
Proof:
Left for exercise.

Corollary 5.22 Let f be a twice continuously differentiable function. Then f ∈ S2,1
µ,L(R

n) if and
only if

LI ⪰ ∇2f(x) ⪰ µI, ∀x ∈ Rn.

Proof:
Left for exercise.

Theorem 5.23 If f ∈ S1,1
µ,L(R

n), then

µL

µ+ L
∥x− y∥22 +

1

µ+ L
∥∇f(x)−∇f(y)∥22 ≤ ⟨∇f(x)−∇f(y),x− y⟩, ∀x,y ∈ Rn.

Proof:
If µ = L, from Theorem 5.18 and the definition of C1

µ(Rn),

⟨∇f(x)−∇f(y),x− y⟩ ≥ µ

2
∥x− y∥22 +

µ

2
∥x− y∥22

≥ µ

2
∥x− y∥22 +

1

2µ
∥∇f(x)−∇f(y)∥22,

and the result follows.
If µ < L, let us define ϕ(x) = f(x) − µ

2∥x∥
2
2. Then ∇ϕ(x) = ∇f(x) − µx and ⟨∇ϕ(x) −

∇ϕ(y),x−y⟩ = ⟨∇f(x)−∇f(y),x−y⟩−µ∥x−y∥22 ≤ (L−µ)∥x−y∥22 since f ∈ C1,1
L (Rn). Also

⟨∇ϕ(x) − ∇ϕ(y),x − y⟩ ≥ µ∥x − y∥22 − µ∥x − y∥22 = 0 due to Theorem 5.18. Therefore, from
Theorem 5.13, ϕ ∈ F1,1

L−µ(R
n).

We have now ⟨∇ϕ(x)−∇ϕ(y),x−y⟩ ≥ 1
L−µ∥∇ϕ(x)−∇ϕ(y)∥22 from Theorem 5.13. Therefore

⟨∇f(x)−∇f(y),x− y⟩ ≥ µ∥x− y∥22 +
1

L− µ
∥∇f(x)−∇f(y)− µ(x− y)∥22

= µ∥x− y∥22 +
1

L− µ
∥∇f(x)−∇f(y)∥22 −

2µ

L− µ
⟨∇f(x)−∇f(y),x− y⟩

+
µ2

L− µ
∥x− y∥22,

and the result follows after some simplifications.

5.5 Extended Real-Valued Functions

Only at this subsection, we adopt the following rule:

0 · ∞ = ∞ · 0 = 0 · (−∞) = (−∞) · 0 = 0. (10)

Definition 5.24 A function that can take values −∞ or +∞ is called an extended real-valued
function. That is f : Rn → [−∞,+∞]. We can also denote [−∞,+∞] by R ∪ {±∞}. The domain
of this function is defined by the set dom(f) = {x ∈ Rn | f(x) < +∞}.

Example 5.25 For an arbitrary set S ⊂ Rn, the indicator function of S is defined by the following
extended real-valued function:

δS(x) =

{
0, x ∈ S,

+∞, x ̸∈ S.
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Definition 5.26 A function f : Rn → [−∞,+∞] is called proper if it does not attain the value −∞
and dom(f) ̸= ∅. This function is called closed if its epigraph is a closed set.

Definition 5.27 A function f : Rn → [−∞,+∞] is called lower semicontinuous at x ∈ R if

f(x) ≤ lim inf
n→∞

f(xn)

for any sequence {xn}∞n=1 for which xn → x. Therefore, a function f : Rn → [−∞,+∞] is called
lower semicontinous if it is lower semicontinuous at each point of Rn.

Theorem 5.28 Let f : Rn → [−∞,+∞]. Then the following conditions are equivalent:

1. f is lower semicontinuous.

2. f is closed.

3. For any λ ∈ R, the λ-level sets Lλ of f (see Theorem 5.3) are closed.

Proof:
1⇒2 We need to show that the epigraph E of f is closed. Let {xn, yn}∞n=1 a sequence of Rn×R

such that (xn, yn) ∈ E for any n ≥ 1 and (xn, yn) → (x̄, ȳ). Then f(xn) ≤ yn and taking the limit
inferior on both sides of the inequality:

f(x̄) ≤ lim inf
n→∞

f(xn) ≤ lim inf
n→∞

yn = ȳ,

which shows that (x̄, ȳ) ∈ E.
2⇒3 If Lλ = ∅, there is nothing to do. Therefore, suppose that theres is sequence {xn}∞n=1 ⊆ Lλ

that converges to x̄. That is f(xn) ≤ λ and since the epigraph of f is closed, (x̄, λ) ∈ E, and
therefore, f(x̄) ≤ λ which implies that x̄ ∈ Lλ.

3⇒1 Suppose to the contrary that f is not lower semicontinuous. That is, there exists x̄, a
sequence {xn}∞n=1 such that xn → x̄, and lim inf

n→∞
f(xn) < f(x̄). Consider λ ∈ R such that

lim inf
n→∞

f(xn) < λ < f(x̄). (11)

Therefore, we can consider a subsequence {xnk
}∞k=1 such that f(xnk

) < λ and then xnk
∈ Lλ. Since

the λ-level sets are closed, xnk
→ x̄ ∈ Lλ and f(x̄) ≤ λ contradicting (11).

Definition 5.29 An extended real-valued function f : Rn → [−∞,+∞] is called convex if its epi-
graph is a convex set.

Therefore, we can show that a proper extended real-valued function is a convex function if and
only if it satisfies the condition for usual functions (Definition 5.1) using the rule (10).

Theorem 5.30

1. Let fi: Rn → [−∞,+∞] (i ∈ I) be a family of (finite or infinite) extended real-valued functions
which are closed and convex. Then the function f(x) := sup

i∈I
fi(x) is also closed and convex.

2. Let fi: Rn → [−∞,+∞] (1 ≤ i ≤ m) be a family of finite extended real-valued functions
which are closed and convex, and α1, α2, . . . , αm ≥ 0. Then the function f(x) =

∑m
i=1 αifi(x)

is also closed and convex.

3. If f : Rm → [−∞,+∞] is an extended real-valued function which is closed and convex, b ∈ Rm,
and A ∈ Rm×n, then ϕ(x) := f(Ax+ b) is also a closed and convex function.

Proof:
Left for exercise.
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5.6 Exercises

1. Given a convex set S ⊆ Rn and an arbitrarily norm ∥ · ∥ in Rn, define the distance of a point
x ∈ Rn to the set S as

dist(x, S) := inf
y∈S

∥x− y∥.

Show that the distance function dist(x, S) is convex on x.

2. Give an example of a function f : R → R and a nonempty set C ⊆ R illustrating each of the
following facts:

(a) f is non convex on R, C is convex, and f is convex on C.

(b) f is non convex on R, C is non convex, and f is convex on C.

3. Prove Theorem 5.5.

4. Show that for x1, x2, . . . , xn ≥ 0 the inequality

1

n

n∑
i=1

xi ≥ n

√√√√ n∏
i=1

xi

is valid. Moreover, if α1, α2, . . . , αn ≥ 0 is such that
∑n

i=1 αi = 1, then show that

n∑
i=1

αixk ≥
n∏

i=1

xαi
i .

5. For any s, t ≥ 0 and p, q > 1 satisfying 1
p + 1

q = 1, show that

st ≤ sp

p
+

tq

q
.

6. Prove Theorem 5.7.

7. Prove Theorem 5.8.

8. Prove Lemma 5.9.

9. Prove Corollary 5.12.

10. Prove Corollary 5.17.

11. Prove Theorem 5.18.

12. Prove Theorem 5.21.

13. Prove Corollary 5.22.

14. Prove Theorem 5.30.

6 Worse Case Analysis for Gradient Based Methods

6.1 Lower Complexity Bound for the class F∞,1
L (Rn)
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Gradient Based Method: Iterative method M generated by a sequence such that

xk ∈ x0 + span{∇f(x0),∇f(x1), . . . ,∇f(xk−1)}, k ≥ 1.

Consider the problem class as follows

Model:

min
x∈Rn

f(x)

f ∈ F1,1
L (Rn)

Oracle: Only function and gradient values are available
Approximate solution: Find x̄ ∈ Rn such that f(x̄)− f(x∗) < ε

Theorem 6.1 For any 1 ≤ k ≤ n−1
2 , and any x0 ∈ Rn, there exists a function f ∈ F∞,1

L (Rn) such
that for any gradient based method of type M, we have

f(xk)− f(x∗) ≥ 3L∥x0 − x∗∥22
32(k + 1)2

,

∥xk − x∗∥22 ≥ 1

8
∥x0 − x∗∥22,

where x∗ is the minimum of f(x).

Proof:
This type of methods are invariant with respect to a simultaneous shift of all objects in the

space of variables. Therefore, we can assume that x0 = 0.
Consider the family of quadratic functions

fk(x) =
L

4

{
1

2

[
[x]21 +

k−1∑
i=1

([x]i − [x]i+1)
2 + [x]2k

]
− [x]1

}
, k = 1, 2, . . . , n.

We can see that
for k = 1, f1(x) =

L
4 ([x]

2
1 − [x]1),

for k = 2, f2(x) =
L
4 ([x]

2
1 + [x]22 − [x]1[x]2 − [x]1),

for k = 3, f3(x) =
L
4 ([x]

2
1 + [x]22 + [x]23 − [x]1[x]2 − [x]2[x]3 − [x]1).

Therefore, fk(x) =
L
4

[
1
2⟨Akx,x⟩ − ⟨e1,x⟩

]
, where e1 = (1, 0, . . . , 0)T , and

Ak =



2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2
. . . 0 0k,n−k

...
. . .

. . .
. . . −1

0 · · · 0 −1 2
0n−k,k 0n−k,n−k


.

Also, ∇fk(x) =
L
4 (Akx−e1) and ∇2fk(x) =

L
4Ak. After some calculations, we can show that

LI ⪰ ∇2fk(x) ⪰ O for k = 1, 2, . . . , n, and therefore, fk(x) ∈ F∞,1
L (Rn), for k = 1, 2, . . . , n, due

to Corollary 5.12.
Then

fk(xk) =
L

8

(
−1 +

1

k + 1

)
,

[xk]i =

{
1− i

k+1 , i = 1, 2, . . . , k

0, i = k + 1, k + 2, . . . , n,
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are the minimum value and the minimal solution for fk(·), respectively.
Now, for 1 ≤ k ≤ n−1

2 , let us define f(x) := f2k+1(x), and therefore x∗ := x2k+1.
Note that xk ∈ x0 + span{∇f(x0),∇f(x1), . . . ,∇f(xk−1)} for x0 = 0. Moreover, since

∇fk(x) =
L
4 (Akx− e1), [xk]p = 0 for p > k. Therefore, fp(xk) = fk(xk) for p ≥ k.

Then for k = 1, 2, . . . , ⌊n−1
2 ⌋,

f(xk)− f(x∗) = f2k+1(xk)− f2k+1(x2k+1) = fk(xk)−
L

8

(
−1 +

1

2k + 2

)
≥ fk(xk)−

L

8

(
−1 +

1

2k + 2

)
=

L

8

(
−1 +

1

k + 1

)
− L

8

(
−1 +

1

2k + 2

)
=

L

16(k + 1)
.

We can obtain after some calculations,

∥x0 − x∗∥22 = ∥x0 − x2k+1∥22 =
2k+1∑
i=1

(
1− i

2k + 2

)2

= 2k + 1− 2

2k + 2

2k+1∑
i=1

i+
1

(2k + 2)2

2k+1∑
i=1

i2

≤ 2k + 1− 2(2k + 2)(2k + 1)

(2k + 2)2
+

(2k + 1 + 1)3

3(2k + 2)2

≤ 2(k + 1)

3
.

Then

f(xk)− f(x∗)

∥x0 − x∗∥2
≥ L

16(k + 1)

3

2(k + 1)
.

Also

∥xk − x∗∥22 = ∥xk − x2k+1∥22 ≥
2k+1∑
i=k+1

([x2k+1]i)
2 =

2k+1∑
i=k+1

(
1− i

2k + 2

)2

= k + 1− 2

2k + 2

[
(2k + 2)(2k + 1)

2
− (k + 1)k

2

]
+

1

(2k + 2)2

2k+1∑
i=k+1

i2

≥ 1

8
∥x0 − x2k+1∥22 =

1

8
∥x0 − x∗∥22.

If we consider very large problems where we can not afford n number of iterations, the above
theorem says that:

• The function value can be expected to decrease fast.

• The convergence to the optimal solution x∗ can be arbitrarily slow.

6.2 Lower Complexity Bound for the class S∞,1
µ,L (ℓ

2)
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Gradient Based Method: Iterative method M generated by a sequence such that

xk ∈ x0 + span{∇f(x0),∇f(x1), . . . ,∇f(xk−1)}, k ≥ 1.

Let us define

ℓ2 :=

{
{xi}∞i=1

∣∣∣∣∣
∞∑
i=1

x2i < ∞

}
.

Consider the problem class as follows

Model: min
x∈ℓ2

f(x)

f ∈ S∞,1
µ,L (ℓ2)

Oracle: Only function and gradient values are available

Approximate solution: Find x̄ ∈ Rn such that

{
f(x̄)− f(x∗) < ε
∥x̄− x∗∥22 < ε

Theorem 6.2 For any x0 ∈ ℓ2, there exists a function f ∈ S∞,1
µ,L (ℓ2) such that for any gradient

based method of type M, we have

f(xk)− f(x∗) ≥ µ

2

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥22,

∥xk − x∗∥22 ≥

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥22,

where x∗ is the minimum of f(x).

Proof:
This type of methods are invariant with respect to a simultaneous shift of all objects in the

space of variables. Therefore, we can assume that x0 = {0}∞i=1.
Consider the following quadratic function

fµ,L(x) =
µ(L/µ− 1)

8

{
[x]21 +

∞∑
i=1

([x]i − [x]i+1)
2 − 2[x]1

}
+

µ

2
∥x∥22.

Then

∇fµ,L(x) =

(
µ(L/µ− 1)

4
A+ µI

)
x− µ(L/µ− 1)

4
e1,

where A is the same tridiagonal matrix defined in Theorem 6.1, but with infinite dimension and
e1 ∈ ℓ2 is a vector where only the first element is one.

After some calculations, we can show that µI ⪯ ∇2f(x) ⪯ LI and therefore, f(x) ∈ S∞,1
µ,L (ℓ2),

due to Corollary 5.22.
The minimal optimal solution of this function is:

[x∗]i := qi =

(√
L/µ− 1√
L/µ+ 1

)i

, i = 1, 2, . . .

Then

∥x0 − x∗∥22 =
∞∑
i=1

[x∗]2i =
∞∑
i=1

q2i =
q2

1− q2
.
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