(x)}∞k=0, {λk}∞k=0, and if for some sequence {xk}∞k=0

we have
f(xk) ≤ ϕ∗

k := min
x∈Rn

ϕk(x)

then f(xk)− f(x∗) ≤ λk(ϕ0(x
∗)− f(x∗)) → 0.

Proof:
It follows from the definition.

Lemma 8.3 Assume that

1. f ∈ S1
µ(Rn), possible with µ = 0 (which means that f ∈ F1(Rn)).

2. ϕ0(x) is an arbitrary function on Rn.

3. {yk}∞k=0 is an arbitrary sequence in Rn.

4. {αk}∞k=−1 is an arbitrary sequence such that α−1 = 0, αk ∈ (0, 1] (k = 0, 1, . . .), and

∞∑
k=0

αk =

∞.

Then the pair of sequences

{
k−1∏
i=−1

(1− αi)

}∞

k=0

and {ϕk(x)}∞k=0 recursively defined as

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

]

is an estimate sequence.

Proof:
Let us prove by induction in k. For k = 0, ϕ0(x) = (1− (1− α−1)) f(x) + (1− α−1)ϕ0(x) since

α−1 = 0. Suppose that the induction hypothesis is valid for any index equal or smaller than k.
Since f ∈ S1

µ(Rn),

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

]
≤ (1− αk)ϕk(x) + αkf(x)

=

(
1− (1− αk)

k−1∏
i=−1

(1− αi)

)
f(x) + (1− αk)

(
ϕk(x)−

(
1−

k−1∏
i=−1

(1− αi)

)
f(x)

)

≤

(
1− (1− αk)

k−1∏
i=−1

(1− αi)

)
f(x) + (1− αk)

k−1∏
i=−1

(1− αi)ϕ0(x)

=

(
1−

k∏
i=−1

(1− αi)

)
f(x) +

k∏
i=−1

(1− αi)ϕ0(x).

Now, it remains to show that
∏k−1

i=−1(1−αi) → 0. This is equivalent to show that log
∏k−1

i=−1(1−
αi) → −∞. Using the inequality log(1− a) ≤ −a for a ∈ (−∞, 1), we have

log
k−1∏
i=−1

(1− αi) =
k−1∑
i=−1

log(1− αi) ≤ −
k−1∑
i=−1

αi → −∞

due to our assumption.
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Lemma 8.4 Let f : Rn → R be an arbitrary continuously differentiable function. Also let ϕ∗
0 ∈ R,

µ ≥ 0, γ0 ≥ 0, v0 ∈ Rn, {yk}∞k=0, and {αk}∞k=0 given arbitrarily sequences such that α−1 = 0,
αk ∈ (0, 1] (k = 0, 1, . . .). In the special case of µ = 0, we further assume that γ0 > 0 and
αk < 1 (k = 0, 1, . . .). Let ϕ0(x) = ϕ∗

0 +
γ0
2 ∥x− v0∥22. If we define recursively ϕk+1(x) such as in

the previous lemma:

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

]
,

ϕk+1(x) preserve the canonical form

ϕk+1(x) = ϕ∗
k+1 +

γk+1

2
∥x− vk+1∥22 (15)

for

γk+1 = (1− αk)γk + αkµ,

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αk∇f(yk)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1
∥∇f(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨∇f(yk),vk − yk⟩

)
.

Proof:
We will use again the induction hypothesis in k. Note that ∇2ϕ0(x) = γ0I. Now, for any k ≥ 0,

∇2ϕk+1(x) = (1− αk)∇2ϕk(x) + αkµI = ((1− αk)γk + αkµ) I = γk+1I.

Therefore, ϕk+1(x) is a quadratic function of the form (15). Also, γk+1 > 0 since µ > 0 and
αk > 0 (k = 0, 1, . . .); or if µ = 0, we assumed that γ0 > 0 and αk ∈ (0, 1) (k = 0, 1, . . .).

From the first-order optimality condition

∇ϕk+1(x) = (1− αk)∇ϕk(x) + αk∇f(yk) + αkµ(x− yk)

= (1− αk)γk(x− vk) + αk∇f(yk) + αkµ(x− yk) = 0.

Thus,

x = vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αk∇f(yk)]

is the minimal optimal solution of ϕk+1(x).
Finally, from what we proved so far and from the definition

ϕk+1(yk) = ϕ∗
k+1 +

γk+1

2 ∥yk − vk+1∥22
= (1− αk)ϕk(yk) + αkf(yk)
= (1− αk)

(
ϕ∗
k +

γk
2 ∥yk − vk∥22

)
+ αkf(yk).

(16)

Now,

vk+1 − yk =
1

γk+1
[(1− αk)γk(vk − yk)− αk∇f(yk)] .

Therefore,

γk+1

2 ∥vk+1 − yk∥22 = 1
2γk+1

[
(1− αk)

2γ2k∥vk − yk∥22 + α2
k∥∇f(yk)∥22

−2αk(1− αk)γk⟨∇f(yk),vk − yk⟩] .
(17)

Substituting (17) into (16), we obtain the expression for ϕ∗
k+1.
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Theorem 8.5 Let L ≥ µ ≥ 0. Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that

f ∈ F1,1
L (Rn)). For given x0 ∈ Rn, let us choose ϕ∗

0 = f(x0) and v0 := x0. Consider also γ0 > 0
such that L ≥ γ0 ≥ µ ≥ 0. Define the sequences {αk}∞k=−1, {γk}∞k=0, {yk}∞k=0, {xk}∞k=0, {vk}∞k=0,
{ϕ∗

k}∞k=0, and {ϕk(x)}∞k=0 for the iteration k starting at k := 0:

α−1 = 0,

αk ∈ (0, 1] root of Lα2
k = (1− αk)γk + αkµ := γk+1,

yk =
αkγkvk + γk+1xk

γk + αkµ
,

xk+1 is such that f(xk+1) ≤ f(yk)−
1

2L
∥∇f(yk)∥22,

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αk∇f(yk)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1
∥∇f(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨∇f(yk),vk − yk⟩

)
,

ϕk+1(x) = ϕ∗
k+1 +

γk+1

2
∥x− vk+1∥22.

Then, we satisfy all the conditions of Lemma 8.2 for λk =
k−1∏
i=−1

(1− αi).

Proof:
In fact, due to Lemmas 8.3 and 8.4, it just remains to show that αk ∈ (0, 1] for (k = 0, 1, . . .)

such that
∞∑
k=0

αk = ∞. In the special case of µ = 0, we must show that αk < 1 (k = 0, 1, . . .). And

finally that f(xk) ≤ ϕ∗
k.

Let us show both using induction hypothesis.
Consider the quadratic equation in α, q0(α) := Lα2 + (γ0 − µ)α − γ0 = 0. Notice that its

discriminant ∆ := (γ0−µ)2+4γ0L is always positive by the hypothesis. Also, q0(0) = −γ0 < 0, due
to the hypothesis again. Therefore, this equation always has a root α0 > 0. Since q0(1) = L−µ ≥ 0,
α0 ≤ 1, and we have α0 ∈ (0, 1]. If µ = 0, and α0 = 1, we will have L = 0 which implies γ0 = 0
which contradicts our hypothesis. Then α0 < 1 in this case. In addition, γ1 := (1−α0)γ0+α0µ > 0
and γ0 + α0µ > 0. The same arguments are valid for any k. Therefore, αk ∈ (0, 1], and αk <
1 (k = 0, 1, . . . , ) if µ = 0.

Finally, Lα2
k = (1 − αk)γk + αkµ ≥ (1 − αk)µ + αkµ = µ. And we have αk ≥

√
µ
L , and

therefore,
∞∑
k=0

αk = ∞, if µ > 0. For the case µ = 0, let us prove first that γk = γ0λk. Obviously

γ0 = γ0λ0(= γ0(1− α−1) = γ0), and assuming the induction hypothesis,

γk+1 = (1− αk)γk + αkµ = (1− αk)γk = (1− αk)γ0λk = γ0λk+1.

Therefore, Lα2
k = γk+1 = γ0λk+1. Since λk is a decreasing sequence and λk > 0,

1√
λk+1

− 1√
λk

=

√
λk −

√
λk+1√

λkλk+1

=
λk − λk+1√

λkλk+1(
√
λk +

√
λk+1)

≥ λk − λk+1√
λkλk+1(

√
λk +

√
λk)

=
λk − λk+1

2λk

√
λk+1

=
λk − (1− αk)λk

2λk

√
λk+1

=
αk

2
√
λk+1

=
1

2

√
γ0
L
.

41



Thus
1√
λk

≥ 1√
λ0

+
k

2

√
γ0
L

= 1 +
k

2

√
γ0
L
.

Finally,

λk ≤ 4L

(2
√
L+ k

√
γ0)2

−→ 0,

which is equivalent to
∑∞

k=0 αk = ∞ as we saw before.
Now for k = 0, f(x0) ≤ ϕ∗

0. Suppose that the induction hypothesis is valid for any index equal
or smaller than k. Due to the previous lemma,

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1
∥∇f(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨∇f(yk),vk − yk⟩

)
≥ (1− αk)f(xk) + αkf(yk)−

α2
k

2γk+1
∥∇f(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨∇f(yk),vk − yk⟩

)
.

Now, since f(x) is convex, f(xk) ≥ f(yk) + ⟨∇f(yk),xk − yk⟩, and multiplying this inequality by
(1− αk) we have:

ϕ∗
k+1 ≥ f(yk)−

α2
k

2γk+1
∥∇f(yk)∥22+(1−αk)⟨∇f(yk),

αkγk
γk+1

(vk−yk)+xk−yk⟩+
αk(1− αk)γkµ

2γk+1
∥yk−vk∥22.

Recall that since ∇f is L-Lipschitz continuous, if we apply Lemma 3.6 to yk and xk+1 = yk −
1
L∇f(yk), we obtain

f(yk)−
1

2L
∥∇f(yk)∥22 ≥ f(xk+1).

Therefore, if we impose
αkγk
γk+1

(vk − yk) + xk − yk = 0

it justifies our choice for yk. And putting

α2
k

2γk+1
=

1

2L

it justifies our choice for αk. Since
αk(1−αk)γkµ

γk+1
≥ 0, we finally obtain ϕ∗

k+1 ≥ f(xk+1) as wished.

The above theorem suggests an algorithm to minimize f ∈ S1,1
µ,L(R

n).
Notice that in the following method, we don’t need the estimated sequence anymore.

Generic Scheme for the Nesterov’s Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, let γ0 > 0 such that L ≥ γ0 ≥ µ ≥ 0.
Set v0 := x0 and k := 0.

Step 1: Compute αk ∈ (0, 1] from the equation Lα2
k = (1− αk)γk + αkµ.

Step 2: Set γk+1 := (1− αk)γk + αkµ, yk :=
αkγkvk+γk+1xk

γk+αkµ
.

Step 3: Compute f(yk) and ∇f(yk).
Step 4: Find xk+1 such that f(xk+1) ≤ f(yk)− 1

2L∥∇f(yk)∥22 using “line search”.

Step 5: Set vk+1 :=
(1−αk)γkvk+αkµyk−αk∇f (yk)

γk+1
, k := k + 1 and go to Step 1.
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Theorem 8.6 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). The

generic scheme of the Nesterov’s optimal gradient method generates a sequence {xk}∞k=0 such that

f(xk)− f(x∗) ≤ λk

[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
≤ min

{(
1−

√
µ

L

)k

,
4L

(2
√
L+ k

√
γ0)2

}[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
,

where α−1 = 0 and λk =
k−1∏
i=−1

(1− αi).

In other words, the sequence {f(xk) − f(x∗)}∞k=0 converges R-sublinearly to zero if µ = 0 and
R-linearly to zero if µ > 0.

In addition, if µ > 0,

∥xk − x∗∥2 ≤ 2

µ
λk

[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
≤ 2

µ
min

{(
1−

√
µ

L

)k

,
4L

(2
√
L+ k

√
γ0)2

}[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
.

That is, {∥xk − x∗∥2}∞k=0 converges R-linearly to zero.

Proof:
The first inequality is obvious from the definitions and Lemma 8.2.

We already know that αk ≥
√

µ
L (k = 0, 1, . . .) (see proof of Theorem 8.5), therefore,

λk =

k−1∏
i=−1

(1− αi) =

k−1∏
i=0

(1− αi) ≤
(
1−

√
µ

L

)k

,

which only has an effect if µ > 0. For the case µ = 0, we already proved in Theorem 8.5.
For µ > 0, using the definition of strong convexity of f(x), we obtain the upper bound for

∥xk − x∗∥22.

Corollary 8.7 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). If

we take γ0 = L, the generic scheme of the Nesterov’s optimal gradient method generates a sequence
{xk}∞k=0 such that

f(xk)− f(x∗) ≤ Lmin

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

In other words, the sequence {f(xk) − f(x∗)}∞k=0 converges R-sublinearly to zero if µ = 0 and
R-linearly to zero if µ > 0.

In the particular case of µ > 0, we have the following inequality:

∥xk − x∗∥22 ≤
2L

µ
min

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

That means that the sequence {∥xk − x∗∥22}∞k=0 converges R-linearly to zero.

Proof:
The two inequalities follow from the previous theorem, f(x0) − f(x∗) ≤ ⟨∇f(x∗),x0 − x∗⟩ +

L
2 ∥x0 − x∗∥22, and the fact that ∇f(x∗) = 0.
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Now, instead of doing a line search at Step 4 of the generic scheme for the Nesterov’s optimal
gradient method, let us consider the constant step size iteration xk+1 := yk − 1

L∇f(yk) (see proof
of Theorem 8.5). From the calculations given at Exercise 1, we arrive to the following simplified
scheme. Hereafter, we assume that L > µ to exclude the trivial case L = µ with finished in one
iteration.

Constant Step Scheme for the Nesterov’s Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that α0(α0L−µ)
1−α0

> 0, µ ≤ α0(α0L−µ)
1−α0

≤ L,

set y0 := x0 and k := 0.
Step 1: Compute ∇f(yk).
Step 2: Set xk+1 := yk − 1

L∇f(yk).
Step 3: Compute αk+1 ∈ (0, 1) from the equation α2

k+1 = (1− αk+1)α
2
k +

µ
Lαk+1.

Step 4: Set βk := αk(1−αk)
α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1.

Observe that the sequences {xk}∞k=0 and {yk}∞k=0 generated by the “Generic Scheme” and the
“Constant Step Scheme” are exactly the same4 if we choose xk+1 := yk − 1

L∇f(yk) in the former
method. Therefore, the result of Theorem 8.6 is still valid for γ0 := α0(α0L− µ)/(1− α0).

Also, if we further impose γ0 = α0(α0L− µ)/(1− α0) = L, we will have the rate of convergence
of Theorem 8.7.

Theorem 8.8 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). The

constant step scheme of the Nesterov’s optimal gradient method generates a sequence {xk}∞k=0 such
that

f(xk)− f(x∗) ≤ Lmin

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22,

and

∥xk − x∗∥22 ≤
2L

µ
min

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

This means that the method is “optimal” for the class of functions F1,1
L (Rn), and S1,1

µ,L(R
n).

Proof: Since the inequalities above are already shown in the previous Corollary 8.7, it remains
to show the “optimality” of the methods for each class of functions.
For the case µ = 0, the “optimality” of the method is obvious from Theorem 6.1.
Let us analyze the case when µ > 0. From Theorem 6.2, we know that we can find a function

f ∈ S∞,1
µ,L (ℓ2) such that

f(xk)− f(x∗) ≥ µ

2

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥22 ≥
µ

2
exp

(
− 4k√

L/µ− 1

)
∥x0 − x∗∥22,

where the second inequality follows from ln(a−1
a+1) = − ln(a+1

a−1) ≥ 1− a+1
a−1 = − 2

a−1 , for a ∈ (1,+∞).
Therefore, the worst case bound to find xk such that f(xk)− f(x∗) < ε can not be better than

k >

√
L/µ− 1

4

(
ln

1

ε
+ ln

µ

2
+ 2 ln ∥x0 − x∗∥2

)
.

On the other hand, from the inequality above

4strictly speaking, there is a one index difference between yk’s on these two methods due to the order yk is defined
in the loop.
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f(xk)− f(x∗) ≤ L∥x0 − x∗∥22
(
1−

√
µ

L

)k

≤ L∥x0 − x∗∥22 exp

(
− k√

L/µ

)
,

where the second inequality follows from ln(1 − a) ≤ −a for a < 1. Therefore, we can guarantee
f(xk)− f(x∗) < ε for k >

√
L/µ

(
ln 1

ε + lnL+ 2 ln ∥x0 − x∗∥2
)
.

Now, let us analize the sequences {xk}∞k=0 generated by the method. Again from Theorem 6.2,

we can find a function f ∈ S∞,1
µ,L (ℓ2) such that

∥x− x∗∥22 ≥

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥22 ≥ exp

(
− 4k√

L/µ− 1

)
∥x0 − x∗∥22.

Therefore, the worst case bound to find xk such that ∥xk − x∗∥22 < ε can not be better than

k >

√
L/µ− 1

4

(
ln

1

ε
+ 2 ln ∥x0 − x∗∥2

)
.

On the other hand, from the inequality above

∥xk − x∗∥22 ≤
2L

µ

(
1−

√
µ

L

)k

∥x0 − x∗∥22 ≤
2L

µ
exp

(
− k√

L/µ

)
∥x0 − x∗∥22.

Therefore, we can guarantee ∥xk − x∗∥22 < ε for k >
√
L/µ

(
ln 1

ε + ln 2L− lnµ+ 2 ln ∥x0 − x∗∥2
)
.

This shows that the constant step scheme for the Nesterov’s gradient method is an optimal
method in terms of complexity for the dominant term ln(ε−1).

Remark 8.9 Many times, you will find in articles that a method has “optimal rate of convergence”.
In our case, if we apply the constant step scheme for the Nesterov’s optimal gradient method
to minx∈Rn f(x), the number of iterations of this method to obtain f(xk) − f(x∗) < ε is k =

k(L,x0,x
∗, ε) = O

(√
L∥x0−x∗∥22

ε

)
and k = k(L, µ,x0,x

∗, ε) = O
(√

L
µ ln

L∥x0−x∗∥22
ε

)
for f(x) ∈

F1,1
L (Rn) and S1,1

L,µ(R
n), respectively.

It is extremely important to note that this value is the maximum number of iterations in the
worse case scenario.

To obtain the total complexity of the method, you need to multiply the above number by the
number of floating-point operations per iteration. This value also vary according to the method.

8.1 Discussion on Particular Cases

8.1.1 Nesterov’s Optimal Gradient Method for Smooth (Differentiable) Strongly Con-
vex Functions

In this case, we have µ > 0 and choosing γ0 := α0(α0L − µ)/(1 − α0) = µ, we can have further
simplifications:

αk =

√
µ

L
, βk =

√
L−√

µ
√
L+

√
µ
.

Nesterov’s Optimal Gradient Method for Smooth Strongly Convex Function

Step 0: Choose x0 ∈ Rn, set y0 := x0 and k := 0.
Step 1: Compute ∇f(yk).
Step 2: Set xk+1 := yk − 1

L∇f(yk).

Step 3: Set yk+1 := xk+1 +
√
L−√

µ√
L+

√
µ
(xk+1 − xk), k := k + 1 and go to Step 1.
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