Proof: Left for exercise.

Corollary 5.22 Let f be a twice continuously differentiable function. Then $f \in \mathcal{S}^{2,1}_{\mu,L}(\mathbb{R}^n)$ if and only if

$$L\boldsymbol{I} \succeq \boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{x}) \succeq \mu \boldsymbol{I}, \quad \forall \boldsymbol{x} \in \mathbb{R}^n.$$

Proof:

Left for exercise.

Theorem 5.23 If $f \in \mathcal{S}^{1,1}_{\mu,L}(\mathbb{R}^n)$, then

$$\frac{\mu L}{\mu + L} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \frac{1}{\mu + L} \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})\|_2^2 \leq \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle, \; \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$

Proof:

If $\mu = L$, from Theorem 5.18 and the definition of $\mathcal{C}^1_{\mu}(\mathbb{R}^n)$,

$$egin{aligned} \langle oldsymbol{
aligned} f(oldsymbol{x}) - oldsymbol{
aligned} f(oldsymbol{y}), oldsymbol{x} - oldsymbol{y}
ight
angle & \geq & rac{\mu}{2} \|oldsymbol{x} - oldsymbol{y}\|_2^2 + rac{\mu}{2} \|oldsymbol{x} - oldsymbol{y}\|_2^2 \ & \geq & rac{\mu}{2} \|oldsymbol{x} - oldsymbol{y}\|_2^2 + rac{1}{2\mu} \|oldsymbol{
aligned} f(oldsymbol{x}) - oldsymbol{
aligned} f(oldsymbol{y})\|_2^2, \end{aligned}$$

and the result follows.

If $\mu < L$, let us define $\phi(\boldsymbol{x}) = f(\boldsymbol{x}) - \frac{\mu}{2} \|\boldsymbol{x}\|_2^2$. Then $\nabla \phi(\boldsymbol{x}) = \nabla f(\boldsymbol{x}) - \mu \boldsymbol{x}$ and $\langle \nabla \phi(\boldsymbol{x}) - \nabla \phi(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle = \langle \nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle - \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 \le (L - \mu) \|\boldsymbol{x} - \boldsymbol{y}\|_2^2$ since $f \in \mathcal{C}_L^{1,1}(\mathbb{R}^n)$. Also $\langle \nabla \phi(\boldsymbol{x}) - \nabla \phi(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \ge \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 - \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 = 0$ due to Theorem 5.18. Therefore, from Theorem 5.13, $\phi \in \mathcal{F}_{L-\mu}^{1,1}(\mathbb{R}^n)$.

We have now $\langle \nabla \phi(\boldsymbol{x}) - \nabla \phi(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \geq \frac{1}{L-\mu} \| \nabla \phi(\boldsymbol{x}) - \nabla \phi(\boldsymbol{y}) \|_2^2$ from Theorem 5.13. Therefore

$$\begin{split} \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle &\geq \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \frac{1}{L - \mu} \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}) - \mu(\boldsymbol{x} - \boldsymbol{y})\|_2^2 \\ &= \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \frac{1}{L - \mu} \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})\|_2^2 - \frac{2\mu}{L - \mu} \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \\ &+ \frac{\mu^2}{L - \mu} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2, \end{split}$$

and the result follows after some simplifications.

5.5 Extended Real-Valued Functions

Only at this subsection, we adopt the following rule:

$$0 \cdot \infty = \infty \cdot 0 = 0 \cdot (-\infty) = (-\infty) \cdot 0 = 0.$$
⁽¹⁰⁾

Definition 5.24 A function that can take values $-\infty$ or $+\infty$ is called an *extended real-valued* function. That is $f: \mathbb{R}^n \to [-\infty, +\infty]$. We can also denote $[-\infty, +\infty]$ by $\mathbb{R} \cup \{\pm\infty\}$. The domain of this function is defined by the set dom $(f) = \{x \in \mathbb{R}^n \mid f(x) < +\infty\}$.

Example 5.25 For an arbitrary set $S \subset \mathbb{R}^n$, the *indicator function* of S is defined by the following extended real-valued function:

$$\delta_S(\boldsymbol{x}) = \begin{cases} 0, & \boldsymbol{x} \in S, \\ +\infty, & \boldsymbol{x} \notin S. \end{cases}$$

•

Definition 5.26 A function $f: \mathbb{R}^n \to [-\infty, +\infty]$ is called *proper* if it does not attain the value $-\infty$ and dom $(f) \neq \emptyset$. This function is called *closed* if its epigraph is a closed set.

Definition 5.27 A function $f: \mathbb{R}^n \to [-\infty, +\infty]$ is called *lower semicontinuous at* $x \in \mathbb{R}$ if

$$f(\boldsymbol{x}) \leq \lim \inf_{n \to \infty} f(\boldsymbol{x}_n)$$

for any sequence $\{\boldsymbol{x}_n\}_{n=1}^{\infty}$ for which $\boldsymbol{x}_n \to \boldsymbol{x}$. Therefore, a function $f: \mathbb{R}^n \to [-\infty, +\infty]$ is called *lower semicontinous* if it is lower semicontinuous at each point of \mathbb{R}^n .

Theorem 5.28 Let $f: \mathbb{R}^n \to [-\infty, +\infty]$. Then the following conditions are equivalent:

- 1. f is lower semicontinuous.
- 2. f is closed.
- 3. For any $\lambda \in \mathbb{R}$, the λ -level sets L_{λ} of f (see Theorem 5.3) are closed.

Proof:

 $\lfloor 1 \Rightarrow 2 \rfloor$ We need to show that the epigraph E of f is closed. Let $\{\boldsymbol{x}_n, y_n\}_{n=1}^{\infty}$ a sequence of $\mathbb{R}^n \times \mathbb{R}$ such that $(\boldsymbol{x}_n, y_n) \in E$ for any $n \ge 1$ and $(\boldsymbol{x}_n, y_n) \to (\bar{\boldsymbol{x}}, \bar{y})$. Then $f(\boldsymbol{x}_n) \le y_n$ and taking the limit inferior on both sides of the inequality:

$$f(\bar{\boldsymbol{x}}) \leq \lim \inf_{n \to \infty} f(\boldsymbol{x}_n) \leq \lim \inf_{n \to \infty} y_n = \bar{y}_n$$

which shows that $(\bar{\boldsymbol{x}}, \bar{y}) \in E$.

 $2\Rightarrow3$ If $L_{\lambda} = \emptyset$, there is nothing to do. Therefore, suppose that there is sequence $\{x_n\}_{n=1}^{\infty} \subseteq L_{\lambda}$ that converges to \bar{x} . That is $f(x_n) \leq \lambda$ and since the epigraph of f is closed, $(\bar{x}, \lambda) \in E$, and therefore, $f(\bar{x}) \leq \lambda$ which implies that $\bar{x} \in L_{\lambda}$.

 $\lfloor 3 \Rightarrow 1 \rfloor$ Suppose to the contrary that f is not lower semicontinuous. That is, there exists \bar{x} , a sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \to \bar{x}$, and $\lim_{n \to \infty} \inf_{n \to \infty} f(x_n) < f(\bar{x})$. Consider $\lambda \in \mathbb{R}$ such that

$$\lim \inf_{n \to \infty} f(\boldsymbol{x}_n) < \lambda < f(\bar{\boldsymbol{x}}).$$
(11)

Therefore, we can consider a subsequence $\{\boldsymbol{x}_{n_k}\}_{k=1}^{\infty}$ such that $f(\boldsymbol{x}_{n_k}) < \lambda$ and then $\boldsymbol{x}_{n_k} \in L_{\lambda}$. Since the λ -level sets are closed, $\boldsymbol{x}_{n_k} \to \bar{\boldsymbol{x}} \in L_{\lambda}$ and $f(\bar{\boldsymbol{x}}) \leq \lambda$ contradicting (11).

Definition 5.29 An extended real-valued function $f: \mathbb{R}^n \to [-\infty, +\infty]$ is called *convex* if its epigraph is a convex set.

Therefore, we can show that a proper extended real-valued function is a convex function if and only if it satisfies the condition for usual functions (Definition 5.1) using the rule (10).

Theorem 5.30

- 1. Let $f_i: \mathbb{R}^n \to [-\infty, +\infty]$ $(i \in I)$ be a family of (finite or infinite) extended real-valued functions which are closed and convex. Then the function $f(\boldsymbol{x}) := \sup_{i \in I} f_i(\boldsymbol{x})$ is also closed and convex.
- 2. Let $f_i: \mathbb{R}^n \to [-\infty, +\infty]$ $(1 \le i \le m)$ be a family of finite extended real-valued functions which are closed and convex, and $\alpha_1, \alpha_2, \ldots, \alpha_m \ge 0$. Then the function $f(\boldsymbol{x}) = \sum_{i=1}^m \alpha_i f_i(\boldsymbol{x})$ is also closed and convex.
- 3. If $f: \mathbb{R}^m \to [-\infty, +\infty]$ is an extended real-valued function which is closed and convex, $\boldsymbol{b} \in \mathbb{R}^m$, and $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, then $\phi(\boldsymbol{x}) := f(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b})$ is also a closed and convex function.

Proof: Left for exercise.

5.6 Exercises

1. Given a convex set $S \subseteq \mathbb{R}^n$ and an arbitrarily norm $\|\cdot\|$ in \mathbb{R}^n , define the distance of a point $\boldsymbol{x} \in \mathbb{R}^n$ to the set S as

$$\operatorname{dist}(\boldsymbol{x}, S) := \inf_{\boldsymbol{y} \in S} \|\boldsymbol{x} - \boldsymbol{y}\|.$$

Show that the distance function dist(x, S) is convex on x.

- 2. Give an example of a function $f \colon \mathbb{R} \to \mathbb{R}$ and a nonempty set $C \subseteq \mathbb{R}$ illustrating each of the following facts:
 - (a) f is non convex on \mathbb{R} , C is convex, and f is convex on C.
 - (b) f is non convex on \mathbb{R} , C is non convex, and f is convex on C.
- 3. Prove Theorem 5.5.
- 4. Show that for $x_1, x_2, \ldots, x_n \ge 0$ the inequality

$$\frac{1}{n}\sum_{i=1}^{n}x_i \ge \sqrt[n]{\prod_{i=1}^{n}x_i}$$

is valid. Moreover, if $\alpha_1, \alpha_2, \ldots, \alpha_n \ge 0$ is such that $\sum_{i=1}^n \alpha_i = 1$, then show that

$$\sum_{i=1}^{n} \alpha_i x_k \ge \prod_{i=1}^{n} x_i^{\alpha_i}.$$

5. For any $s, t \ge 0$ and p, q > 1 satisfying $\frac{1}{p} + \frac{1}{q} = 1$, show that

$$st \le \frac{s^p}{p} + \frac{t^q}{q}.$$

- 6. Prove Theorem 5.7.
- 7. Prove Theorem 5.8.
- 8. Prove Lemma 5.9.
- 9. Prove Corollary 5.12.
- 10. Prove Corollary 5.17.
- 11. Prove Theorem 5.18.
- 12. Prove Theorem 5.21.
- 13. Prove Corollary 5.22.
- 14. Prove Theorem 5.30.

6 Worse Case Analysis for Gradient Based Methods

6.1 Lower Complexity Bound for the class $\mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$

Gradient Based Method: Iterative method \mathcal{M} generated by a sequence such that

 $\boldsymbol{x}_k \in \boldsymbol{x}_0 + \operatorname{span}\{\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_0), \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_1), \dots, \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_{k-1})\}, \quad k \geq 1.$

Consider the problem class as follows

Model:	$\min_{oldsymbol{x} \in \mathbb{R}^n} f(oldsymbol{x})$
	$f\in {\mathcal F}^{1,1}_L({\mathbb R}^n)$
Oracle:	Only function and gradient values are available
Approximate solution:	Find $\bar{\boldsymbol{x}} \in \mathbb{R}^n$ such that $f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) < \varepsilon$

Theorem 6.1 For any $1 \le k \le \frac{n-1}{2}$, and any $\boldsymbol{x}_0 \in \mathbb{R}^n$, there exists a function $f \in \mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$ such that for any gradient based method of type \mathcal{M} , we have

$$egin{array}{rcl} f(m{x}_k)-f(m{x}^*) &\geq & rac{3L\|m{x}_0-m{x}^*\|_2^2}{32(k+1)^2}, \ \|m{x}_k-m{x}^*\|_2^2 &\geq & rac{1}{8}\|m{x}_0-m{x}^*\|_2^2, \end{array}$$

where \boldsymbol{x}^* is the minimum of $f(\boldsymbol{x})$.

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the space of variables. Therefore, we can assume that $x_0 = 0$.

Consider the family of quadratic functions

$$f_k(\boldsymbol{x}) = \frac{L}{4} \left\{ \frac{1}{2} \left[[\boldsymbol{x}]_1^2 + \sum_{i=1}^{k-1} ([\boldsymbol{x}]_i - [\boldsymbol{x}]_{i+1})^2 + [\boldsymbol{x}]_k^2 \right] - [\boldsymbol{x}]_1 \right\}, \quad k = 1, 2, \dots, n.$$

We can see that

We can see that for k = 1, $f_1(\boldsymbol{x}) = \frac{L}{4}([\boldsymbol{x}]_1^2 - [\boldsymbol{x}]_1)$, for k = 2, $f_2(\boldsymbol{x}) = \frac{L}{4}([\boldsymbol{x}]_1^2 + [\boldsymbol{x}]_2^2 - [\boldsymbol{x}]_1[\boldsymbol{x}]_2 - [\boldsymbol{x}]_1)$, for k = 3, $f_3(\boldsymbol{x}) = \frac{L}{4}([\boldsymbol{x}]_1^2 + [\boldsymbol{x}]_2^2 + [\boldsymbol{x}]_3^2 - [\boldsymbol{x}]_1[\boldsymbol{x}]_2 - [\boldsymbol{x}]_2[\boldsymbol{x}]_3 - [\boldsymbol{x}]_1)$. Therefore, $f_k(\boldsymbol{x}) = \frac{L}{4} \left[\frac{1}{2} \langle \boldsymbol{A}_k \boldsymbol{x}, \boldsymbol{x} \rangle - \langle \boldsymbol{e}_1, \boldsymbol{x} \rangle \right]$, where $\boldsymbol{e}_1 = (1, 0, \dots, 0)^T$, and

$$\boldsymbol{A}_{k} = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \ddots & 0 & \boldsymbol{0}_{k,n-k} \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \cdots & 0 & -1 & 2 \\ & & \boldsymbol{0}_{n-k,k} & & \boldsymbol{0}_{n-k,n-k} \end{pmatrix}$$

Also, $\nabla f_k(\boldsymbol{x}) = \frac{L}{4}(\boldsymbol{A}_k \boldsymbol{x} - \boldsymbol{e}_1)$ and $\nabla^2 f_k(\boldsymbol{x}) = \frac{L}{4}\boldsymbol{A}_k$. After some calculations, we can show that $L\boldsymbol{I} \succeq \nabla^2 f_k(\boldsymbol{x}) \succeq \boldsymbol{O}$ for k = 1, 2, ..., n, and therefore, $f_k(\boldsymbol{x}) \in \mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$, for k = 1, 2, ..., n, due to Corollary 5.12.

Then

$$f_k(\overline{\boldsymbol{x}_k}) = \frac{L}{8} \left(-1 + \frac{1}{k+1} \right),$$

$$[\overline{\boldsymbol{x}_k}]_i = \begin{cases} 1 - \frac{i}{k+1}, & i = 1, 2, \dots, k\\ 0, & i = k+1, k+2, \dots, n, \end{cases}$$

are the minimum value and the minimal solution for $f_k(\cdot)$, respectively.

Now, for $1 \le k \le \frac{n-1}{2}$, let us define $f(\boldsymbol{x}) := f_{2k+1}(\boldsymbol{x})$, and therefore $\boldsymbol{x}^* := \overline{\boldsymbol{x}_{2k+1}}$. Note that $\boldsymbol{x}_k \in \boldsymbol{x}_0 + \operatorname{span}\{\boldsymbol{\nabla} f(\boldsymbol{x}_0), \boldsymbol{\nabla} f(\boldsymbol{x}_1), \dots, \boldsymbol{\nabla} f(\boldsymbol{x}_{k-1})\}$ for $\boldsymbol{x}_0 = \boldsymbol{0}$. Moreover, since $\boldsymbol{\nabla} f_k(\boldsymbol{x}) = \frac{L}{4}(\boldsymbol{A}_k \boldsymbol{x} - \boldsymbol{e}_1), [\boldsymbol{x}_k]_p = 0$ for p > k. Therefore, $f_p(\boldsymbol{x}_k) = f_k(\boldsymbol{x}_k)$ for $p \ge k$. Then for $k = 1, 2, \dots, \lfloor \frac{n-1}{2} \rfloor$,

$$f(\boldsymbol{x}_{k}) - f(\boldsymbol{x}^{*}) = f_{2k+1}(\boldsymbol{x}_{k}) - f_{2k+1}(\overline{\boldsymbol{x}_{2k+1}}) = f_{k}(\boldsymbol{x}_{k}) - \frac{L}{8}\left(-1 + \frac{1}{2k+2}\right)$$

$$\geq f_{k}(\overline{\boldsymbol{x}_{k}}) - \frac{L}{8}\left(-1 + \frac{1}{2k+2}\right) = \frac{L}{8}\left(-1 + \frac{1}{k+1}\right) - \frac{L}{8}\left(-1 + \frac{1}{2k+2}\right)$$

$$= \frac{L}{16(k+1)}.$$

We can obtain after some calculations,

$$\begin{aligned} \|\boldsymbol{x}_{0} - \boldsymbol{x}^{*}\|_{2}^{2} &= \|\boldsymbol{x}_{0} - \overline{\boldsymbol{x}_{2k+1}}\|_{2}^{2} = \sum_{i=1}^{2k+1} \left(1 - \frac{i}{2k+2}\right)^{2} \\ &= 2k + 1 - \frac{2}{2k+2} \sum_{i=1}^{2k+1} i + \frac{1}{(2k+2)^{2}} \sum_{i=1}^{2k+1} i^{2} \\ &\leq 2k + 1 - \frac{2(2k+2)(2k+1)}{(2k+2)^{2}} + \frac{(2k+1+1)^{3}}{3(2k+2)^{2}} \\ &\leq \frac{2(k+1)}{3}. \end{aligned}$$

Then

$$\frac{f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*)}{\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2} \ge \frac{L}{16(k+1)} \frac{3}{2(k+1)}.$$

Also

$$\begin{aligned} \|\boldsymbol{x}_{k} - \boldsymbol{x}^{*}\|_{2}^{2} &= \|\boldsymbol{x}_{k} - \overline{\boldsymbol{x}_{2k+1}}\|_{2}^{2} \geq \sum_{i=k+1}^{2k+1} \left([\overline{\boldsymbol{x}_{2k+1}}]_{i}\right)^{2} = \sum_{i=k+1}^{2k+1} \left(1 - \frac{i}{2k+2}\right)^{2} \\ &= k+1 - \frac{2}{2k+2} \left[\frac{(2k+2)(2k+1)}{2} - \frac{(k+1)k}{2}\right] + \frac{1}{(2k+2)^{2}} \sum_{i=k+1}^{2k+1} i^{2} \\ &\geq \frac{1}{8} \|\boldsymbol{x}_{0} - \overline{\boldsymbol{x}_{2k+1}}\|_{2}^{2} = \frac{1}{8} \|\boldsymbol{x}_{0} - \boldsymbol{x}^{*}\|_{2}^{2}. \end{aligned}$$

If we consider very large problems where we can not afford n number of iterations, the above theorem says that:

- The function value can be expected to decrease fast.
- The convergence to the optimal solution x^* can be arbitrarily slow.

Lower Complexity Bound for the class $\mathcal{S}^{\infty,1}_{\mu,L}(\ell^2)$ 6.2

Gradient Based Method: Iterative method \mathcal{M} generated by a sequence such that

$$\boldsymbol{x}_k \in \boldsymbol{x}_0 + \operatorname{span}\{\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_0), \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_1), \dots, \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_{k-1})\}, \quad k \geq 1.$$

Let us define

$$\ell^{2} := \left\{ \{x_{i}\}_{i=1}^{\infty} \mid \sum_{i=1}^{\infty} x_{i}^{2} < \infty \right\}.$$

Consider the problem class as follows

Model:	$\min_{oldsymbol{x}\in\ell^2}f(oldsymbol{x})$
	$f\in \mathcal{S}^{\infty,1}_{\mu,L}(\ell^2)$
Oracle:	Only function and gradient values are available
Approximate solution:	Find $\bar{\boldsymbol{x}} \in \mathbb{R}^n$ such that $\begin{cases} f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) < \varepsilon \\ \ \bar{\boldsymbol{x}} - \boldsymbol{x}^*\ _2^2 < \varepsilon \end{cases}$

Theorem 6.2 For any $\boldsymbol{x}_0 \in \ell^2$, there exists a function $f \in \mathcal{S}_{\mu,L}^{\infty,1}(\ell^2)$ such that for any gradient based method of type \mathcal{M} , we have

$$egin{aligned} f(m{x}_k) - f(m{x}^*) &\geq & rac{\mu}{2} \left(rac{\sqrt{L/\mu} - 1}{\sqrt{L/\mu} + 1}
ight)^{2k} \|m{x}_0 - m{x}^*\|_2^2, \ \|m{x}_k - m{x}^*\|_2^2 &\geq & \left(rac{\sqrt{L/\mu} - 1}{\sqrt{L/\mu} + 1}
ight)^{2k} \|m{x}_0 - m{x}^*\|_2^2, \end{aligned}$$

where \boldsymbol{x}^* is the minimum of $f(\boldsymbol{x})$.

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the space of variables. Therefore, we can assume that $x_0 = \{0\}_{i=1}^{\infty}$.

Consider the following quadratic function

$$f_{\mu,L}(\boldsymbol{x}) = \frac{\mu(L/\mu - 1)}{8} \left\{ [\boldsymbol{x}]_1^2 + \sum_{i=1}^{\infty} ([\boldsymbol{x}]_i - [\boldsymbol{x}]_{i+1})^2 - 2[\boldsymbol{x}]_1 \right\} + \frac{\mu}{2} \|\boldsymbol{x}\|_2^2$$

Then

$$\boldsymbol{\nabla} \boldsymbol{f}_{\mu,L}(\boldsymbol{x}) = \left(\frac{\mu(L/\mu - 1)}{4}\boldsymbol{A} + \mu \boldsymbol{I}\right)\boldsymbol{x} - \frac{\mu(L/\mu - 1)}{4}\boldsymbol{e}_1,$$

where A is the same tridiagonal matrix defined in Theorem 6.1, but with infinite dimension and $e_1 \in \ell^2$ is a vector where only the first element is one.

After some calculations, we can show that $\mu I \leq \nabla^2 f(x) \leq LI$ and therefore, $f(x) \in \mathcal{S}_{\mu,L}^{\infty,1}(\ell^2)$, due to Corollary 5.22.

The minimal optimal solution of this function is:

$$[\boldsymbol{x}^*]_i := q^i = \left(\frac{\sqrt{L/\mu} - 1}{\sqrt{L/\mu} + 1}\right)^i, \quad i = 1, 2, \dots$$

Then

$$\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|_2^2 = \sum_{i=1}^{\infty} [\boldsymbol{x}^*]_i^2 = \sum_{i=1}^{\infty} q^{2i} = \frac{q^2}{1-q^2}$$