9. In light of Theorem 4.21, show that under Assumption 4.20, if we want to obtain $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}<$ ε, we need an order of $\ln \left(\ln \varepsilon^{-1}\right)$ iterations for the Newton method.
10. In the Section 4.4.3, show that $\mathcal{L}_{k}=\left\{\boldsymbol{\delta}_{0}, \boldsymbol{\delta}_{1}, \ldots, \boldsymbol{\delta}_{k-1}\right\}$.
11. In the same section, arrive at the expression (9) for a strictly convex quadratic function.
12. Show that the secant equation is valid for BFGS, DFP and symmetric-rank-one formulae.
13. Given $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$ and a non-singular matrix $\boldsymbol{M} \in \mathbb{R}^{n \times n}$, if $1+\boldsymbol{v}^{T} \boldsymbol{M}^{-1} \boldsymbol{u} \neq 0$, then the following formula is valid:

$$
\left(\boldsymbol{M}+\boldsymbol{u} \boldsymbol{v}^{T}\right)^{-1}=\boldsymbol{M}^{-1}-\frac{\boldsymbol{M}^{-1} \boldsymbol{u} \boldsymbol{v}^{T} \boldsymbol{M}^{-1}}{1+\boldsymbol{v}^{T} \boldsymbol{M}^{-1} \boldsymbol{u}} . \quad \text { (Sherman-Morrison formula) }
$$

Apply this formula to compute the inverses \boldsymbol{B}_{k+1} of \boldsymbol{H}_{k+1} for BFGS, DFP and symmetric-rank-one formulae.
14. Apply the quasi-Newton method with BFGS, DFP, and Symmetric-Rank-One updates for the strictly convex function $f(\boldsymbol{x})=\alpha+\langle\boldsymbol{a}, \boldsymbol{x}\rangle+\frac{1}{2}\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle$ with $\boldsymbol{A} \succ \boldsymbol{O}$.

5 Convex Functions and Extended Real-Valued Functions

5.1 Convex Functions

Definition 5.1 Let Q be a subset of \mathbb{R}^{n}. We denote by $\mathcal{F}^{k}(Q)$ the class of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with the following properties:

- Any $f \in \mathcal{F}^{k}(Q)$ is k times continuously differentiable on Q;
- f is convex on Q, i.e., given $\forall \boldsymbol{x}, \boldsymbol{y} \in Q$ and $\forall \alpha \in[0,1]$,

$$
f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}) \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y}) .
$$

Theorem 5.2 $f \in \mathcal{F}\left(\mathbb{R}^{n}\right)$ if and only if its epigraph $E:=\left\{(\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid f(\boldsymbol{x}) \leq y\right\}$ is a convex.
Proof:
\Rightarrow Let $\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right) \in E$. Then for any $0 \leq \alpha \leq 1$, we have

$$
f\left(\alpha \boldsymbol{x}_{1}+(1-\alpha) \boldsymbol{x}_{2}\right) \leq \alpha f\left(\boldsymbol{x}_{1}\right)+(1-\alpha) f\left(\boldsymbol{x}_{2}\right) \leq \alpha y_{1}+(1-\alpha) y_{2}
$$

and therefore $\left(\alpha \boldsymbol{x}_{1}+(1-\alpha) \boldsymbol{x}_{2}, \alpha y_{1}+(1-\alpha) y_{2}\right) \in E$.
\Leftarrow Let $\left(\boldsymbol{x}_{1}, f\left(\boldsymbol{x}_{1}\right)\right),\left(\boldsymbol{x}_{2}, f\left(\boldsymbol{x}_{2}\right)\right) \in E$. By the convexity of E, for any $0 \leq \alpha \leq 1$,

$$
f\left(\alpha \boldsymbol{x}_{1}+(1-\alpha) \boldsymbol{x}_{2}\right) \leq \alpha f\left(\boldsymbol{x}_{1}\right)+(1-\alpha) f\left(\boldsymbol{x}_{2}\right)
$$

and therefore, $f \in \mathcal{F}\left(\mathbb{R}^{n}\right)$.
Theorem 5.3 If $f \in \mathcal{F}\left(\mathbb{R}^{n}\right)$, then its λ-level set $L_{\lambda}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x}) \leq \lambda\right\}$ is convex for each $\lambda \in \mathbb{R}$. But the converse is not true.

Proof:
For any $\lambda \in \mathbb{R}$, let $\boldsymbol{x}, \boldsymbol{y} \in L_{\lambda}$. Then for $\forall \alpha \in(0,1)$, since $f \in \mathcal{F}\left(\mathbb{R}^{n}\right), f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}) \leq$ $\alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y}) \leq \alpha \lambda+(1-\alpha) \lambda=\lambda$. Therefore, $\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y} \in L_{\lambda}$.

For the converse, $L_{\lambda}=\left\{x \in \mathbb{R} \mid f(x)=x^{3} \leq \lambda\right\}$ is convex for all $\lambda \in \mathbb{R}$, but $f \notin \mathcal{F}(\mathbb{R})$.

Example 5.4 The function $-\log x$ is convex on $(0,+\infty)$. Let $a, b \in(0,+\infty)$ and $0 \leq \theta \leq 1$. Then, from the definition of the convexity, we have

$$
-\log (\theta a+(1-\theta) b) \leq-\theta \log a-(1-\theta) \log b .
$$

If we take the exponential of both sides, we obtain

$$
a^{\theta} b^{1-\theta} \leq \theta a+(1-\theta) b .
$$

For $\theta=\frac{1}{2}$, we have the arithmetic-geometric mean inequality: $\sqrt{a b} \leq \frac{a+b}{2}$.
Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}, p>1$, and q such that $\frac{1}{p}+\frac{1}{q}=1$. Consider

$$
a=\frac{\left|[\boldsymbol{x}]_{i}\right|^{p}}{\sum_{j=1}^{n}\left|[\boldsymbol{x}]_{j}\right|^{p}}, b=\frac{\left|[\boldsymbol{y}]_{i}\right|^{q}}{\sum_{j=1}^{n}\left|[\boldsymbol{y}]_{j}\right|^{q}}, \theta=\frac{1}{p} \text {, and }(1-\theta)=\frac{1}{q} .
$$

Then we have

$$
\left(\frac{\left|[\boldsymbol{x}]_{i}\right|^{p}}{\sum_{j=1}^{n}\left|[\boldsymbol{x}]_{j}\right|^{p}}\right)^{\frac{1}{p}}\left(\frac{\left|[\boldsymbol{y}]_{i}\right|^{q}}{\sum_{j=1}^{n}\left|[\boldsymbol{y}]_{j}\right|^{q}}\right)^{\frac{1}{q}} \leq \frac{\left|[\boldsymbol{x}]_{i}\right|^{p}}{p \sum_{j=1}^{n}\left|[\boldsymbol{x}]_{j}\right|^{p}}+\frac{\left|[\boldsymbol{y}]_{i}\right|^{q}}{q \sum_{j=1}^{n}\left|[\boldsymbol{y}]_{j}\right|^{q}} .
$$

and summing over i, we obtain the Hölder inequality:

$$
|\langle\boldsymbol{x}, \boldsymbol{y}\rangle| \leq\|\boldsymbol{x}\|_{p}\|\boldsymbol{y}\|_{q}
$$

where $\|\boldsymbol{x}\|_{p}:=\left(\sum_{i=1}^{n}\left|[\boldsymbol{x}]_{i}\right|^{p}\right)^{\frac{1}{p}}$.
Theorem 5.5 (Jensen's inequality) A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if for any positive integer m, the following condition is valid

$$
\left.\begin{array}{l}
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m} \in \mathbb{R}^{n} \\
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \geq 0 \\
\sum_{i=1}^{m} \alpha_{i}=1
\end{array}\right\} \Rightarrow f\left(\sum_{i=1}^{m} \alpha_{i} \boldsymbol{x}_{i}\right) \leq \sum_{i=1}^{m} \alpha_{i} f\left(\boldsymbol{x}_{i}\right) .
$$

Proof:
Left for exercise.
Theorem 5.6 Let $\left\{f_{i}\right\}_{i \in I}$ be a family of (finite or infinite) functions which are bounded from above and $f_{i} \in \mathcal{F}\left(\mathbb{R}^{n}\right)$. Then, $f(\boldsymbol{x}):=\sup _{i \in I} f_{i}(\boldsymbol{x})$ is convex on \mathbb{R}^{n}.

Proof:

For each $i \in I$, since $f_{i} \in \mathcal{F}\left(\mathbb{R}^{n}\right)$, its epigraph $E_{i}=\left\{(\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid f_{i}(\boldsymbol{x}) \leq y\right\}$ is convex on \mathbb{R}^{n+1} by Theorem 5.2. Also their intersection

$$
\bigcap_{i \in I} E_{i}=\bigcap_{i \in I}\left\{(\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid f_{i}(\boldsymbol{x}) \leq y\right\}=\left\{(\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid \sup _{i \in I} f_{i}(\boldsymbol{x}) \leq y\right\}
$$

is convex by Exercise 2 of Section 1, which is exactly the epigraph of $f(\boldsymbol{x})$.

5.2 Differentiable Convex Functions

Theorem 5.7 Let f be a continuously differentiable function. The following conditions are equivalent:

1. $f \in \mathcal{F}^{1}\left(\mathbb{R}^{n}\right)$.
2. $f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$.
3. $\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\rangle \geq 0, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$.

Proof:
Left for exercise.
Theorem 5.8 (First-order sufficient optimality condition) If $f \in \mathcal{F}^{1}\left(\mathbb{R}^{n}\right)$ and $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=0$, then \boldsymbol{x}^{*} is the global minimum of $f(\boldsymbol{x})$ on \mathbb{R}^{n}.

Proof:
Left for exercise.
Lemma 5.9 If $f \in \mathcal{F}^{1}\left(\mathbb{R}^{m}\right), \boldsymbol{b} \in \mathbb{R}^{m}$, and $\boldsymbol{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then

$$
\phi(\boldsymbol{x})=f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}) \in \mathcal{F}^{1}\left(\mathbb{R}^{n}\right) .
$$

Proof:
Left for exercise.
Example 5.10 The following functions are differentiable and convex:

1. $f(x)=e^{x}$
2. $f(x)=|x|^{p}, \quad p>1$
3. $f(x)=\frac{x^{2}}{1+|x|}$
4. $f(x)=|x|-\ln (1+|x|)$
5. $f(\boldsymbol{x})=\sum_{i=1}^{m} e^{\alpha_{i}+\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle}$
6. $f(\boldsymbol{x})=\sum_{i=1}^{m}\left|\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle-b_{i}\right|^{p}, \quad p>1$

Theorem 5.11 Let f be a twice continuously differentiable function. Then $f \in \mathcal{F}^{2}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x}) \succeq \boldsymbol{O}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

Proof:
Let $f \in \mathcal{F}^{2}\left(\mathbb{R}^{n}\right)$, and denote $\boldsymbol{x}_{\tau}=\boldsymbol{x}+\tau s, \tau>0$. Then, from the previous result

$$
\begin{aligned}
0 & \leq \frac{1}{\tau^{2}}\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{\tau}\right)-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{x}_{\tau}-\boldsymbol{x}\right\rangle=\frac{1}{\tau}\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{\tau}\right)-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{s}\right\rangle \\
& =\frac{1}{\tau} \int_{0}^{\tau}\left\langle\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x}+\lambda s) s, s\right\rangle d \lambda \\
& =\frac{F(\tau)-F(0)}{\tau}
\end{aligned}
$$

where $F(\tau)=\int_{0}^{\tau}\left\langle\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x}+\lambda \boldsymbol{s}) \boldsymbol{s}, \boldsymbol{s}\right\rangle d \lambda$. Therefore, tending τ to 0 , we get $0 \leq F^{\prime}(0)=\left\langle\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{s}, \boldsymbol{s}\right\rangle$, and we have the result.

Conversely, $\forall \boldsymbol{x} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
f(\boldsymbol{y}) & =f(\boldsymbol{x})+\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\int_{0}^{1} \int_{0}^{\tau}\left\langle\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x}+\lambda(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle d \lambda d \tau \\
& \geq f(\boldsymbol{x})+\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle .
\end{aligned}
$$

5.3 Differentiable Convex Functions with Lipschitz Continuous Gradients

Corollary 5.12 Let f be a two times continuously differentiable function. $f \in \mathcal{F}_{L}^{2,1}\left(\mathbb{R}^{n}\right)$ if and only if $\boldsymbol{O} \preceq \boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x}) \preceq L \boldsymbol{I}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}$.

Proof:
Left for exercise.
Theorem 5.13 Let f be a continuously differentiable function on $\mathbb{R}^{n}, \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, and $\alpha \in[0,1]$. Then the following conditions are equivalent:

1. $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$.
2. $0 \leq f(\boldsymbol{y})-f(\boldsymbol{x})-\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle \leq \frac{L}{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$.
3. $f(\boldsymbol{x})+\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{1}{2 L}\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})\|_{2}^{2} \leq f(\boldsymbol{y})$.
4. $0 \leq \frac{1}{L}\|\nabla \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})\|_{2}^{2} \leq\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\rangle$.
5. $0 \leq\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\rangle \leq L\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$.
6. $f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y})+\frac{\alpha(1-\alpha)}{2 L}\|\nabla \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})\|_{2}^{2} \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y})$.
7. $0 \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y})-f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}) \leq \alpha(1-\alpha) \frac{L}{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$.

Proof:
$\begin{array}{ll}1 \Rightarrow 2 & \text { It follows from Lemmas } 5.7 \text { and 3.6. }\end{array}$.
$2 \Rightarrow 3$ Fix $\boldsymbol{x} \in \mathbb{R}^{n}$, and consider the function $\phi(\boldsymbol{y})=f(\boldsymbol{y})-\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}\rangle$. Clearly $\phi(\boldsymbol{y})$ satisfies 2. Also, $\boldsymbol{y}^{*}=\boldsymbol{x}$ is a minimal solution. Therefore from 2,

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =\phi\left(\boldsymbol{y}^{*}\right) \leq \phi\left(\boldsymbol{y}-\frac{1}{L} \boldsymbol{\nabla} \phi(\boldsymbol{y})\right) \leq \phi(\boldsymbol{y})+\frac{L}{2}\left\|\frac{1}{L} \boldsymbol{\nabla} \boldsymbol{\phi}(\boldsymbol{y})\right\|_{2}^{2}+\left\langle\boldsymbol{\nabla} \phi(\boldsymbol{y}),-\frac{1}{L} \boldsymbol{\nabla} \phi(\boldsymbol{y})\right\rangle \\
& =\phi(\boldsymbol{y})+\frac{1}{2 L}\|\boldsymbol{\nabla} \boldsymbol{\phi}(\boldsymbol{y})\|_{2}^{2}-\frac{1}{L}\|\boldsymbol{\nabla} \phi(\boldsymbol{y})\|_{2}^{2}=\phi(\boldsymbol{y})-\frac{1}{2 L}\|\boldsymbol{\nabla} \boldsymbol{\phi}(\boldsymbol{y})\|_{2}^{2} .
\end{aligned}
$$

Since $\boldsymbol{\nabla} \phi(\boldsymbol{y})=\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})$, finally we have

$$
f(\boldsymbol{x})-\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{x}\rangle \leq f(\boldsymbol{y})-\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}\rangle-\frac{1}{2 L}\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})\|_{2}^{2} .
$$

$3 \Rightarrow 4$ Adding two copies of 3 with \boldsymbol{x} and \boldsymbol{y} interchanged, we obtain 4.
$\left\langle 4 \Rightarrow 1\right.$ Applying the Cauchy-Schwarz inequality to 4 , we obtain $\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})\|_{2} \leq L\|\boldsymbol{x}-\boldsymbol{y}\|_{2}$. Also from Theorem 5.7, $f(\boldsymbol{x})$ is convex.

$2 \Rightarrow 5$	Adding two copies of 2 with \boldsymbol{x} and \boldsymbol{y} interchanged, we obtain 5 .
$5 \Rightarrow 2$	

$$
\begin{aligned}
f(\boldsymbol{y})-f(\boldsymbol{x})-\langle\boldsymbol{\nabla} f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle & =\int_{0}^{1}\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle d \tau \\
& \leq \int_{0}^{1} \tau L\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2} d \tau=\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}
\end{aligned}
$$

The non-negativity follows from Theorem 5.7.
$3 \Rightarrow 6$ Denote $\boldsymbol{x}_{\alpha}=\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}$. From 3,

$$
\begin{aligned}
f(\boldsymbol{x}) & \geq f\left(\boldsymbol{x}_{\alpha}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{\alpha}\right),(1-\alpha)(\boldsymbol{x}-\boldsymbol{y})\right\rangle+\frac{1}{2 L}\left\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{\alpha}\right)\right\|_{2}^{2} \\
f(\boldsymbol{y}) & \geq f\left(\boldsymbol{x}_{\alpha}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{\alpha}\right), \alpha(\boldsymbol{y}-\boldsymbol{x})\right\rangle+\frac{1}{2 L}\left\|\boldsymbol{\nabla}(\boldsymbol{y})-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{\alpha}\right)\right\|_{2}^{2} .
\end{aligned}
$$

Multiplying the first inequality by α, the second by $1-\alpha$, and summing up, we have

$$
\alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}_{\alpha}\right)+\frac{\alpha}{2 L}\left\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{\alpha}\right)\right\|_{2}^{2}+\frac{1-\alpha}{2 L}\left\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{\alpha}\right)\right\|_{2}^{2} .
$$

Finally, using the inequality

$$
\alpha\|\boldsymbol{b}-\boldsymbol{d}\|_{2}^{2}+(1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|_{2}^{2} \geq \alpha(1-\alpha)\|\boldsymbol{b}-\boldsymbol{c}\|_{2}^{2}
$$

we have the result.

$$
\left(\begin{array}{l}
-\alpha(1-\alpha)\|\boldsymbol{b}-\boldsymbol{c}\|_{2}^{2} \geq-\alpha(1-\alpha)\left(\|\boldsymbol{b}-\boldsymbol{d}\|_{2}+\|\boldsymbol{c}-\boldsymbol{d}\|_{2}^{2}\right. \\
\text { Therefore } \\
\alpha\|\boldsymbol{b}-\boldsymbol{d}\|_{2}^{2}+(1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|_{2}^{2}-\alpha(1-\alpha)\left(\|\boldsymbol{b}-\boldsymbol{d}\|_{2}+\|\boldsymbol{c}-\boldsymbol{d}\|_{2}\right)^{2} \\
=\left(\alpha\|\boldsymbol{b}-\boldsymbol{d}\|_{2}-(1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|_{2}\right)^{2} \geq 0
\end{array}\right)
$$

$6 \Rightarrow 3$ Dividing both sides by $1-\alpha$ and tending α to 1 , we obtain 3 .
$2 \Rightarrow 7$ Denoting again $\boldsymbol{x}_{\alpha}=\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}$, from 2,

$$
\begin{aligned}
f(\boldsymbol{x}) & \leq f\left(\boldsymbol{x}_{\alpha}\right)+\left\langle\boldsymbol{\nabla}\left(\boldsymbol{x}_{\alpha}\right),(1-\alpha)(\boldsymbol{x}-\boldsymbol{y})\right\rangle+\frac{L}{2}(1-\alpha)^{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} \\
f(\boldsymbol{y}) & \leq f\left(\boldsymbol{x}_{\alpha}\right)+\left\langle\boldsymbol{\nabla}\left(\boldsymbol{x}_{\alpha}\right), \alpha(\boldsymbol{y}-\boldsymbol{x})\right\rangle+\frac{L}{2} \alpha^{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}
\end{aligned}
$$

Multiplying the first inequality by α, the second by $1-\alpha$, and summing up, we have

$$
\alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y}) \leq f\left(\boldsymbol{x}_{\alpha}\right)+\frac{L}{2}\left(\alpha(1-\alpha)^{2}+(1-\alpha) \alpha^{2}\right)\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} .
$$

The non-negativity follows from Theorem 5.7.
$7 \Rightarrow 2$ Dividing both sides by $1-\alpha$ and tending α to 1 , we obtain 2 . The non-negativity follows from Theorem 5.7.

5.4 Differentiable Strongly Convex Functions

Definition 5.14 A continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called strongly convex on \mathbb{R}^{n} (notation $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$) if there exists a constant $\mu>0$ such that

$$
f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{1}{2} \mu\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}
$$

The constant μ is called the convexity parameter of the function f.
Example 5.15 The following functions are some examples of strongly convex functions:

1. $f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}\|_{2}^{2}$.
2. $f(\boldsymbol{x})=\alpha+\langle\boldsymbol{a}, \boldsymbol{x}\rangle+\frac{1}{2}\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle$, for $\boldsymbol{A} \succeq \mu \boldsymbol{I}, \mu>0$.
3. $|x|$ (Although this function is not differentiable at $0 \in \mathbb{R}$, it is strongly convex only at the same point).
4. A sum of a convex and a strongly convex functions.
5. LASSO (Least Absolute Shrinkage and Selection Operator) with $\operatorname{rank}(\boldsymbol{A})=n:\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}+$ $\lambda\|\boldsymbol{x}\|_{1}$ and $\lambda>0$ (notice that this function is also not differentiable at $\mathbf{0} \in \mathbb{R}^{n}$).
6. The ℓ_{2}-regularized logistic regression function $f(\boldsymbol{x})=\log (1+\exp (-\langle\boldsymbol{a}, \boldsymbol{x}\rangle))+\lambda\|\boldsymbol{x}\|_{2}^{2}, \lambda>0$, which is a sum of a convex function and a strongly convex function.

Remark 5.16 Strongly convex functions are different from strictly convex functions. For instance, $f(x)=x^{4}$ is strictly convex at $x=0$ but it is not strongly convex at the same point.

Corollary 5.17 If $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$ and $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=0$, then

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)+\frac{1}{2} \mu\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}^{2}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

Proof:
Left for exercise.

Theorem 5.18 Let f be a continuously differentiable function. The following conditions are equivalent:

1. $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$.
2. $\mu\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} \leq\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\rangle, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$.
3. $f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y})+\alpha(1-\alpha) \frac{\mu}{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y}), \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}, \forall \alpha \in[0,1]$.

Proof:
Left for exercise.
Theorem 5.19 If $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$, we have

1. $f(\boldsymbol{y}) \leq f(\boldsymbol{x})+\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{1}{2 \mu}\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})\|_{2}^{2}, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$,
2. $\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\rangle \leq \frac{1}{\mu}\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})\|_{2}^{2}, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$.

Proof:
Let us fix $\boldsymbol{x} \in \mathbb{R}^{n}$, and define the function $\phi(\boldsymbol{y})=f(\boldsymbol{y})-\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}\rangle$. Clearly, $\phi \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$. Also, one minimal solution is \boldsymbol{x}. Therefore,

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =\min _{\boldsymbol{v} \in \mathbb{R}^{n}} \phi(\boldsymbol{v}) \geq \min _{\boldsymbol{v} \in \mathbb{R}^{n}}\left[\phi(\boldsymbol{y})+\langle\boldsymbol{\nabla} \boldsymbol{\phi}(\boldsymbol{y}), \boldsymbol{v}-\boldsymbol{y}\rangle+\frac{\mu}{2}\|\boldsymbol{v}-\boldsymbol{y}\|_{2}^{2}\right] \\
& =\phi(\boldsymbol{y})-\frac{1}{2 \mu}\|\boldsymbol{\nabla} \phi(\boldsymbol{y})\|_{2}^{2}
\end{aligned}
$$

as wished. Adding two copies of the 1 with \boldsymbol{x} and \boldsymbol{y} interchanged, we get 2 .
Remark 5.20 The converse of Theorem 5.19 is not valid. For instance, consider $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$, $\mu=1$. Then the inequalities 1. and 2. are satisfied but $f \notin \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{2}\right)$ for any $\mu>0$.

Theorem 5.21 Let f be a twice continuously differentiable function. Then $f \in \mathcal{S}_{\mu}^{2}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x}) \succeq \mu \boldsymbol{I}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

